|
import json
|
|
import os
|
|
import pickle
|
|
import random
|
|
from pathlib import Path
|
|
import time
|
|
import wfdb
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from torch.utils.data import Dataset
|
|
from torchvision.transforms import ColorJitter
|
|
from scipy.io import loadmat
|
|
from load_class import get_temp_qa, change_ecg_to_qa, prepare_ecg_qa_data
|
|
from utils import set_device
|
|
import matplotlib.pyplot as plt
|
|
import argparse
|
|
from meta_trainer import MetaTrainer
|
|
import warnings
|
|
from transformers import AutoTokenizer
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
torch.manual_seed(222)
|
|
torch.cuda.manual_seed_all(222)
|
|
np.random.seed(222)
|
|
|
|
PROJECT_ROOT = str(Path.cwd().parent.parent)
|
|
LOG_PATH = PROJECT_ROOT + "/logs/"
|
|
MODELS_PATH = PROJECT_ROOT + "/models/"
|
|
|
|
class FSL_ECG_QA_DataLoader(Dataset):
|
|
"""
|
|
This is DataLoader for episodic training on FSL_ECG_QA dataset
|
|
NOTICE: meta-learning is different from general supervised learning, especially the concept of batch and set.
|
|
batch: contains several sets / tasks
|
|
sets: conains n_way * k_shot for meta-train set, n_way * k_query for meta-test set.
|
|
"""
|
|
|
|
def __init__(self, mode, batchsz, n_way, k_shot, k_query, seq_len, seq_len_a, repeats, tokenizer,
|
|
prefix_length, startidx=0, all_ids=None, in_templates=None, prompt=1, paraphrased_path="",test_dataset=""):
|
|
self.batchsz = batchsz
|
|
self.n_way = n_way
|
|
self.k_shot = k_shot
|
|
self.k_query = k_query
|
|
self.repeats = repeats
|
|
self.setsz = self.n_way * self.k_shot if self.repeats == 0 else self.n_way * self.k_shot * (self.repeats + 1)
|
|
self.querysz = self.n_way * self.k_query
|
|
self.seq_len = seq_len
|
|
self.seq_len_a = seq_len_a
|
|
self.prefix_length = prefix_length
|
|
self.startidx = startidx
|
|
self.device = set_device()
|
|
print('shuffle DB: %s, b:%d, %d-way, %d-shot, %d-query, %d-repeats' % (mode, batchsz, n_way, k_shot,
|
|
k_query, repeats))
|
|
self.gpt_tokenizer = tokenizer
|
|
self.mode = mode
|
|
self.all_ids = all_ids
|
|
self.prompt = prompt
|
|
self.test_dataset=test_dataset
|
|
|
|
json_data_ecg = change_ecg_to_qa(all_ids, in_templates, paraphrased_path, test_dataset=test_dataset)
|
|
|
|
self.data = []
|
|
self.img2caption = {}
|
|
|
|
for i, (category_name, ecg_q_as) in enumerate(json_data_ecg.items()):
|
|
self.data.append(ecg_q_as)
|
|
|
|
self.cls_num = len(self.data)
|
|
print("self.cls_num", self.mode, self.cls_num)
|
|
|
|
self.create_batch(self.batchsz)
|
|
|
|
|
|
def create_batch(self, batchsz):
|
|
"""
|
|
create batch for meta-learning.
|
|
×episode× here means batch, and it means how many sets we want to retain.
