max_stars_repo_path
stringlengths 3
269
| max_stars_repo_name
stringlengths 4
119
| max_stars_count
int64 0
191k
| id
stringlengths 1
7
| content
stringlengths 6
1.05M
| score
float64 0.23
5.13
| int_score
int64 0
5
|
---|---|---|---|---|---|---|
testing/tests/001-main/002-createrepository.py | darobin/critic | 1 | 12799651 | import time
def check_repository(document):
rows = document.findAll("tr", attrs=testing.expect.with_class("repository"))
testing.expect.check(1, len(rows))
def check_cell(row, class_name, expected_string, inline_element_type=None):
cells = row.findAll("td", attrs=testing.expect.with_class(class_name))
testing.expect.check(1, len(cells))
if inline_element_type:
testing.expect.check(1, len(cells[0].findAll(inline_element_type)))
string = cells[0].findAll("i")[0].string
else:
string = cells[0].string
if string is None:
string = ""
testing.expect.check(expected_string, string)
check_cell(rows[0], "name", "critic")
check_cell(rows[0], "location", "http://%s/critic.git" % instance.hostname)
check_cell(rows[0], "upstream", " ")
rows = document.findAll("tr", attrs=testing.expect.with_class("details"))
testing.expect.check(1, len(rows))
tables = rows[0].findAll("table", attrs=testing.expect.with_class("trackedbranches"))
testing.expect.check(1, len(tables))
# Would like to use 'tables[0].findAll()' here, but BeautifulSoup apparently
# doesn't parse nested tables correctly, so these rows aren't actually part
# of the 'trackedbranches' table according to it.
rows = document.findAll("tr", attrs=testing.expect.with_class("branch"))
testing.expect.check(2, len(rows))
check_cell(rows[0], "localname", "Tags", inline_element_type="i")
check_cell(rows[0], "remote", repository.url)
check_cell(rows[0], "remotename", "N/A", inline_element_type="i")
check_cell(rows[0], "enabled", "Yes")
check_cell(rows[0], "users", "")
check_cell(rows[1], "localname", "master")
check_cell(rows[1], "remote", repository.url)
check_cell(rows[1], "remotename", "master")
check_cell(rows[1], "enabled", "Yes")
check_cell(rows[1], "users", "")
with frontend.signin():
# Check that this URL isn't handled already. We're using it later to detect
# that the repository has been created and the tracked branch fetched, and
# if it's already handled for some reason, that check won't be reliable.
frontend.page("critic/master", expected_http_status=404)
frontend.operation("addrepository",
data={ "name": "critic",
"path": "critic",
"remote": { "url": repository.url,
"branch": "master" }})
# If it hasn't happened after 30 seconds, something must be wrong.
deadline = time.time() + 30
finished = False
while not finished and time.time() < deadline:
# The frontend.page() function returns None if the HTTP status was
# 404, and a BeautifulSoup object if it was 200.
if frontend.page("critic/master", expected_http_status=[200, 404]) is None:
time.sleep(0.5)
while True:
mail = mailbox.pop(accept=testing.mailbox.with_subject("^branchtracker.log: "))
if not mail:
break
logger.error("Administrator message: %s\n > %s"
% (mail.header("Subject"), "\n > ".join(mail.lines)))
raise testing.TestFailure
else:
finished = True
if not finished:
logger.error("Repository main branch ('refs/heads/master') not fetched after 30 seconds.")
raise testing.TestFailure
# Check that /repositories still loads correctly now that there's a
# repository in the system.
frontend.page(
"repositories",
expect={ "document_title": testing.expect.document_title(u"Repositories"),
"content_title": testing.expect.paleyellow_title(0, u"Repositories"),
"repository": check_repository })
frontend.operation("addrepository",
data={ "name": "a" * 65,
"path": "validpath2" },
expect={ "status": "failure",
"code": "invalidshortname" })
frontend.operation("addrepository",
data={ "name": "",
"path": "validpath1" },
expect={ "status": "failure",
"code": "invalidshortname" })
| 2.40625 | 2 |
Dataset/Leetcode/train/102/63.py | kkcookies99/UAST | 0 | 12799652 | class Solution:
def XXX(self, root: TreeNode) -> List[List[int]]:
queue = []
queue.insert(0,root)
res = []
if not root:
return []
while queue:
n = len(queue)
layer = []
for i in range(n):
temp = queue.pop()
print(temp.val)
if temp.left:
queue.insert(0,temp.left)
if temp.right:
queue.insert(0,temp.right)
layer.append(temp.val)
res.append(layer)
return res
| 3.328125 | 3 |
src/5_expression/GSE64913.py | reemagit/flowcentrality | 2 | 12799653 | #!/usr/bin/env python3
"""
Generate GSE64913
"""
__author__ = "<NAME>"
__version__ = "0.1.0"
__license__ = "MIT"
import logging
import GEOparse
import argparse
import pandas as pd
from funcs import utils
from os.path import join
import numpy as np
#def append_postfix(filename,postfix):
# return "{0}_{2}.{1}".format(*filename.rsplit('.', 1) + postfix)
def main(args):
logging.basicConfig(level=logging.INFO,
format='%(module)s:%(levelname)s:%(asctime)s:%(message)s',
handlers=[logging.FileHandler("../logs/report.log")])
logging.info(args)
utils.create_dir_if_not_exist(args.out_expr_dir)
utils.create_dir_if_not_exist(join(args.out_expr_dir,'raw'))
utils.create_dir_if_not_exist(join(args.out_expr_dir,'processed'))
gse = GEOparse.get_GEO(geo='GSE64913', destdir=join(args.out_expr_dir,'raw'))
