jialucode commited on
Commit
696fc5c
·
verified ·
1 Parent(s): 0fb79ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -83
README.md CHANGED
@@ -4,16 +4,7 @@ license: mit
4
  ---
5
  # 0. FSL_ECG_QA_Dataset Description
6
 
7
- **FSL_ECG_QA_Dataset** is a **benchmark dataset** specifically designed to accompany the paper *"Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning"* (**arXiv:2410.14464v1**). It supports research in combining **electrocardiogram (ECG) signals** with **natural language question answering (QA)**, particularly in **few-shot** and **meta-learning** scenarios.
8
-
9
- ## 0.1 Supported Tasks
10
-
11
- - What tasks can be performed on this dataset?
12
-
13
- Developing robust and reliable multimodal QA systems for ECG interpretation relies on the availability of both high-quality and large quantities of labeled data. Yet, obtaining massive amounts of labeled ECGs from cardiologists is costly, which often results in limited datasets. Traditional supervised learning methods tend to perform well only on data with the same distribution as the training data. In real-world deployment, however, models frequently encounter new tasks and previously unseen populations outside the training distribution, where traditional methods may fail.
14
- - Are there any code associated with this dataset?
15
-
16
- Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning(ICASSP 2025), https://arxiv.org/html/2410.14464v1
17
 
18
  ## 0.2 Dataset Highlights
19
 
@@ -21,66 +12,16 @@ license: mit
21
  - 🧬 **Fusion Mapping**: A lightweight **multimodal mapper** bridges **ECG** and **language features**.
22
  - 🚀 **Model Generalization**: **LLM-agnostic design** ensures broad **transferability** and **robustness**.
23
 
24
- # 1 Developing Datasets
25
-
26
- ## 1.1 Source Datasets
27
-
28
- The dataset is a structured reorganization of the existing ECG-QA dataset, adapted to suit meta-learning tasks. It draws samples from ECG sources such as [PTB-XL](https://physionet.org/content/ptb-xl/1.0.3/) and [MIMIC-IV-ECG](https://physionet.org/content/mimic-iv-ecg/1.0/), and [ECG-QA dataset](https://github.com/Jwoo5/ecg-qa?tab=readme-ov-file) organizes them into diverse task sets based on question types including **verify(yes/no)**, **choice(Condition_A/Condition_B)**, and **query(open-ended)** question in table 2.2. and clinical attributes (e.g., SCP codes, noise type, axis deviation) used to describing the ECG. This structure enables models to rapidly adapt to new diagnostic tasks with limited annotated examples.
29
-
30
- | Task Type | Question | Answer Options |
31
- |-----------------|--------------------------------------------------------------------------|------------------------------------------|
32
- | Single-Verify | Q: Does this ECG show 1st degree AV block? | A: yes / no |
33
- | Single-Choose | Q: Which noise does this ECG show, baseline drift or static noise? | A: baseline drift / static noise |
34
- | Single-Query | Q: What direction is this ECG deviated to? | A: Normal axis / ... |
35
-
36
-
37
- ### 1.1.1 Source Datasets Instances
38
-
39
- ```python
40
- {
41
- "template_id": 1,
42
- "question_id": 0,
43
- "sample_id": 0,
44
- "question_type": "single-verify",
45
- "attribute_type": "scp_code",
46
- "question": "Is there evidence of non-diagnostic t abnormalities on this ECG?",
47
- "answer": ["yes"],
48
- "ecg_id": [12662],
49
- "attribute": ["non-diagnostic t abnormalities"]
50
- }
51
- ```
52
-
53
- ### 1.1.2 Source Datasets Instances distribution
54
-
55
- <img src="img/distribution_attr.png" alt="Figure 1: Illustration of class formation and attribute distribution for different question types." width="600"/>
56
-
57
- ## 1.2 New few shot learning Datasets
58
 
59
- ### 1.2.1 New Class Naming
60
- Merge all data in train/val/test dataset in ECG-QA and change it into different class, Use a consistent ID system to track attribute-answer combinations (definition of "way" in meta-learning):
61
- **class(template_id_attribute_answer pairs)**
62
- Example: `5_atrial_fibrillation_yes` represents Template ID *5*, attribute *"atrial fibrillation"*, answer *"yes"*.
63
-
64
- ### 1.2.2 Loading the Dataset class
65
 
66
  ```python
67
  python load_class.py --base_path /your/actual/path/to/ecgqa/ptbxl/paraphrased --test_dataset ptb-xl
68
  python load_class.py --paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased --test_dataset mimic
69
  (all tested mimic-iv-ecg dataset is listed in "data/processed_test_30k.json")
70
  ```
71
-
72
- ### 1.2.3 New Datasets Class distribution
73
-
74
- | Question Type | Attributes | Answers | Classes (train:test) | Samples | Example |
75
- |-----------------|------------|----------------------------------|-----------------------|---------|-------------------------------------------------------------------------|
76
- | Single-Verify | 94 | yes/no | 156 (124:32) | 34,105 | Q: Does this ECG show 1st degree av block? <br> A: yes/no |
77
- | Single-Choose | 165 | both/none/attr_1/attr_2 | 262 (209:53) | 47,655 | Q: Which noise does this ECG show, baseline drift or static noise? <br> A: baseline drift /static noise |
78
- | Single-Query | 30 | attr_1/attr_2/.../attr_n | 260 (208:52) | 63,125 | Q: What direction is this ECG deviated to? <br> A: Normal axis/... |
79
- | All | 206 | yes/no/both/none/.../attr_n | 678 (541:137) | 144,885 | ... |
80
-
81
- ## 1.3 Few-shot Build
82
-
83
- ### 1.3.1 load ECG-QA-FSL dataset
84
 