|
|
:param episodes: batch size
|
|
:return:
|
|
"""
|
|
self.support_x_batch = []
|
|
self.query_x_batch = []
|
|
|
|
for b in range(batchsz):
|
|
|
|
selected_cls = np.random.choice(self.cls_num, self.n_way, replace=False)
|
|
support_x = []
|
|
query_x = []
|
|
for cls in selected_cls:
|
|
selected_question = np.random.choice(len(self.data[cls]), 1)[0]
|
|
selected_imgs_idx = np.random.choice(len(self.data[cls][selected_question]), self.k_shot + self.k_query)
|
|
np.random.shuffle(selected_imgs_idx)
|
|
indexDtrain = np.array(selected_imgs_idx[:self.k_shot])
|
|
indexDtest = np.array(selected_imgs_idx[self.k_shot:])
|
|
support_x.append(
|
|
np.array(self.data[cls][selected_question])[indexDtrain].tolist())
|
|
query_x.append(np.array(self.data[cls][selected_question])[indexDtest].tolist())
|
|
if self.repeats > 0:
|
|
for i in range(self.repeats):
|
|
support_x.append(np.array(self.data[cls][selected_question])[indexDtrain].tolist())
|
|
|
|
|
|
random.shuffle(support_x)
|
|
random.shuffle(query_x)
|
|
|
|
self.support_x_batch.append(support_x)
|
|
self.query_x_batch.append(query_x)
|
|
|
|
|
|
random.shuffle(support_x)
|
|
random.shuffle(query_x)
|
|
self.support_x_batch.append(support_x)
|
|
self.query_x_batch.append(query_x)
|
|
|
|
def get_ptbxl_data_path(self, ecg_id):
|
|
return os.path.join(
|
|
f"{int(ecg_id / 1000) * 1000 :05d}",
|
|
f"{ecg_id:05d}_hr"
|
|
)
|
|
|
|
def gen_prompt(self, q_str):
|
|
if self.prompt == 1:
|
|
token_p = "Question: "+q_str+"Answer: "
|
|
if self.prompt == 2:
|
|
token_p = q_str
|
|
if self.prompt == 3:
|
|
token_p = q_str+"the answer can be both, none or in question."
|
|
return token_p
|
|
|
|
def __getitem__(self, index):
|
|
"""
|
|
index means index of sets, 0<= index <= batchsz-1
|
|
:param index:
|
|
:return:
|
|
"""
|
|
support_x = torch.FloatTensor(self.setsz, 12, 2500)
|
|
query_x = torch.FloatTensor(self.querysz, 12, 2500)
|
|
|
|
support_y_q = []
|
|
support_y_a = []
|
|
support_y_q_mask = []
|
|
support_y_a_mask = []
|
|
query_y_q = []
|
|
query_y_a = []
|
|
query_y_q_mask = []
|
|
query_y_a_mask = []
|
|
|
|
flatten_support_x = [f"/gpfs/home1/jtang1/multimodal_fsl_99/process_ptbxl2/{self.get_ptbxl_data_path(sample['ecg_id'][0])}"
|
|
for sublist in self.support_x_batch[index] for sample in sublist]
|
|
flatten_query_x = [f"/gpfs/home1/jtang1/multimodal_fsl_99/process_ptbxl2/{self.get_ptbxl_data_path(sample['ecg_id'][0])}"
|
|
for sublist in self.query_x_batch[index] for sample in sublist]
|
|
|
|
for sublist in self.support_x_batch[index]:
|
|
for sample in sublist:
|
|
q_str = sample["question"].lower()
|
|
for num_a, content in enumerate(sample["answer"]):
|
|
if num_a != 0:
|
|
a_str += ", " + content.lower()
|
|
else:
|
|
a_str = content.lower()
|
|
|
|
q_str_tokenized = self.gpt_tokenizer(self.gen_prompt(q_str), return_tensors="pt")['input_ids']
|
|
|
|
caption_padded_q, mask_0_q = pad_tokens(q_str_tokenized, self.seq_len, self.prefix_length,
|
|
self.gpt_tokenizer.eos_token_id)
|
|
support_y_q.append(caption_padded_q)
|
|
support_y_q_mask.append(mask_0_q)
|
|
|
|
a_str_tokenized = self.gpt_tokenizer(a_str, return_tensors="pt")['input_ids']
|
|
caption_padded_a, mask_0_a = pad_tokens(a_str_tokenized, self.seq_len_a, self.prefix_length,