annotated = gse.pivot_and_annotate('VALUE', gse.gpls['GPL570'], 'ENTREZ_GENE_ID')
annotated2 = annotated[~pd.isnull(annotated.ENTREZ_GENE_ID)]
annotated2 = annotated2.loc[~annotated2.isnull().values.all(axis=1)]
annotated2['ENTREZ_GENE_ID'] = annotated2.ENTREZ_GENE_ID.str.split('///').str[0].astype(int)
annotated2 = annotated2.set_index('ENTREZ_GENE_ID')
classes = {}
classes['healthy_cae'] = ['diagnosis: Healthy','cell type: Central airway epithelium']
classes['healthy_pae'] = ['diagnosis: Healthy', 'cell type: Peripheral airway epithelium']
classes['asthma_cae'] = ['diagnosis: Severe Asthmatic', 'cell type: Central airway epithelium']
classes['asthma_pae'] = ['diagnosis: Severe Asthmatic', 'cell type: Peripheral airway epithelium']
logging.info(classes)
gsms = {cls: [gsm for gsm in gse.gsms if gse.gsms[gsm].metadata['characteristics_ch1'][1] == classes[cls][0] and
gse.gsms[gsm].metadata['characteristics_ch1'][5] == classes[cls][1]] for cls in classes}
logging.info(' '.join(['{} GSM:{}'.format(cls, len(gsms[cls])) for cls in classes]))
utils.create_dir_if_not_exist(args.out_expr_dir)
utils.write_expr(join(args.out_expr_dir, 'processed', 'expr.tsv'), annotated2)
for cls in classes:
utils.write_text(join(args.out_expr_dir, 'processed', '{}_gsms.txt'.format(cls)), gsms[cls])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process GSE64913')
parser.add_argument('out_expr_dir', type=str, help='Output directory for expression data file and GSM lists')
args = parser.parse_args()
main(args) | 2.265625 | 2 |
test.py | cooool/doublejian | 0 | 12799654 | <reponame>cooool/doublejian
def main():
print ("hello")
return 0
if __name__ == '__main__':
main()
| 1.6875 | 2 |
backends/redis.py | iliadmitriev/auth-api | 3 | 12799655 | <reponame>iliadmitriev/auth-api<filename>backends/redis.py<gh_stars>1-10
import aioredis
async def init_redis(app):
app['redis'] = aioredis.from_url(
app['redis_location'],
)
async def close_redis(app):
await app['redis'].close()
def setup_redis(app, redis_location):
app['redis_location'] = redis_location
app.on_startup.append(init_redis)
app.on_cleanup.append(close_redis)
async def get_redis_key(redis, key):
async with redis.client() as conn:
val = await conn.get(key)
return val
async def set_redis_key(redis, key, value, expire=None):
async with redis.client() as conn:
if expire is None:
res = await conn.set(key, value)
else:
res = await conn.set(key, value, ex=expire)
return res
| 2.375 | 2 |
utils/BaseFlags.py | cvsubmittemp/BraVL | 0 | 12799656 | <reponame>cvsubmittemp/BraVL
import os
import argparse
import torch
import scipy.io as sio
parser = argparse.ArgumentParser()
# TRAINING
parser.add_argument('--batch_size', type=int, default=512, help="batch size for training")
parser.add_argument('--initial_learning_rate', type=float, default=0.0001, help="starting learning rate")
parser.add_argument('--beta_1', type=float, default=0.9, help="default beta_1 val for adam")
parser.add_argument('--beta_2', type=float, default=0.999, help="default beta_2 val for adam")
parser.add_argument('--start_epoch', type=int, default=0, help="flag to set the starting epoch for training")
parser.add_argument('--end_epoch', type=int, default=100, help="flag to indicate the final epoch of training")
# DATA DEPENDENT
parser.add_argument('--class_dim', type=int, default=32, help="dimension of common factor latent space")
# SAVE and LOAD
parser.add_argument('--mm_vae_save', type=str, default='mm_vae', help="model save for vae_bimodal")
parser.add_argument('--load_saved', type=bool, default=False, help="flag to indicate if a saved model will be loaded")
# DIRECTORIES
# experiments
parser.add_argument('--dir_experiment', type=str, default='./logs', help="directory to save logs in")
parser.add_argument('--dataname', type=str, default='DIR-Wiki', help="dataset")
parser.add_argument('--sbj', type=str, default='sub-03', help="fmri subject")
parser.add_argument('--roi', type=str, default='LVC_HVC_IT', help="ROI")
parser.add_argument('--text_model', type=str, default='GPTNeo', help="text embedding model")
parser.add_argument('--image_model', type=str, default='pytorch/repvgg_b3g4', help="image embedding model")
parser.add_argument('--test_type', type=str, default='zsl', help='normal or zsl')
parser.add_argument('--aug_type', type=str, default='image_text', help='no_aug, image_text, image_only, text_only')
#multimodal
parser.add_argument('--method', type=str, default='joint_elbo', help='choose method for training the model')
parser.add_argument('--modality_jsd', type=bool, default=False, help="modality_jsd")
parser.add_argument('--modality_poe', type=bool, default=False, help="modality_poe")
parser.add_argument('--modality_moe', type=bool, default=False, help="modality_moe")
parser.add_argument('--joint_elbo', type=bool, default=False, help="modality_moe")
parser.add_argument('--poe_unimodal_elbos', type=bool, default=True, help="unimodal_klds")
parser.add_argument('--factorized_representation', action='store_true', default=False, help="factorized_representation")
# LOSS TERM WEIGHTS
parser.add_argument('--beta', type=float, default=0.0, help="default initial weight of sum of weighted divergence terms")
