FSL_ECG_QA_Dataset / data /data_loader.py
jialucode's picture
Upload 3 files
0fb79ec verified
import json
import os
import pickle
import random
from pathlib import Path
import time
import wfdb
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import ColorJitter
from scipy.io import loadmat
from load_class import get_temp_qa, change_ecg_to_qa, prepare_ecg_qa_data
from utils import set_device
import matplotlib.pyplot as plt
import argparse
from meta_trainer import MetaTrainer
import warnings
from transformers import AutoTokenizer
warnings.filterwarnings("ignore")
torch.manual_seed(222)
torch.cuda.manual_seed_all(222)
np.random.seed(222)
PROJECT_ROOT = str(Path.cwd().parent.parent) # project path
LOG_PATH = PROJECT_ROOT + "/logs/"
MODELS_PATH = PROJECT_ROOT + "/models/"
class FSL_ECG_QA_DataLoader(Dataset):
"""
This is DataLoader for episodic training on FSL_ECG_QA dataset
NOTICE: meta-learning is different from general supervised learning, especially the concept of batch and set.
batch: contains several sets / tasks
sets: conains n_way * k_shot for meta-train set, n_way * k_query for meta-test set.
"""
def __init__(self, mode, batchsz, n_way, k_shot, k_query, seq_len, seq_len_a, repeats, tokenizer,
prefix_length, startidx=0, all_ids=None, in_templates=None, prompt=1, paraphrased_path="",test_dataset=""):
self.batchsz = batchsz
self.n_way = n_way
self.k_shot = k_shot
self.k_query = k_query
self.repeats = repeats
self.setsz = self.n_way * self.k_shot if self.repeats == 0 else self.n_way * self.k_shot * (self.repeats + 1)
self.querysz = self.n_way * self.k_query # number of samples per set for evaluation
self.seq_len = seq_len # sentence seq length
self.seq_len_a = seq_len_a
self.prefix_length = prefix_length
self.startidx = startidx # index label not from 0, but from startidx
self.device = set_device()
print('shuffle DB: %s, b:%d, %d-way, %d-shot, %d-query, %d-repeats' % (mode, batchsz, n_way, k_shot,
k_query, repeats))
self.gpt_tokenizer = tokenizer
self.mode = mode
self.all_ids = all_ids
self.prompt = prompt
self.test_dataset=test_dataset
json_data_ecg = change_ecg_to_qa(all_ids, in_templates, paraphrased_path, test_dataset=test_dataset)
self.data = []
self.img2caption = {}
for i, (category_name, ecg_q_as) in enumerate(json_data_ecg.items()):
self.data.append(ecg_q_as)
self.cls_num = len(self.data)
print("self.cls_num", self.mode, self.cls_num)
self.create_batch(self.batchsz)
def create_batch(self, batchsz):
"""
create batch for meta-learning.
×episode× here means batch, and it means how many sets we want to retain.
:param episodes: batch size
:return:
"""
self.support_x_batch = [] # support set batch
self.query_x_batch = [] # query set batch
# Creating of tasks; batchsz is the num. of iterations when sampling from the task distribution
for b in range(batchsz): # for each batch
# 1.select n_way classes randomly
selected_cls = np.random.choice(self.cls_num, self.n_way, replace=False) # no duplicate
support_x = []
query_x = []
for cls in selected_cls:
selected_question = np.random.choice(len(self.data[cls]), 1)[0]
selected_imgs_idx = np.random.choice(len(self.data[cls][selected_question]), self.k_shot + self.k_query)
np.random.shuffle(selected_imgs_idx)
indexDtrain = np.array(selected_imgs_idx[:self.k_shot]) # idx for Dtrain
indexDtest = np.array(selected_imgs_idx[self.k_shot:]) # idx for Dtest
support_x.append(
np.array(self.data[cls][selected_question])[indexDtrain].tolist()) # get all images filename for current Dtrain
query_x.append(np.array(self.data[cls][selected_question])[indexDtest].tolist())
if self.repeats > 0:
for i in range(self.repeats):
support_x.append(np.array(self.data[cls][selected_question])[indexDtrain].tolist())
# shuffle the corresponding relation between support set and query set
random.shuffle(support_x)
random.shuffle(query_x)
self.support_x_batch.append(support_x) # append set to current sets
self.query_x_batch.append(query_x) # append sets to current sets
# shuffle the corresponding relation between support set and query set
random.shuffle(support_x)
random.shuffle(query_x)
self.support_x_batch.append(support_x) # append set to current sets
self.query_x_batch.append(query_x) # append sets to current sets
def get_ptbxl_data_path(self, ecg_id):
return os.path.join(
f"{int(ecg_id / 1000) * 1000 :05d}",
f"{ecg_id:05d}_hr"
)
def gen_prompt(self, q_str):
if self.prompt == 1:
token_p = "Question: "+q_str+"Answer: "
if self.prompt == 2:
token_p = q_str
if self.prompt == 3:
token_p = q_str+"the answer can be both, none or in question."
