id
stringlengths 5
5
| rgb
imagewidth (px) 640
640
| depth
imagewidth (px) 640
640
| semantic
imagewidth (px) 640
640
| instance
imagewidth (px) 640
640
|
---|---|---|---|---|
00000 | ||||
00001 | ||||
00002 | ||||
00003 | ||||
00004 | ||||
00005 | ||||
00006 | ||||
00007 | ||||
00008 | ||||
00009 | ||||
00011 | ||||
00012 | ||||
00013 | ||||
00014 | ||||
00016 | ||||
00017 | ||||
00018 | ||||
00019 | ||||
00020 | ||||
00021 | ||||
00022 | ||||
00024 | ||||
00025 | ||||
00026 | ||||
00027 | ||||
00028 | ||||
00033 | ||||
00034 | ||||
00035 | ||||
00036 | ||||
00037 | ||||
00038 | ||||
00039 | ||||
00040 | ||||
00041 | ||||
00042 | ||||
00045 | ||||
00046 | ||||
00047 | ||||
00050 | ||||
00052 | ||||
00053 | ||||
00055 | ||||
00057 | ||||
00060 | ||||
00061 | ||||
00062 | ||||
00064 | ||||
00066 | ||||
00068 | ||||
00069 | ||||
00071 | ||||
00072 | ||||
00073 | ||||
00074 | ||||
00075 | ||||
00077 | ||||
00079 | ||||
00080 | ||||
00082 | ||||
00084 | ||||
00085 | ||||
00087 | ||||
00088 | ||||
00089 | ||||
00090 | ||||
00091 | ||||
00092 | ||||
00093 | ||||
00094 | ||||
00095 | ||||
00096 | ||||
00097 | ||||
00098 | ||||
00102 | ||||
00103 | ||||
00104 | ||||
00105 | ||||
00106 | ||||
00108 | ||||
00110 | ||||
00112 | ||||
00114 | ||||
00116 | ||||
00117 | ||||
00118 | ||||
00119 | ||||
00120 | ||||
00121 | ||||
00122 | ||||
00124 | ||||
00125 | ||||
00127 | ||||
00130 | ||||
00131 | ||||
00132 | ||||
00133 | ||||
00134 | ||||
00136 | ||||
00137 |
NYUv2
This is an unofficial and preprocessed version of NYU Depth Dataset V2 made available for easier integration with modern ML workflows. The dataset was converted from the original .mat
format into a split structure with embedded RGB images, depth maps, semantic masks, and instance masks in Hugging Face-compatible format.
πΈ Sample Visualization
![]() RGB
|
![]() Depth (Jet colormap)
|
![]() Semantic Mask
|
NYUv2 is a benchmark RGB-D dataset widely used for scene understanding tasks such as:
- Indoor semantic segmentation
- Depth estimation
- Instance segmentation
This version has been preprocessed to include aligned:
- Undistorted RGB images (
.png
) - Depth maps in millimeters (
.tiff
,uint16
) - Semantic masks (
.tiff
, scaleduint16
) - Instance masks (
.tiff
, scaleduint16
)
Each sample is annotated with a consistent id
and split across train/val/test.
π§Ύ Dataset Metadata
Additional files included:
camera_params.json
β camera intrinsics and distortionclass_names.json
β mapping from class IDs to human-readable namesscaling_factors.json
β used for metric depth and label/mask de-scaling during training
π How to Use
You can load the dataset using the datasets
library:
from datasets import load_dataset
dataset = load_dataset("jagennath-hari/nyuv2", split="train")
sample = dataset[0]
# Access fields
rgb = sample["rgb"]
depth = sample["depth"]
semantic = sample["semantic"]
instance = sample["instance"]
π Recover Original Values from TIFF Images
The dataset uses .tiff format for all dense outputs to preserve precision and visual compatibility. Hereβs how to revert them back to their original values:
from datasets import load_dataset
from huggingface_hub import snapshot_download
from PIL import Image
import numpy as np
import json
import os
# Load sample
dataset = load_dataset("jagennath-hari/nyuv2", split="train")
sample = dataset[0]
# Download and load scaling metadata
local_dir = snapshot_download(
repo_id="jagennath-hari/nyuv2",
repo_type="dataset",
allow_patterns="scaling_factors.json"
)
with open(os.path.join(local_dir, "scaling_factors.json")) as f:
scale = json.load(f)
depth_scale = scale["depth_scale"]
label_max = scale["label_max_value"]
instance_max = scale["instance_max_value"]
# === Unscale depth (mm β m)
depth_img = np.array(sample["depth"])
depth_m = depth_img.astype(np.float32) / depth_scale
# === Unscale semantic mask
sem_scaled = np.array(sample["semantic"])
semantic_labels = np.round(
sem_scaled.astype(np.float32) * (label_max / 65535.0)
).astype(np.uint16)
# === Unscale instance mask
inst_scaled = np.array(sample["instance"])
instance_ids = np.round(
inst_scaled.astype(np.float32) * (instance_max / 65535.0)
).astype(np.uint16)
π Scaling Factors Summary
Field | Stored As | Original Format | Scaling Method | Undo Formula |
---|---|---|---|---|
depth |
uint16 , mm |
float32 , meters |
multiplied by depth_scale |
depth / depth_scale |
semantic |
uint16 , scaled |
uint16 class IDs |
scaled by 65535 / label_max |
round(mask * (label_max / 65535.0)) |
instance |
uint16 , scaled |
uint16 instance IDs |
scaled by 65535 / instance_max |
round(mask * (instance_max / 65535.0)) |
π Citation
If you use this dataset, please cite the original authors:
@inproceedings{Silberman:ECCV12,
author = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus},
title = {Indoor Segmentation and Support Inference from RGBD Images},
booktitle = {ECCV},
year = {2012}
}
- Downloads last month
- 179