parser.add_argument('--beta_style', type=float, default=1.0, help="default weight of sum of weighted style divergence terms")
parser.add_argument('--beta_content', type=float, default=1.0, help="default weight of sum of weighted content divergence terms")
parser.add_argument('--lambda1', type=float, default=0.001, help="default weight of intra_mi terms")
parser.add_argument('--lambda2', type=float, default=0.001, help="default weight of inter_mi terms")
FLAGS = parser.parse_args()
data_dir_root = os.path.join('./data', FLAGS.dataname)
brain_dir = os.path.join(data_dir_root, 'brain_feature', FLAGS.roi, FLAGS.sbj)
image_dir_train = os.path.join(data_dir_root, 'visual_feature/ImageNetTraining', FLAGS.image_model+'-PCA', FLAGS.sbj)
text_dir_train = os.path.join(data_dir_root, 'textual_feature/ImageNetTraining/text', FLAGS.text_model, FLAGS.sbj)
train_brain = sio.loadmat(os.path.join(brain_dir, 'fmri_train_data.mat'))['data'].astype('double')
train_image = sio.loadmat(os.path.join(image_dir_train, 'feat_pca_train.mat'))['data'].astype('double')#[:,0:3000]
train_text = sio.loadmat(os.path.join(text_dir_train, 'text_feat_train.mat'))['data'].astype('double')
train_brain = torch.from_numpy(train_brain)
train_image = torch.from_numpy(train_image)
train_text = torch.from_numpy(train_text)
dim_brain = train_brain.shape[1]
dim_image = train_image.shape[1]
dim_text = train_text.shape[1]
parser.add_argument('--m1_dim', type=int, default=dim_brain, help="dimension of modality brain")
parser.add_argument('--m2_dim', type=int, default=dim_image, help="dimension of modality image")
parser.add_argument('--m3_dim', type=int, default=dim_text, help="dimension of modality text")
parser.add_argument('--data_dir_root', type=str, default=data_dir_root, help="data dir")
FLAGS = parser.parse_args()
print(FLAGS)
| 2.203125 | 2 |
mcpipy/dragoncurve.py | wangtt03/raspberryjammod | 338 | 12799657 | #
# Code by <NAME> and under the MIT license
#
from mineturtle import *
import lsystem
t = Turtle()
t.pendelay(0)
t.turtle(None)
t.penblock(block.BRICK_BLOCK)
# ensure angles are always integral multiples of 90 degrees
t.gridalign()
rules = {'X':'X+YF+', 'Y':'-FX-Y'}
def go():
# draw a wall segment with a door
t.pendown()
t.penblock(block.BRICK_BLOCK)
t.startface()
for i in range(4):
t.go(4)
t.pitch(90)
t.endface()
t.penup()
t.go(2)
t.pendown()
t.penblock(block.AIR)
t.pitch(90)
t.go(1)
t.penup()
t.pitch(180)
t.go(1)
t.pitch(90)
t.go(2)
dictionary = { '+': lambda: t.yaw(90),
'-': lambda: t.yaw(-90),
'F': lambda: go() }
lsystem.lsystem('FX', rules, dictionary, 14)
| 3.0625 | 3 |
server/app/tests/users/test_endpoints.py | josenava/meal-calendar | 0 | 12799658 | import pytest
from fastapi.testclient import TestClient
@pytest.mark.integration
@pytest.mark.usefixtures("test_db_session")
class TestSignupEndpoint:
def test_signup_returns_200(self, client: TestClient):
response = client.post(
"/users/signup",
json={
"email": "<EMAIL>",
"password": "<PASSWORD>"
}
)
assert response.status_code == 201
def test_signup_existing_user_returns_422(self, client: TestClient):
response = client.post(
"/users/signup",
json={
"email": "<EMAIL>",
"password": "<PASSWORD>"
}
)
assert response.status_code == 201
response_2 = client.post(
"/users/signup",
json={
"email": "<EMAIL>",
"password": "<PASSWORD>"
}
)
assert response_2.status_code == 422
| 2.484375 | 2 |
queries/charQuery.py | Kadantte/AniPy-Bot | 11 | 12799659 | def searchChar():
query = '''
query ($search: String) {
Character(search: $search) {
siteUrl
name {
full
}
media(perPage: 1) {
nodes {
title {
romaji
english
}
siteUrl
}
}
image {
large
}
description(asHtml: true)
}
}
'''
return query | 1.820313 | 2 |
scripts/fitnessMutations/annotate_mutations.py | felixhorns/BCellSelection | 3 | 12799660 | <gh_stars>1-10
import sys
import numpy as np
import pandas as pd
from Bio.Seq import Seq
from Bio.Alphabet import generic_dna
from Bio import SeqIO, Align, AlignIO, Phylo
from itertools import izip
def load_tree(f):
t = Phylo.read(f, 'newick')
t.root_with_outgroup("germline")
t.get_nonterminals()[0].branch_length = 0.0
# t.ladderize(reverse=True)
return t
def load_aln(infile):
aln = Align.MultipleSeqAlignment([])
aln_dict = {}
with open(infile, 'r') as f:
for seq_record in SeqIO.parse(f, 'fasta'):
aln.append(seq_record)
aln_dict[seq_record.id] = str(seq_record.seq)
return aln, aln_dict
def get_parent(tree, child_clade):
node_path = tree.get_path(child_clade)
return node_path[-2]
def str_diffs(X, Y):
diffs = []
for i, (x, y) in enumerate(izip(X,Y)):
if x != y:
d = [i, x, y]
diffs.append(d)
return diffs
def get_mutations(T, aln_dict):
""" Get mutations on each branch of the tree """
header = ["name", "parent_name", "position", "base_before", "base_after"]
df = pd.DataFrame(columns=header)
i = 0
for clade in T.find_clades():
if clade.name in [None, "germline", "2_"]: continue
parent = get_parent(T, clade)
seq_parent = aln_dict[parent.name]
seq_clade = aln_dict[clade.name]
diffs = str_diffs(seq_parent, seq_clade)
for diff in diffs:
position, base_before, base_after = tuple(diff)
