jesusmolrdv's picture
Update README.md
35d872d verified
---
language:
- en
size_categories:
- 100K<n<1M
license: cc-by-nc-2.0
---
# MTF 2025 VLM Dishcovery Challenge Dataset - Web Split
## Overview
This dataset is part of the training data for the **CVPR Workshop Metafood 2025 (MTF 2025) Dishcovery VLM Challenge**. It consists of image-text pairs where the images are sourced from the web.
The dataset has been carefully curated using the **[Precision at Scale: Domain-Specific Datasets On-Demand](https://arxiv.org/abs/2407.03463)** method, ensuring high relevance and quality for domain-specific tasks.
**Associated Hugging Face Repository:** `jesusmolrdv/MTF25-VLM-Challenge-Dataset-Web`
## Dataset Description
* **Source:** Web-scraped images.
* **Format:** The dataset hosted on Hugging Face contains a table (similar to a Pandas DataFrame) with two columns:
* `url`: The URL of the original food image.
* `caption`: A textual description associated with the image.
* **Curation:** The selection of image-text pairs was performed using the methodology described in the "Precision at Scale" paper (see Citation section).
## How to Use / Download
Since this dataset split contains URLs to images rather than the images themselves, you need to download the images using a tool like [`img2dataset`](https://github.com/rom1504/img2dataset/).
1. **Install dependencies:**
```bash
pip install img2dataset datasets pyarrow pandas
```
2. **Prepare the URL list:**
First, download the dataset metadata (which contains the URLs and captions) from Hugging Face and save it as a local file (e.g., Parquet format). Run this short Python script:
```python
from datasets import load_dataset
import os
hf_dataset_name = "jesusmolrdv/MTF25-VLM-Challenge-Dataset-Web"
metadata_output_file = "mtf2025_web_metadata.parquet" # Output file for img2dataset
print(f"Loading dataset metadata: {hf_dataset_name}")
# Ensure you load the correct split, default is often 'train'
dataset = load_dataset(hf_dataset_name, split="train")
print(f"Saving metadata to {metadata_output_file}...")
# Save in Parquet format, which img2dataset can read efficiently
dataset.to_parquet(metadata_output_file)
print("Metadata file saved successfully.")
```
This script will create a file named `mtf2025_web_metadata.parquet` in the directory where you run it. This file contains the `url` and `caption` columns needed by `img2dataset`.
3. **Download images using `img2dataset` CLI:**
Now, use the `img2dataset` command in your terminal. Adjust parameters like `output_folder`, `image_size`, and `processes_count` as needed.
```bash
img2dataset \
--url_list mtf2025_web_metadata.parquet \
--input_format "parquet" \
--url_col "url" \
--caption_col "caption" \
--output_format webdataset \
--output_folder ./mtf2025_web_images \
--processes_count 16 \
--thread_count 64 \
--image_size 512 \
--resize_mode keep_ratio \
--enable_wandb False
```
> *Note: Downloading large datasets can take significant time and bandwidth. Some URLs might become inactive over time.*
## Citation
If you use this dataset in your research or challenge participation, please cite the following paper describing the curation method:
```bibtex
@misc{rodríguezdevera2024precisionscaledomainspecificdatasets,
title={Precision at Scale: Domain-Specific Datasets On-Demand},
author={Jesús M Rodríguez-de-Vera and Imanol G Estepa and Ignacio Sarasúa and Bhalaji Nagarajan and Petia Radeva},
year={2024},
eprint={2407.03463},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.03463},
}
```
## Acknowledgements
The author thankfully acknowledges the computer resources at Mare Nostrum 5 and the technical support provided by BSC (IM-2024-2-0022, IM-2023-3-0019).
We acknowledge EuroHPC Joint Undertaking for awarding us access to Mare Nostrum 5 at BSC, Spain.