Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'83368.71200562 34684.48883057 108.96859741 196 196 196 1.000000'}) and 1 missing columns ({'83371.57989502 34690.17132568 108.85359955 162 162 162 2.000000'}). This happened while the csv dataset builder was generating data using zip://infra_3DAL/real_arch_src/Sarch_131123/pointcloud/3ddisp/sourthen_arch.asc::/tmp/hf-datasets-cache/medium/datasets/14741098519718-config-parquet-and-info-jing222-infra_3DAL-395a17c1/hub/datasets--jing222--infra_3DAL/snapshots/185dd928219b08966857a5cbb0f7d3cf14da3d67/infra_3DALv2.zip Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast 83368.71200562 34684.48883057 108.96859741 196 196 196 1.000000: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 489 to {'83371.57989502 34690.17132568 108.85359955 162 162 162 2.000000': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'83368.71200562 34684.48883057 108.96859741 196 196 196 1.000000'}) and 1 missing columns ({'83371.57989502 34690.17132568 108.85359955 162 162 162 2.000000'}). This happened while the csv dataset builder was generating data using zip://infra_3DAL/real_arch_src/Sarch_131123/pointcloud/3ddisp/sourthen_arch.asc::/tmp/hf-datasets-cache/medium/datasets/14741098519718-config-parquet-and-info-jing222-infra_3DAL-395a17c1/hub/datasets--jing222--infra_3DAL/snapshots/185dd928219b08966857a5cbb0f7d3cf14da3d67/infra_3DALv2.zip Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
83371.57989502 34690.17132568 108.85359955 162 162 162 2.000000
string |
---|
83371.56790161 34690.16577148 108.84929657 162 162 162 2.000000 |
83371.57049561 34690.16961670 108.85040283 160 160 160 2.000000 |
83371.57351685 34690.17242432 108.85050201 162 162 162 2.000000 |
83371.57629395 34690.17572021 108.85109711 161 161 161 2.000000 |
83371.57891846 34690.17907715 108.85189819 163 163 163 2.000000 |
83371.58200073 34690.18188477 108.85199738 162 162 162 2.000000 |
83371.58428955 34690.18579102 108.85320282 163 163 163 2.000000 |
83371.58718872 34690.18859863 108.85350037 163 163 163 2.000000 |
83371.58941650 34690.19329834 108.85530090 163 163 163 2.000000 |
83371.59210205 34690.19622803 108.85569763 165 165 165 2.000000 |
83371.59570313 34690.19860840 108.85530090 162 162 162 2.000000 |
83371.59851074 34690.20208740 108.85610199 162 162 162 2.000000 |
83371.60140991 34690.20458984 108.85620117 160 160 160 2.000000 |
83371.55920410 34690.16308594 108.84510040 161 161 161 2.000000 |
83371.56179810 34690.16668701 108.84600067 163 163 163 2.000000 |
83371.56478882 34690.16949463 108.84619904 163 163 163 2.000000 |
83371.56738281 34690.17327881 108.84719849 160 160 160 2.000000 |
83371.57009888 34690.17651367 108.84770203 162 162 162 2.000000 |
83371.57269287 34690.18011475 108.84860229 165 165 165 2.000000 |
83371.57519531 34690.18359375 108.84950256 164 164 164 2.000000 |
83371.57830811 34690.18640137 108.84970093 164 164 164 2.000000 |
83371.58029175 34690.19061279 108.85119629 166 166 166 2.000000 |
83371.58300781 34690.19378662 108.85179901 163 163 163 2.000000 |
83371.58651733 34690.19689941 108.85199738 163 163 163 2.000000 |
83371.58950806 34690.19940186 108.85199738 162 162 162 2.000000 |
83371.59219360 34690.20288086 108.85269928 163 163 163 2.000000 |
83371.59530640 34690.20611572 108.85320282 162 162 162 2.000000 |
83371.59759521 34690.20928955 108.85399628 161 161 161 2.000000 |
83371.60140991 34690.21228027 108.85389709 162 162 162 2.000000 |