features = [clade.name, parent.name, position, base_before, base_after]
df.loc[i] = features
i += 1
return df
def find_frame(s):
# Finds longest ORF
s = s.replace("-", "")
seq1 = Seq(s, generic_dna).translate() # translate in every frame
seq2 = Seq(s[1:], generic_dna).translate()
seq3 = Seq(s[2:], generic_dna).translate()
L_seq1 = max([len(x) for x in seq1.split("*")]) # find longest ORF in each frame
L_seq2 = max([len(x) for x in seq2.split("*")])
L_seq3 = max([len(x) for x in seq3.split("*")])
Ls = [L_seq1, L_seq2, L_seq3]
L_max = max(Ls) # get longest ORF among all frames
frames_max = [i for i, x in enumerate(Ls) if x == L_max] # get frame of longest ORF
if len(frames_max) > 1:
print "Warning: more than one reading frame had max length ORF"
return frames_max[0]
def annotate_coding(df_mutations, aln_dict):
""" Annotate each mutation as either nonsynonymous or synonymous """
coding_status = []
for i, row in df_mutations.iterrows():
seq_parent = aln_dict[row["parent_name"]] # get parent sequence
seq_mutated = list(seq_parent)
seq_mutated[int(row["position"])] = row["base_after"] # introduce mutation
seq_mutated = "".join(seq_mutated)
seq_parent = seq_parent.replace("-", "") # collapse gaps
seq_mutated = seq_mutated.replace("-", "")
AA_parent = Seq(seq_parent, generic_dna).translate() # translate
AA_mutated = Seq(seq_mutated, generic_dna).translate()
if AA_parent != AA_mutated: # compare AA before and after mutation
coding_status.append("N")
else:
coding_status.append("S")
df_mutations["coding_status"] = coding_status
return df_mutations
def map_positions(s, positions):
""" Maps positions in an ungapped sequence to corresponding positions in a gapped sequence """
# count number of gaps before each position
counter = 0
gaps = []
for i, x in enumerate(s):
if x == "-":
counter += 1
gaps.append(counter)
# transform boundaries to corresponding positions in new sequence
positions_transformed = []
for x in positions:
my_gaps = gaps[x]
x_transformed = x + my_gaps
positions_transformed.append(x_transformed)
return positions_transformed
def annotate_regions(df_mutations, aln_dict, df_seqs):
""" Annotate region of each mutation (CDR/FWR) """
# get one sequence
sequence_uids = [x for x in aln_dict.keys() if "_" not in x]
my_sequence_uid = int(sequence_uids[0])
s = aln_dict[str(my_sequence_uid)]
# transform positions of region boundaries to corresponding positions in gapped alignment
fields = ["FWR1_start", "CDR1_start", "FWR2_start", "CDR2_start", "FWR3_start", "CDR3_start", "FWR4_start", "C_start"]
boundaries_ungapped = df_seqs.loc[my_sequence_uid][fields]
boundaries_ungapped = np.array(boundaries_ungapped) - 1 # transform to zero-indexed positions
boundaries_ungapped[-1] -= 1 # decrement C region boundary (end of sequence) to fit within array
boundaries_gapped = map_positions(s, boundaries_ungapped)
# boundaries_gapped = np.array(boundaries_gapped) - 1 # not used anymore (we do transform earlier)
boundaries_gapped[0] = 0
boundaries_gapped[-1] += 1
# map mutations to regions using boundaries
labels = ["FWR1", "CDR1", "FWR2", "CDR2", "FWR3", "CDR3", "FWR4"]
regions = pd.cut(df_mutations["position"], boundaries_gapped, include_lowest=True, right=False, labels=labels)
df_mutations["region"] = regions
return df_mutations
if __name__ == "__main__":
infile_aln = sys.argv[1]
infile_fitness_tree = sys.argv[2]
outfile = sys.argv[3]
print infile_fitness_tree
print infile_aln
infile_df_seqs = "/local10G/rfhorns/Bcell/flu_highres/figures/v5/data/FitnessMutations.df_seqs_raw.csv"
df_seqs = pd.read_csv(infile_df_seqs, header=0, index_col=0)
aln, aln_dict = load_aln(infile_aln)
fitness_tree = load_tree(infile_fitness_tree)
df_mutations = get_mutations(fitness_tree, aln_dict)
df_mutations = annotate_coding(df_mutations, aln_dict)
df_mutations = annotate_regions(df_mutations, aln_dict, df_seqs)
df_mutations.to_csv(outfile)
print "Done!!"
| 2.59375 | 3 |
import/a.py | abos5/pythontutor | 0 | 12799661 | <reponame>abos5/pythontutor<gh_stars>0
print "a before b"
import b
print "a after import b"
_once = 0
def dofoo():
global _once;
_once += 1
if _once > 1:
print "what the hell are u thinking?"
print "a very important function that can only exec once"
dofoo()
print "complete a"
| 3.046875 | 3 |
src/telliot_core/queries/query.py | tellor-io/pytelliot | 2 | 12799662 | """ Oracle Query Module
"""
import json
from clamfig import Serializable
from web3 import Web3
from telliot_core.dtypes.value_type import ValueType
class OracleQuery(Serializable):
"""Oracle Query
An OracleQuery specifies how to pose a question to the
Tellor Oracle and how to format/interpret the response.
The OracleQuery class serves
as the base class for all Queries, and implements default behaviors.
Each subclass corresponds to a unique Query Type supported
by the TellorX network.
All public attributes of an OracleQuery represent an input that can
be used to customize the query.
The base class provides:
- Calculation of the contents of the `data` field to include with the
`TellorX.Oracle.tipQuery()` contract call.
- Calculation of the `id` field field to include with the
`TellorX.Oracle.tipQuery()` and `TellorX.Oracle.submitValue()`
contract calls.
