Dataset Viewer
Auto-converted to Parquet
text
stringlengths
12
12
40000035.mat
40000857.mat
40000940.mat
40001003.mat
40001589.mat
40001748.mat
40002304.mat
40002528.mat
40002723.mat
40003990.mat
40004618.mat
40004668.mat
40004840.mat
40005868.mat
40006334.mat
40006411.mat
40007176.mat
40007723.mat
40007965.mat
40008111.mat
40008633.mat
40008779.mat
40009216.mat
40009340.mat
40009638.mat
40010160.mat
40010304.mat
40010831.mat
40011341.mat
40011541.mat
40011611.mat
40011676.mat
40012291.mat
40012447.mat
40012533.mat
40012932.mat
40013467.mat
40013836.mat
40014211.mat
40014231.mat
40014495.mat
40014895.mat
40014940.mat
40014995.mat
40015121.mat
40015598.mat
40016109.mat
40016353.mat
40016544.mat
40016681.mat
40017509.mat
40019374.mat
40019889.mat
40019956.mat
40020853.mat
40021210.mat
40021351.mat
40021653.mat
40022218.mat
40022408.mat
40022540.mat
40023089.mat
40023403.mat
40023945.mat
40024431.mat
40024447.mat
40024575.mat
40024599.mat
40024689.mat
40024816.mat
40024954.mat
40026345.mat
40028353.mat
40028470.mat
40028628.mat
40028874.mat
40028985.mat
40029095.mat
40029936.mat
40030241.mat
40030275.mat
40031620.mat
40032221.mat
40032367.mat
40033036.mat
40033670.mat
40034060.mat
40034117.mat
40034188.mat
40034368.mat
40034537.mat
40035085.mat
40035094.mat
40035194.mat
40035263.mat
40035519.mat
40035571.mat
40035621.mat
40035950.mat
40036234.mat
End of preview. Expand in Data Studio

FSL ECG QA Dataset

FSL ECG QA Dataset is a benchmark dataset used in paper ["Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning"] (https://arxiv.org/abs/2410.14464). It supports research in combining electrocardiogram (ECG) signals with natural language question answering (QA), particularly in few-shot and meta-learning scenarios.

Dataset Highlights

  • 🧠 Task Diversification: Restructured ECG-QA tasks promote rapid few-shot adaptation.
  • 🧬 Fusion Mapping: A lightweight multimodal mapper bridges ECG and language features.
  • 🚀 Model Generalization: LLM-agnostic design ensures broad transferability and robustness.

1. Datasets

1.1 Load the classes

python load_class.py --base_path /your/actual/path/to/ecgqa/ptbxl/paraphrased --test_dataset ptb-xl
python load_class.py --paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased --test_dataset mimic
(all tested mimic-iv-ecg dataset is listed in "data/processed_test_30k.json")

1.2 Load ECG QA FSL dataset

python data_loader.py
--model_name /your/actual/path/to/model/download/from/hugging/face
--paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased
--test_dataset ptb-xl

1.3 Sample of ECG QA FSL dataset

episode = {
    # --- Support Set ---
    "support_x": [  # ECG feature tensors or preprocessed arrays
        ecg_sample_1,  # typically a NumPy array or tensor
        ecg_sample_2,
        # ...
    ],
    "support_y_q": [  # Question token sequences (padded)
        [12, 45, 78, 0, 0, 0],
        [23, 67, 89, 90, 0, 0],
        # ...
    ],
    "support_y_a": [  # Answer token sequences (padded)
        [1, 0, 0, 0, 0, 0],
        [1, 1, 0, 0, 0, 0],
        # ...
    ],
    "support_y_q_mask": [  # Mask for question tokens (1 = valid, 0 = pad)
        [1, 1, 1, 0, 0, 0],
        [1, 1, 1, 1, 0, 0],
        # ...
    ],
    "support_y_a_mask": [  # Mask for answer tokens
        [1, 0, 0, 0, 0, 0],
        [1, 1, 0, 0, 0, 0],
        # ...
    ],
    "flatten_support_x": [  # File paths to raw ECG signals
        "/path/to/support/ecg_1.npy",
        "/path/to/support/ecg_2.npy",
        # ...
    ],

    # --- Query Set ---
    "query_x": [
        ecg_query_1,
        ecg_query_2,
        # ...
    ],
    "query_y_q": [
        [34, 78, 56, 0, 0, 0],
        [90, 12, 45, 76, 0, 0],
        # ...
    ],
    "query_y_a": [
        [0, 1, 1, 0, 0, 0],
        [1, 0, 0, 0, 0, 0],
        # ...
    ],
    "query_y_q_mask": [
        [1, 1, 1, 0, 0, 0],
        [1, 1, 1, 1, 0, 0],
        # ...
    ],
    "query_y_a_mask": [
        [1, 1, 1, 0, 0, 0],
        [1, 0, 0, 0, 0, 0],
        # ...
    ],
    "flatten_query_x": [
        "/path/to/query/ecg_1.npy",
        "/path/to/query/ecg_2.npy",
        # ...
    ],
}

1.4 Class distribution

Question Type Attributes Answers Classes (train:test) Samples Example
Single-Verify 94 yes/no 156 (124:32) 34,105 Q: Does this ECG show 1st degree av block?
A: yes/no
Single-Choose 165 both/none/attr_1/attr_2 262 (209:53) 47,655 Q: Which noise does this ECG show, baseline drift or static noise?
A: baseline drift /static noise
Single-Query 30 attr_1/attr_2/.../attr_n 260 (208:52) 63,125 Q: What direction is this ECG deviated to?
A: Normal axis/...
All 206 yes/no/both/none/.../attr_n 678 (541:137) 144,885 ...

2. Citation

@article{tang2024electrocardiogram,
  title={Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning},
  author={Tang, Jialu and Xia, Tong and Lu, Yuan and Mascolo, Cecilia and Saeed, Aaqib},
  journal={arXiv preprint arXiv:2410.14464},
  year={2024}
}
Downloads last month
0