83371.60321045 34690.21649170 108.85559845 161 161 161 2.000000 |
83371.60620117 34690.21929932 108.85590363 163 163 163 2.000000 |
83371.61019897 34690.22149658 108.85520172 160 160 160 2.000000 |
83371.61209106 34690.22558594 108.85679626 164 164 164 2.000000 |
83371.61538696 34690.22869873 108.85720062 162 162 162 2.000000 |
83371.61801147 34690.23199463 108.85790253 159 159 159 2.000000 |
83371.62091064 34690.23559570 108.85859680 156 156 156 2.000000 |
83371.54998779 34690.16082764 108.84140015 163 163 163 2.000000 |
83371.55319214 34690.16351318 108.84149933 163 163 163 2.000000 |
83371.55630493 34690.16662598 108.84169769 158 158 158 2.000000 |
83371.55868530 34690.17028809 108.84279633 162 162 162 2.000000 |
83371.56170654 34690.17327881 108.84310150 163 163 163 2.000000 |
83371.56420898 34690.17718506 108.84420013 160 160 160 2.000000 |
83371.56689453 34690.18041992 108.84470367 163 163 163 2.000000 |
83371.56921387 34690.18432617 108.84590149 165 165 165 2.000000 |
83371.57150269 34690.18817139 108.84719849 163 163 163 2.000000 |
83371.57440186 34690.19122314 108.84750366 165 165 165 2.000000 |
83371.57730103 34690.19439697 108.84799957 164 164 164 2.000000 |
83371.57980347 34690.19769287 108.84880066 162 162 162 2.000000 |
83371.58370972 34690.20037842 108.84850311 159 159 159 2.000000 |
83371.58660889 34690.20300293 108.84860229 161 161 161 2.000000 |
83371.58941650 34690.20642090 108.84929657 163 163 163 2.000000 |
83371.59219360 34690.21002197 108.85009766 163 163 163 2.000000 |
83371.59509277 34690.21240234 108.85009766 162 162 162 2.000000 |
83371.59820557 34690.21612549 108.85089874 161 161 161 2.000000 |
83371.60049438 34690.21990967 108.85199738 161 161 161 2.000000 |
83371.60290527 34690.22338867 108.85299683 162 162 162 2.000000 |
83371.60668945 34690.22589111 108.85269928 155 155 155 2.000000 |
83371.60900879 34690.22949219 108.85379791 159 159 159 2.000000 |
83371.61199951 34690.23303223 108.85440063 162 162 162 2.000000 |
83371.61499023 34690.23577881 108.85459900 159 159 159 2.000000 |
83371.61810303 34690.23919678 108.85530090 160 160 160 2.000000 |
83371.62100220 34690.24249268 108.85590363 159 159 159 2.000000 |
83371.62368774 34690.24578857 108.85659790 162 162 162 2.000000 |
83371.62670898 34690.24938965 108.85739899 155 155 155 2.000000 |
83371.62948608 34690.25219727 108.85769653 155 155 155 2.000000 |
83371.63269043 34690.25592041 108.85849762 158 158 158 2.000000 |
83371.63589478 34690.25891113 108.85880280 159 159 159 2.000000 |
83371.53781128 34690.15509033 108.83730316 163 163 163 2.000000 |
83371.54119873 34690.15789795 108.83719635 160 160 160 2.000000 |
83371.54428101 34690.16082764 108.83740234 161 161 161 2.000000 |
83371.54690552 34690.16436768 108.83820343 162 162 162 2.000000 |
83371.54940796 34690.16802979 108.83910370 163 163 163 2.000000 |
83371.55270386 34690.17089844 108.83920288 158 158 158 2.000000 |
83371.55578613 34690.17388916 108.83950043 161 161 161 2.000000 |
83371.55859375 34690.17700195 108.83989716 162 162 162 2.000000 |
83371.56060791 34690.18157959 108.84169769 162 162 162 2.000000 |
83371.56298828 34690.18511963 108.84249878 166 166 166 2.000000 |
83371.56610107 34690.18798828 108.84279633 169 169 169 2.000000 |
83371.56820679 34690.19219971 108.84429932 167 167 167 2.000000 |
83371.57061768 34690.19580078 108.84529877 166 166 166 2.000000 |
83371.57391357 34690.19848633 108.84529877 166 166 166 2.000000 |