"""
@property
def descriptor(self) -> str:
"""Get the query descriptor string.
The Query descriptor is a unique string representation of the query.
The descriptor is required for users to specify the query to TellorX
through the ``TellorX.Oracle.tipQuery()`` contract call.
"""
state = self.get_state()
jstr = json.dumps(state, separators=(",", ":"))
return jstr
@property
def value_type(self) -> ValueType:
"""Returns the ValueType expected by the current Query configuration
The value type defines required data type/structure of the
``value`` submitted to the contract through
``TellorX.Oracle.submitValue()``
This method must be overridden by subclasses
"""
pass
@property
def query_data(self) -> bytes:
"""Returns the ``data`` field for use in ``TellorX.Oracle.tipQuery()``
contract call.
"""
return self.descriptor.encode("utf-8")
@property
def query_id(self) -> bytes:
"""Returns the query ``id`` for use with the
``TellorX.Oracle.tipQuery()`` and ``TellorX.Oracle.submitValue()``
contract calls.
"""
return bytes(Web3.keccak(self.query_data))
| 2.9375 | 3 |
gpu_tasker/email_settings_sample.py | cnstark/awesome_gpu_scheduler | 35 | 12799663 | <reponame>cnstark/awesome_gpu_scheduler
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'smtp.163.com'
EMAIL_PORT = 465
EMAIL_HOST_USER = '<EMAIL>'
EMAIL_HOST_PASSWORD = '<PASSWORD>'
EMAIL_USE_SSL = True
EMAIL_USE_LOCALTIME = True
DEFAULT_FROM_EMAIL = 'GPUTasker<{}>'.format(EMAIL_HOST_USER)
SERVER_EMAIL = EMAIL_HOST_USER
| 1.453125 | 1 |
debug.py | Epsilon-Lee/OpenNMT-V1 | 7 | 12799664 | <filename>debug.py
import torch
import torch.nn as nn
import onmt
from onmt.BleuCal import fetch_data
import sys
if torch.cuda.is_available():
torch.cuda.set_device(3)
checkpoint = torch.load('../Models/V1_IWSLT_Models/de2en_30k_bz64_bc5_bleu_26.06_e24.pt')
opt = checkpoint['opt']
# del(checkpoint)
opt.cuda = True
srcData, references = fetch_data('IWSLT/test.de.small.tok', 'IWSLT/test.en.small.tok')
encoder = onmt.Models.Encoder(opt, checkpoint['dicts']['src'])
decoder = onmt.Models.Decoder(opt, checkpoint['dicts']['tgt'])
model = onmt.Models.NMTModel(encoder, decoder)
model.load_state_dict(checkpoint['model'])
generator = nn.Sequential(
nn.Linear(opt.rnn_size, checkpoint['dicts']['tgt'].size()),
nn.LogSoftmax())
model.generator = generator
model.cuda()
opt.model = '../Models/V1_IWSLT_Models/de2en_30k_bz64_bc5_bleu_26.06_e24.pt'
translator = onmt.Translator(opt, model, checkpoint['dicts']['src'], checkpoint['dicts']['tgt'])
srcBatch, tgtBatch, candidate = [], [], []
lenSrcData = len(srcData)
for i, line in enumerate(srcData):
sys.stdout.write('\r')
sys.stdout.write("%s" % (str(i) + ' of ' + str(lenSrcData)))
sys.stdout.flush()
srcTokens = line.split()
srcBatch += [srcTokens]
if (i + 1) % opt.trans_batch_size == 0:
predBatch, _, _ = translator.translate(srcBatch, tgtBatch)
print 'predBatch:', len(predBatch)
for b in range(len(predBatch)):
candidate += [" ".join(predBatch[b][0]) + '\n']
srcBatch = []
elif (i + 1) == lenSrcData:
predBatch, _, _ = translator.translate(srcBatch, tgtBatch)
print 'predBatch:', len(predBatch)
for b in range(len(predBatch)):
candidate += [" ".join(predBatch[b][0]) + '\n']
srcBatch = []
else:
continue
print 'candidate length:', len(candidate)
print 'referece length', len(references[0]) | 1.90625 | 2 |
test_pytest/test_unit/test_database.py | hat-open/hat-syslog | 1 | 12799665 | <reponame>hat-open/hat-syslog<filename>test_pytest/test_unit/test_database.py
import datetime
import os
import socket
import pytest
from hat.syslog.server import common
import hat.syslog.server.database
pytestmark = pytest.mark.asyncio
@pytest.fixture
def db_path(tmp_path):
return tmp_path / 'syslog.db'
@pytest.fixture
def timestamp():
dt = datetime.datetime.now(tz=datetime.timezone.utc)
return dt.timestamp()
@pytest.fixture
def create_msg(timestamp):
counter = 0
def create_msg(facility=common.Facility.USER,
severity=common.Severity.ERROR,
hostname=socket.gethostname(),
app_name=pytest.__file__,
procid=os.getpid()):
nonlocal counter
counter += 1
return common.Msg(facility=facility,
severity=severity,
version=1,
timestamp=timestamp,
hostname=hostname,
app_name=app_name,
procid=str(procid),
msgid='test_syslog.backend',
data="",
msg=f'message no {counter}')
return create_msg
async def test_create(db_path):
assert not db_path.exists()
db = await hat.syslog.server.database.create_database(db_path, False)
assert db_path.exists()
await db.async_close()
assert db_path.exists()
async def test_add_msgs(db_path, timestamp, create_msg):
db = await hat.syslog.server.database.create_database(db_path, False)
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id is None
assert last_id is None
msgs = []
entries = await db.add_msgs(msgs)
assert entries == []
msgs = [create_msg() for i in range(10)]
entries = await db.add_msgs([(timestamp, msg) for msg in msgs])
assert len(entries) == len(msgs)
assert [entry.msg for entry in entries] == msgs
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id == entries[0].id
assert last_id == entries[-1].id
await db.async_close()
db = await hat.syslog.server.database.create_database(db_path, False)
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id == entries[0].id
assert last_id == entries[-1].id
await db.async_close()
async def test_delete(db_path, timestamp, create_msg):
db = await hat.syslog.server.database.create_database(db_path, False)
msgs = [create_msg() for i in range(10)]
entries = await db.add_msgs([(timestamp, msg) for msg in msgs])
await db.delete(entries[0].id)
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id == entries[0].id
assert last_id == entries[-1].id
await db.delete(entries[-1].id)
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id == entries[-1].id
assert last_id == entries[-1].id
msgs = [create_msg() for i in range(10)]
new_entries = await db.add_msgs([(timestamp, msg) for msg in msgs])