|
|
self.gpt_tokenizer.eos_token_id)
|
|
support_y_a.append(caption_padded_a)
|
|
support_y_a_mask.append(mask_0_a)
|
|
|
|
support_y_q = torch.stack(support_y_q)
|
|
support_y_a = torch.stack(support_y_a)
|
|
support_y_q_mask = torch.stack(support_y_q_mask)
|
|
support_y_a_mask = torch.stack(support_y_a_mask)
|
|
|
|
for sublist in self.query_x_batch[index]:
|
|
for sample in sublist:
|
|
q_str = sample["question"].lower()
|
|
for num_a, content in enumerate(sample["answer"]):
|
|
if num_a != 0:
|
|
a_str += ", " + content.lower()
|
|
else:
|
|
a_str = content.lower()
|
|
|
|
q_str_tokenized = self.gpt_tokenizer(self.gen_prompt(q_str), return_tensors="pt")['input_ids']
|
|
caption_padded_q, mask_0_q = pad_tokens(q_str_tokenized, self.seq_len, self.prefix_length,
|
|
self.gpt_tokenizer.eos_token_id)
|
|
query_y_q.append(caption_padded_q)
|
|
query_y_q_mask.append(mask_0_q)
|
|
|
|
a_str_tokenized = self.gpt_tokenizer(a_str, return_tensors="pt")['input_ids']
|
|
caption_padded_a, mask_0_a = pad_tokens(a_str_tokenized, self.seq_len_a, self.prefix_length,
|
|
self.gpt_tokenizer.eos_token_id)
|
|
query_y_a.append(caption_padded_a)
|
|
query_y_a_mask.append(mask_0_a)
|
|
|
|
query_y_q = torch.stack(query_y_q)
|
|
query_y_q_mask = torch.stack(query_y_q_mask)
|
|
query_y_a = torch.stack(query_y_a)
|
|
query_y_a_mask = torch.stack(query_y_a_mask)
|
|
|
|
|
|
for i, path in enumerate(flatten_support_x):
|
|
ecg = loadmat(path)['feats']
|
|
support_x[i] = torch.tensor(ecg)
|
|
|
|
for i, path in enumerate(flatten_query_x):
|
|
ecg = loadmat(path)['feats']
|
|
query_x[i] = torch.tensor(ecg)
|
|
|
|
return support_x, support_y_q, support_y_a, support_y_q_mask, support_y_a_mask, flatten_support_x, query_x, query_y_q, query_y_a, query_y_q_mask, query_y_a_mask, flatten_query_x
|
|
|
|
def __len__(self):
|
|
return self.batchsz
|
|
|
|
|
|
def pad_tokens(tokens, seq_len, prefix_length, eos_token_id):
|
|
tokens = tokens.squeeze(0)
|
|
padding = seq_len - tokens.shape[0]
|
|
if padding > 0:
|
|
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
|
|
elif padding < 0:
|
|
tokens = tokens[:seq_len]
|
|
mask = tokens.ge(0)
|
|
tokens[~mask] = eos_token_id
|
|
mask = mask.float()
|
|
mask = torch.cat((torch.ones(prefix_length), mask), dim=0)
|
|
return tokens, mask
|
|
|
|
|
|
if __name__ == '__main__':
|
|
argparser = argparse.ArgumentParser()
|
|
|
|
argparser.add_argument('--experiment_id', type=int, default=666)
|
|
argparser.add_argument('--batchsz_train', type=int, default=10000)
|
|
argparser.add_argument('--batchsz_test', type=int, default=1000)
|
|
argparser.add_argument('--model_name', type=str, help="path to model download from hugging face", default="path/to/model")
|
|
argparser.add_argument('--update_step', type=int, help='task-level inner update steps', default=5)
|
|
argparser.add_argument('--update_step_test', type=int, help='update steps for finetunning', default=15)
|
|
|
|
argparser.add_argument('--paraphrased_path', type=str, default='path/to/paraphrased',
|
|
help='path to ./paraphrased containing trian/val/test ECG-QA json files')
|
|
argparser.add_argument('--question_type', type=str, help='question types, single-verify, single-choose, single-query,all', default='single-verify')