return token_p
def __getitem__(self, index):
"""
index means index of sets, 0<= index <= batchsz-1
:param index:
:return:
"""
support_x = torch.FloatTensor(self.setsz, 12, 2500)
query_x = torch.FloatTensor(self.querysz, 12, 2500)
support_y_q = []
support_y_a = []
support_y_q_mask = []
support_y_a_mask = []
query_y_q = []
query_y_a = []
query_y_q_mask = []
query_y_a_mask = []
flatten_support_x = [f"/gpfs/home1/jtang1/multimodal_fsl_99/process_ptbxl2/{self.get_ptbxl_data_path(sample['ecg_id'][0])}"
for sublist in self.support_x_batch[index] for sample in sublist]
flatten_query_x = [f"/gpfs/home1/jtang1/multimodal_fsl_99/process_ptbxl2/{self.get_ptbxl_data_path(sample['ecg_id'][0])}"
for sublist in self.query_x_batch[index] for sample in sublist]
for sublist in self.support_x_batch[index]:
for sample in sublist:
q_str = sample["question"].lower()
for num_a, content in enumerate(sample["answer"]):
if num_a != 0:
a_str += ", " + content.lower()
else:
a_str = content.lower()
q_str_tokenized = self.gpt_tokenizer(self.gen_prompt(q_str), return_tensors="pt")['input_ids']
caption_padded_q, mask_0_q = pad_tokens(q_str_tokenized, self.seq_len, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
support_y_q.append(caption_padded_q)
support_y_q_mask.append(mask_0_q)
a_str_tokenized = self.gpt_tokenizer(a_str, return_tensors="pt")['input_ids']
caption_padded_a, mask_0_a = pad_tokens(a_str_tokenized, self.seq_len_a, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
support_y_a.append(caption_padded_a)
support_y_a_mask.append(mask_0_a)
support_y_q = torch.stack(support_y_q)
support_y_a = torch.stack(support_y_a)
support_y_q_mask = torch.stack(support_y_q_mask)
support_y_a_mask = torch.stack(support_y_a_mask)
for sublist in self.query_x_batch[index]:
for sample in sublist:
q_str = sample["question"].lower()
for num_a, content in enumerate(sample["answer"]):
if num_a != 0:
a_str += ", " + content.lower()
else:
a_str = content.lower()
q_str_tokenized = self.gpt_tokenizer(self.gen_prompt(q_str), return_tensors="pt")['input_ids']
caption_padded_q, mask_0_q = pad_tokens(q_str_tokenized, self.seq_len, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
query_y_q.append(caption_padded_q)
query_y_q_mask.append(mask_0_q)
a_str_tokenized = self.gpt_tokenizer(a_str, return_tensors="pt")['input_ids']
caption_padded_a, mask_0_a = pad_tokens(a_str_tokenized, self.seq_len_a, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
query_y_a.append(caption_padded_a)
query_y_a_mask.append(mask_0_a)
query_y_q = torch.stack(query_y_q)
query_y_q_mask = torch.stack(query_y_q_mask)
query_y_a = torch.stack(query_y_a)
query_y_a_mask = torch.stack(query_y_a_mask)
# Reading of ecgs:
for i, path in enumerate(flatten_support_x):
ecg = loadmat(path)['feats']
support_x[i] = torch.tensor(ecg)
for i, path in enumerate(flatten_query_x):
ecg = loadmat(path)['feats']
query_x[i] = torch.tensor(ecg)
return support_x, support_y_q, support_y_a, support_y_q_mask, support_y_a_mask, flatten_support_x, query_x, query_y_q, query_y_a, query_y_q_mask, query_y_a_mask, flatten_query_x
def __len__(self):
return self.batchsz
def pad_tokens(tokens, seq_len, prefix_length, eos_token_id):
tokens = tokens.squeeze(0)
padding = seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
elif padding < 0:
tokens = tokens[:seq_len]
mask = tokens.ge(0) # mask is zero where we out of sequence
tokens[~mask] = eos_token_id
mask = mask.float()
mask = torch.cat((torch.ones(prefix_length), mask), dim=0) # adding prefix mask
return tokens, mask
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--experiment_id', type=int, default=666)
argparser.add_argument('--batchsz_train', type=int, default=10000)