entries = [entries[-1], *new_entries]
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id == entries[0].id
assert last_id == entries[-1].id
await db.delete(entries[-1].id + 1)
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id is None
assert last_id is None
msgs = [create_msg() for i in range(10)]
entries = await db.add_msgs([(timestamp, msg) for msg in msgs])
first_id = await db.get_first_id()
last_id = await db.get_last_id()
assert first_id == entries[0].id
assert last_id == entries[-1].id
await db.async_close()
| 2.09375 | 2 |
web_scraping/beautifulsoup/bs4_sample2.py | manual123/Nacho-Jupyter-Notebooks | 2 | 12799666 | <filename>web_scraping/beautifulsoup/bs4_sample2.py
from pprint import pprint
import re
from bs4 import BeautifulSoup
html_content = open('bs_sample.html') # http://dl.dropbox.com/u/49962071/blog/python/resource/bs_sample.html
soup = BeautifulSoup(html_content) # making soap
for tag in soup.find_all(re.compile("^p")): # find all tag start with p
print tag.name
for tag in soup.find_all(re.compile("t")): # find all tag contains t
print tag.name
for tag in soup.find_all(True): # find all tag
print tag.name
pprint(soup.find_all('a')) # find all a tag
print 20*"++"
pprint(soup.find_all(["a", "b"])) # find multiple tag
def has_class_but_no_id(tag):
return tag.has_key('class') and not tag.has_key('id')
pprint(soup.find_all(has_class_but_no_id)) # pass a function to find_all
pprint(soup.find_all(text=re.compile("sisters"))) # find all tag content contains key 'sisters'
print 20*"++"
pprint(soup.find_all(href=re.compile("my_url"))) # all links contains key "my_url"
pprint(soup.find_all(id=True)) # all links has id
pprint(soup.find_all(class_=True)) # all links has class
def has_six_characters(css_class):
return css_class is not None and len(css_class) == 7
pprint(soup.find_all(class_=has_six_characters)) # find all class name contains 7 characters
pprint(soup.find_all("a", "sister")) # find all a tag have class named 'sister'
pprint(soup.find_all("a", re.compile("sister"))) # find all a tag have class named contains 'sister'
print 20*"++"
pprint(soup.find_all(href=re.compile("elsie"), id='link1')) # url name contains elsie and have id = link1
pprint(soup.find_all(attrs={'href' : re.compile("elsie"), 'id': 'link1'})) # url name contains elsie and have id = link1
pprint(soup.find_all("a", limit=2)) # use limit on findall
pprint(soup.html.find_all("title", recursive=True)) # use recursive on findall
| 3.375 | 3 |
python/busmap/fetch.py | ehabkost/busmap | 4 | 12799667 | <reponame>ehabkost/busmap<filename>python/busmap/fetch.py<gh_stars>1-10
# -*- coding: utf-8 -*
import horarios, linhas, env, dias
def get_linha_hor(idhor, nome):
c = env.db.cursor()
# look for id horario
r = c.select_onerow('linhas', ['id'], 'idhor=%s', [idhor])
if r:
c.close()
return r[0]
# not found. look for a similar name, but with no idhor set
r = c.select_onerow('linhas', ['id'], 'idhor is null and nome=%s', [nome])
if r:
id = r[0]
# found. set idhor
c.execute('update linhas set idhor=%s where id=%s',
[idhor, id])
c.close()
return id
# not found. insert a new record
c.insert_one('linhas', idhor=idhor, nome=nome)
id = c.lastrowid
c.close()
return id
def get_ponto_hor(nome):
c = env.db.cursor()
r = c.select_onerow('pontos', ['id'], 'nome=%s', nome)
if r:
c.close()
return r[0]
# not found
c.insert_one('pontos', nome=nome)
id = c.lastrowid
c.close()
return id
def fetch_horarios(idhor, nome):
c = env.db.cursor()
idlinha = get_linha_hor(idhor, nome)
#TODO: check if this really works
c.execute('start transaction')
try:
c.execute('delete from hs, h \
using horsets hs, horarios h \
where hs.idlinha=%s and h.idset=hs.id',
[idlinha])
html = horarios.get_horarios_html(idhor)
for pto,dia,apartir,horas in horarios.parse_hor_html(html):
print 'ponto: %s, dias: %s' % (pto, dia)
idponto = get_ponto_hor(pto)
d = dias.id_dias(dia)
c.insert_one('horsets', idlinha=idlinha, idponto=idponto,
dia=d, apartir=apartir)
idset = c.lastrowid
for sp,h in horas:
c.insert_one('horarios',
idset=idset, hora=h, special=sp)
except:
c.execute('rollback')
else:
c.execute('commit')
c.close()
def fetch_hor_all():
for cod,nome in horarios.lista_linhas():
print 'Fetching %s:%s' % (cod, nome)
fetch_horarios(cod, nome)
if __name__ == '__main__':
#fetch_horarios('022', u'INTER 2 (Horário)')
fetch_hor_all()
| 2.546875 | 3 |
facenet.py | ndoo/libfreenect2-facial-recognition | 0 | 12799668 | <reponame>ndoo/libfreenect2-facial-recognition<filename>facenet.py<gh_stars>0
import argparse
import cv2
import numpy as np
import sys
from pylibfreenect2 import Freenect2, SyncMultiFrameListener
from pylibfreenect2 import FrameType, Registration, Frame
ap = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
ap.add_argument("-s", "--depth-smooth", type=int, default=20,
help="Number of samples for moving average of nearest point")
ap.add_argument("-r", "--depth-range", type=int, default=80,
help="Range to clip from nearest object, in millimeters")
ap.add_argument("-m", "--ir-min", type=int, default=1024,
help="IR minimum value clip, out of a maximum value of 65535")
ap.add_argument("-M", "--ir-max", type=int, default=32768,
help="IR maximum value clip, out of a maximum value of 65535")
args = vars(ap.parse_args())
cascPath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
anterior = 0
try:
from pylibfreenect2 import CudaPacketPipeline
pipeline = CudaPacketPipeline()
except:
try:
from pylibfreenect2 import OpenGLPacketPipeline
pipeline = OpenGLPacketPipeline()
except:
try:
from pylibfreenect2 import OpenCLPacketPipeline
pipeline = OpenCLPacketPipeline()
except:
from pylibfreenect2 import CpuPacketPipeline
pipeline = CpuPacketPipeline()
print("Packet pipeline:", type(pipeline).__name__)
fn = Freenect2()
num_devices = fn.enumerateDevices()
if num_devices == 0:
print("No device connected!")