|
|
argparser.add_argument('--epoch', type=int, help='epoch number', default=10000)
|
|
argparser.add_argument('--n_way', type=int, help='n way', default=5)
|
|
argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=5)
|
|
argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=5)
|
|
argparser.add_argument('--prompt', type=int, help='1,Question: +q_str+Answer:,2,q_str,3,q_str+the answer can be both, none or in question.', default=1)
|
|
argparser.add_argument('--dif_exp', type=int, help='0,same_exp,1,dif_exp', default=0)
|
|
argparser.add_argument('--frozen_gpt', type=int, help='0,unfrozen_gpt,1,frozen_gpt', default=1)
|
|
argparser.add_argument('--frozen_features', type=int, help='0,unfrozen_features,1,frozen_features', default=1)
|
|
argparser.add_argument('--repeats', type=int, help='repeats for support set', default=0)
|
|
argparser.add_argument('--seq_len', help='for padding batch', type=int, default=30)
|
|
argparser.add_argument('--seq_len_a', help='for padding batch', type=int, default=30)
|
|
argparser.add_argument('--prefix_length', type=int, default=4)
|
|
argparser.add_argument('--mapper_type', type=str, help='ATT MLP', default="MLP")
|
|
argparser.add_argument('--task_num', type=int, help='meta batch size, namely task num', default=1)
|
|
argparser.add_argument('--meta_lr', type=float, help='meta-level outer learning rate', default=5e-4)
|
|
argparser.add_argument('--update_lr', type=float, help='task-level inner update learning rate', default=0.05)
|
|
argparser.add_argument('--test_dataset', type=str, default="ptb-xl", choices=["ptb-xl", "mimic"], help='Dataset to use (ptb-xl or mimic)')
|
|
args = argparser.parse_args()
|
|
|
|
class_qa, train_temp, test_temp = prepare_ecg_qa_data(args)
|
|
|
|
device = set_device()
|
|
meta = MetaTrainer(args, args.experiment_id, is_pretrained=False).to(device)
|
|
params = list(filter(lambda p: p.requires_grad, meta.model.parameters()))
|
|
params_summed = sum(p.numel() for p in params)
|
|
print("Total num of params: {} ".format(params_summed))
|
|
gpt_tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
|
data_loader_train = FSL_ECG_QA_DataLoader(mode='train', n_way=args.n_way, k_shot=args.k_spt,k_query=args.k_qry, batchsz=args.batchsz_train,
|
|
seq_len=args.seq_len, seq_len_a=args.seq_len_a,repeats=args.repeats, tokenizer=gpt_tokenizer,
|
|
prefix_length=args.prefix_length,all_ids=class_qa, in_templates=train_temp, prompt=args.prompt,
|
|
paraphrased_path= args.paraphrased_path, test_dataset=args.test_dataset)
|
|
data_loader_test = FSL_ECG_QA_DataLoader(mode='test', n_way=args.n_way, k_shot=args.k_spt,k_query=args.k_qry, batchsz=args.batchsz_train,
|
|
seq_len=args.seq_len, seq_len_a=args.seq_len_a,repeats=args.repeats, tokenizer=gpt_tokenizer,
|
|
prefix_length=args.prefix_length,all_ids=class_qa, in_templates=test_temp, prompt=args.prompt,
|
|
paraphrased_path= args.paraphrased_path, test_dataset=args.test_dataset)
|
|
batch = next(iter(data_loader_train))
|
|
|
|
if isinstance(batch, dict):
|
|
for key, value in batch.items():
|
|
print(f"{key}: {value}")
|
|
elif isinstance(batch, (list, tuple)):
|
|
for i, item in enumerate(batch):
|
|
print(f"Item {i}: {item}")
|
|
else:
|
|
print(batch)
|
|
|
|
|