85
  ```python
86
  python data_loader.py
@@ -88,8 +29,8 @@ python data_loader.py
88
  --paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased
89
  --test_dataset ptb-xl
90
  ```
91
- ### 1.3.2 sample of ECG-QA-FSL dataset
92
 
 
93
 
94
  ```python
95
  episode = {
@@ -159,29 +100,22 @@ episode = {
159
  }
160
  ```
161
 
162
- ### 1.3.3 Data Splits
163
-
164
- - Number of instances in each split (train/test): 8:2
165
- - Criteria: first split based on template id (no expression overlap between train/test), then random split for support/query set in few-shot tasks.
166
-
167
- ### 1.3.4 ECG-QA-FSL dataset for meta-learning
168
- <img src="img/FSL_ECG_QAMeta-Learning.png" alt="Few-shot Meta-learning Example" width="600"/>
169
 
170
- # 2. Summary
171
-
172
- ## 2.1 Curation Rationale
173
-
174
- Developing robust and reliable multimodal QA systems for ECG interpretation relies on the availability of both high-quality and large quantities of labeled data. Meta-learning, a paradigm focused on “learning to learn”, enables them to acquire transferable knowledge and adapt rapidly to new, unseen tasks with minimal labeled data.
 
175
 
176
- ## 2.2 Citation
177
 
178
  ```
179
- @inproceedings{10888594,
 
180
  author={Tang, Jialu and Xia, Tong and Lu, Yuan and Mascolo, Cecilia and Saeed, Aaqib},
181
- booktitle={ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
182
- title={Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling},
183
- year={2025},
184
- pages={1-5},
185
- doi={10.1109/ICASSP49660.2025.10888594}
186
  }
187
  ```
 
4
  ---
5
  # 0. FSL_ECG_QA_Dataset Description
6
 
7
+ **FSL_ECG_QA_Dataset** is a **benchmark dataset** specifically designed to accompany the paper [*"Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning"*] (https://arxiv.org/abs/2410.14464). It supports research in combining **electrocardiogram (ECG) signals** with **natural language question answering (QA)**, particularly in **few-shot** and **meta-learning** scenarios.
 
 
 
 
 
 
 
 
 
8
 
9
  ## 0.2 Dataset Highlights
10
 
 
12
  - 🧬 **Fusion Mapping**: A lightweight **multimodal mapper** bridges **ECG** and **language features**.
13
  - 🚀 **Model Generalization**: **LLM-agnostic design** ensures broad **transferability** and **robustness**.
14
 
15
+ # 1 Datasets
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ ## 1.1 Loading the Dataset class
 
 
 
 
 
18
 
19
  ```python
20
  python load_class.py --base_path /your/actual/path/to/ecgqa/ptbxl/paraphrased --test_dataset ptb-xl
21
  python load_class.py --paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased --test_dataset mimic
22
  (all tested mimic-iv-ecg dataset is listed in "data/processed_test_30k.json")
23
  ```
24
+ ## 1.2 load ECG-QA-FSL dataset
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ```python
27
  python data_loader.py
 
29
  --paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased
30
  --test_dataset ptb-xl
31
  ```
 
32
 
33
+ ## 1.3 sample of ECG-QA-FSL dataset
34
 
35
  ```python
36
  episode = {
 
100
  }
101
  ```
102
 
103
+ ### 1.4 New Datasets Class distribution
 
 
 
 
 
 
104
 
105
+ | Question Type | Attributes | Answers | Classes (train:test) | Samples | Example |
106
+ |-----------------|------------|----------------------------------|-----------------------|---------|-------------------------------------------------------------------------|
107
+ | Single-Verify | 94 | yes/no | 156 (124:32) | 34,105 | Q: Does this ECG show 1st degree av block? <br> A: yes/no |
108
+ | Single-Choose | 165 | both/none/attr_1/attr_2 | 262 (209:53) | 47,655 | Q: Which noise does this ECG show, baseline drift or static noise? <br> A: baseline drift /static noise |
109
+ | Single-Query | 30 | attr_1/attr_2/.../attr_n | 260 (208:52) | 63,125 | Q: What direction is this ECG deviated to? <br> A: Normal axis/... |
110
+ | All | 206 | yes/no/both/none/.../attr_n | 678 (541:137) | 144,885 | ... |
111
 
112
+ # 2 Citation
113
 
114
  ```
115
+ @article{tang2024electrocardiogram,
116
+ title={Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning},
117
  author={Tang, Jialu and Xia, Tong and Lu, Yuan and Mascolo, Cecilia and Saeed, Aaqib},
118
+ journal={arXiv preprint arXiv:2410.14464},
119
+ year={2024}
 
 
 
120
  }
121
  ```