sys.exit(1)
serial = fn.getDeviceSerialNumber(0)
device = fn.openDevice(serial, pipeline=pipeline)
types = FrameType.Color | FrameType.Ir | FrameType.Depth
listener = SyncMultiFrameListener(types)
# Register listeners
device.setColorFrameListener(listener)
device.setIrAndDepthFrameListener(listener)
# Start streams
device.startStreams(rgb=True,depth=True)
# Initialize buffer for moving average of nearest value
nearest_buffer = np.empty(args["depth_smooth"])
nearest_buffer[:] = np.NaN
# Iterate acquiring frames
while True:
frames = listener.waitForNewFrame()
depth = frames["depth"].asarray(np.float32)
color = frames["color"].asarray()
# Flip invalid depth value (0) to maximum value, to clean up blown-out patches at infinity
depth[depth == 0] = np.amax(depth)
# Apply clip on infrared image
ir = np.uint8(
(np.clip(frames["ir"].asarray(), args["ir_min"], args["ir_max"]) - args["ir_min"] - 1) /
((args["ir_max"] - args["ir_min"]) / 256)
)
#ir = np.uint8(frames["ir"].asarray() / 256)
faces = faceCascade.detectMultiScale(ir, 1.3, 5)
for (x,y,w,h) in faces:
cv2.imshow("Face IR", cv2.resize(cv2.equalizeHist(ir[y:y+h, x:x+w]), (800, 800)))
face_depth = depth[y:y+h, x:x+w]
# Clip noise around nearest value by taking 10th lowest value
nearest = np.partition(face_depth, 10, None)[9]
# Determine nearest value by updating buffer and taking the average
# Needed to combat flickering due to depth noise
#nearest_buffer[:-1] = nearest_buffer[1:]
#nearest_buffer[-1] = nearest
#nearest = np.average(nearest_buffer)
# Apply clip from nearest on depth image
face_depth = np.clip(face_depth, nearest, nearest + args["depth_range"])
face_depth -= nearest
face_depth /= args["depth_range"]
cv2.imshow("Face Depth", cv2.resize(face_depth, (800, 800)))
listener.release(frames)
key = cv2.waitKey(delay=1)
if key == ord('q'):
break
device.stop()
device.close()
sys.exit(0)
| 2.171875 | 2 |
src/unicon/plugins/nxos/mds/statemachine.py | nielsvanhooy/unicon.plugins | 18 | 12799669 | <gh_stars>10-100
__author__ = "<NAME> <<EMAIL>>"
from unicon.plugins.nxos.statemachine import NxosSingleRpStateMachine
from unicon.plugins.nxos.mds.patterns import NxosMdsPatterns
from unicon.statemachine import State, Path
patterns = NxosMdsPatterns()
class NxosMdsSingleRpStateMachine(NxosSingleRpStateMachine):
def create(self):
super().create()
self.remove_path('enable', 'shell')
self.remove_path('shell', 'enable')
self.remove_state('shell')
shell = State('shell', patterns.shell_prompt)
tie = State('tie', patterns.tie_prompt)
enable = self.get_state('enable')
self.add_state(shell)
self.add_state(tie)
enable_to_shell = Path(enable, shell, 'bash', None)
shell_to_enable = Path(shell, enable, 'exit', None)
enable_to_tie = Path(enable, tie, 'san-ext-tuner', None)
tie_to_enable = Path(tie, enable, 'end', None)
# Add State and Path to State Machine
self.add_path(enable_to_shell)
self.add_path(shell_to_enable)
self.add_path(enable_to_tie)
self.add_path(tie_to_enable)
class NxosMdsDualRpStateMachine(NxosMdsSingleRpStateMachine):
def create(self):
super().create()
| 1.96875 | 2 |
cardice/__init__.py | ogrisel/cardice | 2 | 12799670 | """Compute Cloud setup with SaltStack and Apache Libcloud"""
__version__ = '0.1.0-git'
if __name__ == '__main__':
from cardice.commandline import main
main()
| 1.070313 | 1 |
boo/okved/__init__.py | vishalbelsare/boo | 14 | 12799671 | <filename>boo/okved/__init__.py
from .okved import all_codes_v2, name_v2
| 1.03125 | 1 |
genestack_client/genestack_exceptions.py | genestack/python-client | 2 | 12799672 | # -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from future import standard_library
standard_library.install_aliases()
from builtins import *
from urllib.error import URLError
MASTER_BRANCH = 'https://github.com/genestack/python-client/archive/master.zip'
PYPI_PACKAGE = 'genestack-client'
class GenestackBaseException(Exception):
"""
Base class for Genestack exceptions.
