|
import logging |
|
import os |
|
|
|
import pandas as pd |
|
import torch |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
import dataset_lib.multimodal as multimodal |
|
from dataset_lib.config import Config |
|
from dataset_lib.config import Constants as c |
|
from dataset_lib.datasets import get_dataset |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@torch.no_grad() |
|
def encode(config: Config, device=c.DEVICE, workdir=c.WORKDIR): |
|
logger.info( |
|
f"Encoding dataset {config.data.dataset.lower()} with" |
|
f" backbone = {config.data.backbone}" |
|
) |
|
|
|
datasets = get_dataset(config.data.dataset) |
|
encode_image = multimodal.get_image_encoder(config, device=device) |
|
|
|
for op, dataset in datasets.items(): |
|
data = {"embedding": [], "label": []} |
|
for image, label in tqdm(dataset, desc=f"Encoding {op}"): |
|
embedding = encode_image(image).float() |
|
embedding /= torch.linalg.norm(embedding, dim=-1, keepdim=True) |
|
embedding = embedding.cpu().numpy() |
|
|
|
data["embedding"].extend(embedding) |
|
data["label"].append(label) |
|
|
|
df = pd.DataFrame(data) |
|
|
|
data_path = os.path.join( |
|
f"{config.data.dataset.lower()}_{op}_{config.backbone_name()}.parquet" |
|
) |
|
df.to_parquet(data_path, index=False) |
|
|