83371.57730103 34690.20068359 108.84490204 167 167 167 2.000000 |
83371.58059692 34690.20422363 108.84539795 159 159 159 2.000000 |
83371.58288574 34690.20758057 108.84619904 164 164 164 2.000000 |
83371.58621216 34690.21026611 108.84629822 161 161 161 2.000000 |
83371.58868408 34690.21441650 108.84750366 161 161 161 2.000000 |
83371.59179688 34690.21649170 108.84729767 162 162 162 2.000000 |
83371.59490967 34690.22027588 108.84809875 161 161 161 2.000000 |
83371.59771729 34690.22338867 108.84860229 165 165 165 2.000000 |
83371.59988403 34690.22711182 108.84980011 163 163 163 2.000000 |
83371.60311890 34690.23040771 108.85019684 157 157 157 2.000000 |
83371.60568237 34690.23358154 108.85089874 158 158 158 2.000000 |
83371.60931396 34690.23638916 108.85079956 159 159 159 2.000000 |
83371.61230469 34690.23919678 108.85109711 160 160 160 2.000000 |
83371.61520386 34690.24279785 108.85189819 161 161 161 2.000000 |
83371.61810303 34690.24609375 108.85250092 160 160 160 2.000000 |
83371.62060547 34690.24969482 108.85350037 160 160 160 2.000000 |
83371.62319946 34690.25396729 108.85489655 157 157 157 2.000000 |
83371.62600708 34690.25677490 108.85530090 155 155 155 2.000000 |
83371.62921143 34690.26031494 108.85590363 156 156 156 2.000000 |
End of preview.
Crack3D-Defect
Crack3D-Defect
is a multimodal 3D point cloud dataset designed for anomaly detection in infrastructure components such as masonry arches and tunnel rings. It includes synthetic data generated from FEM simulations and real scans of infrastructure collected at multiple time steps.
π Dataset Structure
infra_3DALv1/
β
βββ syn_arch_src/
β βββ memory_bank/
β β βββ min_cw0/ # Undeformed synthetic arches
β β βββ min_cw0.4/ # X-displacement with 4mm minimum crack width
β βββ disp_x/
β β βββ diff_cw/ # 4mm, 8mm crack width
β β βββ diff_disps/ # Displacements: 8cm, 12cm, 16cm, 40cm
β βββ disp_z/ # z-axis displacement
β βββ disp_xz/ # x + z displacement
β βββ rot_x/ # x-axis rotation
β
βββ real_arch_src/
β βββ memory_bank/ # London Bridge Station scans (2013/03/05)
β βββ Narch_131123/ # Arch 1 after cracking (2013/11/23)
β βββ Sarch_131123/ # Arch 2 after cracking (2013/11/23)
β
βββ tunnel/
βββ memory_bank/ # Initial tunnel scan at loading step 0
βββ 0-76-2.txt
βββ 0-89-2.txt
βββ 0-96-2.txt
βββ 0-103-2.txt # Tunnel scans under increasing load
πΉ File Formats
Folder | Format | Description |
---|---|---|
syn_arch_src/ |
.csv |
Columns: categoryID (0β3), [X, Y, Z] , [X_noise, Y_noise, Z_noise] , intensity |
real_arch_src/ |
.asc |
Columns: [x, y, z, r, g, b, intensity] |
tunnel/ |
.txt |
Columns: [x, y, z, intensity] |
π Labels
categoryID
for synthetic data (syn_arch_src/
):0
: No crack1
: Intrados crack2
: Extrados crack3
: Inner crack
π Citation
If you use this dataset, please cite the associated PhD thesis and publications.
@article{jing2024anomaly,
title={Anomaly detection of cracks in synthetic masonry arch bridge point clouds using fast point feature histograms and PatchCore},
author={Jing, Yixiong and Zhong, Jia-Xing and Sheil, Brian and Acikgoz, Sinan},
journal={Automation in Construction},
volume={168},
pages={105766},
year={2024},
publisher={Elsevier}
}
@article{jing20253d,
title={A 3D Multimodal Feature for Infrastructure Anomaly Detection},
author={Jing, Yixiong and Lin, Wei and Sheil, Brian and Acikgoz, Sinan},
journal={arXiv preprint arXiv:2502.05779},
year={2025}
}
License
Our work is subjected to MIT License.
- Downloads last month
- 32