argparser.add_argument('--batchsz_test', type=int, default=1000)
argparser.add_argument('--model_name', type=str, help="path to model download from hugging face", default="path/to/model")
argparser.add_argument('--update_step', type=int, help='task-level inner update steps', default=5)
argparser.add_argument('--update_step_test', type=int, help='update steps for finetunning', default=15)
argparser.add_argument('--paraphrased_path', type=str, default='path/to/paraphrased',
help='path to ./paraphrased containing trian/val/test ECG-QA json files')
argparser.add_argument('--question_type', type=str, help='question types, single-verify, single-choose, single-query,all', default='single-verify')
argparser.add_argument('--epoch', type=int, help='epoch number', default=10000)
argparser.add_argument('--n_way', type=int, help='n way', default=5)
argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=5)
argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=5)
argparser.add_argument('--prompt', type=int, help='1,Question: +q_str+Answer:,2,q_str,3,q_str+the answer can be both, none or in question.', default=1)
argparser.add_argument('--dif_exp', type=int, help='0,same_exp,1,dif_exp', default=0)
argparser.add_argument('--frozen_gpt', type=int, help='0,unfrozen_gpt,1,frozen_gpt', default=1)
argparser.add_argument('--frozen_features', type=int, help='0,unfrozen_features,1,frozen_features', default=1)
argparser.add_argument('--repeats', type=int, help='repeats for support set', default=0)
argparser.add_argument('--seq_len', help='for padding batch', type=int, default=30)
argparser.add_argument('--seq_len_a', help='for padding batch', type=int, default=30)
argparser.add_argument('--prefix_length', type=int, default=4)
argparser.add_argument('--mapper_type', type=str, help='ATT MLP', default="MLP")
argparser.add_argument('--task_num', type=int, help='meta batch size, namely task num', default=1)
argparser.add_argument('--meta_lr', type=float, help='meta-level outer learning rate', default=5e-4)
argparser.add_argument('--update_lr', type=float, help='task-level inner update learning rate', default=0.05)
argparser.add_argument('--test_dataset', type=str, default="ptb-xl", choices=["ptb-xl", "mimic"], help='Dataset to use (ptb-xl or mimic)')
args = argparser.parse_args()
class_qa, train_temp, test_temp = prepare_ecg_qa_data(args)
device = set_device()
meta = MetaTrainer(args, args.experiment_id, is_pretrained=False).to(device)
params = list(filter(lambda p: p.requires_grad, meta.model.parameters()))
params_summed = sum(p.numel() for p in params)
print("Total num of params: {} ".format(params_summed))
gpt_tokenizer = AutoTokenizer.from_pretrained(args.model_name)
data_loader_train = FSL_ECG_QA_DataLoader(mode='train', n_way=args.n_way, k_shot=args.k_spt,k_query=args.k_qry, batchsz=args.batchsz_train,
seq_len=args.seq_len, seq_len_a=args.seq_len_a,repeats=args.repeats, tokenizer=gpt_tokenizer,
prefix_length=args.prefix_length,all_ids=class_qa, in_templates=train_temp, prompt=args.prompt,
paraphrased_path= args.paraphrased_path, test_dataset=args.test_dataset)
data_loader_test = FSL_ECG_QA_DataLoader(mode='test', n_way=args.n_way, k_shot=args.k_spt,k_query=args.k_qry, batchsz=args.batchsz_train,
seq_len=args.seq_len, seq_len_a=args.seq_len_a,repeats=args.repeats, tokenizer=gpt_tokenizer,
prefix_length=args.prefix_length,all_ids=class_qa, in_templates=test_temp, prompt=args.prompt,
paraphrased_path= args.paraphrased_path, test_dataset=args.test_dataset)
batch = next(iter(data_loader_train))
if isinstance(batch, dict):
for key, value in batch.items():
print(f"{key}: {value}")
elif isinstance(batch, (list, tuple)):
for i, item in enumerate(batch):
print(f"Item {i}: {item}")
else:
print(batch)