Use it to catch all exceptions raised explicitly by Genestack Python Client.
"""
pass
class GenestackException(GenestackBaseException):
"""
Client-side exception class.
Raise its instances (instead of :py:class:`~exceptions.Exception`)
if anything is wrong on client side.
"""
pass
class GenestackServerException(GenestackException):
"""
Server-side exception class.
Raised when Genestack server returns an error response
(error message generated by Genestack Java code, not an HTTP error).
"""
def __init__(self, message, path, post_data, debug=False, stack_trace=None):
"""
:param message: exception message
:type message: str
:param path: path after server URL of connection.
:type path: str
:param post_data: POST data (file or dict)
:type debug: bool
:param debug: flag if stack trace should be printed
:param stack_trace: server stack trace
:type stack_trace: str
"""
message = (message.decode('utf-8', 'ignore')
if isinstance(message, bytes) else message)
GenestackException.__init__(self, message, path, post_data, debug, stack_trace)
self.message = message
self.debug = debug
self.stack_trace = stack_trace
self.path = path
self.post_data = post_data
def __str__(self):
if isinstance(self.post_data, dict):
message = 'Got error "%s" at call of method "%s" of "%s"' % (
self.message,
self.post_data.get('method', '<unknown>'),
self.path
)
else:
# upload file
message = 'Got error "%s" at call of "%s"' % (
self.message,
self.path
)
if self.stack_trace:
if self.debug:
message += '\nStacktrace from server is:\n%s' % self.stack_trace
else:
message += '\nEnable debug option to retrieve traceback'
return message
class GenestackResponseError(GenestackBaseException, URLError):
"""
Wrapper for HTTP response errors.
Extends :py:class:`urllib2.URLError` for backward compatibility.
"""
def __init__(self, reason):
self.args = reason,
self.reason = reason
def __str__(self):
return '<urlopen error %s>' % self.reason
class GenestackConnectionFailure(GenestackBaseException, URLError):
"""
Wrapper for server connection failures.
Extends :py:class:`urllib2.URLError` for backward compatibility.
"""
def __init__(self, message):
self.message = "<connection failed %s>" % message
def __str__(self):
return self.message
class GenestackAuthenticationException(GenestackException):
"""
Exception thrown on an authentication error response from server.
"""
pass
class GenestackVersionException(GenestackException):
"""
Exception thrown if server requires a newer version on Python Client.
"""
def __init__(self, current_version, required_version=None):
"""
:param current_version: current version
:type current_version: distutils.version.StrictVersion
:param required_version: minimum required version
:type required_version: distutils.version.StrictVersion
"""
if required_version:
package = MASTER_BRANCH if required_version.prerelease else PYPI_PACKAGE
message = (
'Your Genestack Client version "{current_version}" is too old, '
'at least "{required_version}" is required.\n'
).format(current_version=current_version, required_version=required_version)
else:
package = PYPI_PACKAGE
message = 'Cannot get required version from server.\n'
message += (
'You can update client with the following command:\n'
' pip install {package} --upgrade'
).format(package=package)
super(GenestackVersionException, self).__init__(message)
| 2.359375 | 2 |
roll_dice.py | sarveshbhatnagar/CompetetiveProgramming | 0 | 12799673 | <gh_stars>0
from collections import defaultdict
class Solution:
def rollDice(self, arr):
map_val = {
6: 1,
1: 6,
2: 4,
4: 2,
3: 5,
5: 3
}
count_elem = defaultdict(int)
showFace = None
max_count = 0
for elem in arr:
count_elem[elem] += 1
if count_elem[elem] > max_count:
max_count = count_elem[elem]
showFace = elem
return len(arr) - count_elem[showFace] + count_elem[map_val[showFace]]
# def number_of_rotations(dice: List[int]) -> int:
# return min(
# sum(0 if d == v else 1 if d + v != 7 else 2 for d in dice)
# for v in range(1, 7)
# )
# N = [6, 6, 1]
N = [6, 1, 5, 4]
print(Solution().rollDice(N))
| 2.984375 | 3 |
python/conversations.py | grcanosa/renfe-checker | 7 | 12799674 | """
"""
from enum import Enum
import logging
from telegram import (ReplyKeyboardMarkup, ReplyKeyboardRemove)
from telegram.ext import ConversationHandler
from telegramcalendarkeyboard import telegramcalendar
from telegramcalendarkeyboard import telegramoptions
from texts import texts as TEXTS
from texts import keyboards as KEYBOARDS
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.DEBUG)
logger = logging.getLogger(__name__)
class BotOptions(Enum):
ADD_QUERY = 1
DEL_QUERY = 2
DO_QUERY = 3
class ConvStates(Enum):
OPTION = 1
STATION = 2
DATE = 3
NUMERIC_OPTION = 4
class RenfeBotConversations:
class Conversation:
def __init__(self, userid):
self._userid = userid
self.reset()
def reset(self):
self._option = 0
self._origin = None
self._dest = None
self._date = None
self._data = None
def __init__(self, renfebot):
self._conversations = {}
self._RB = renfebot
def _start_conv_for_user(self, userid):
if userid not in self._conversations:
self._conversations[userid] = self.Conversation(userid)
self._conversations[userid].reset()
def handler_start(self, bot, update):
ret_code = 0
userid = update.message.from_user.id
username = update.message.from_user.first_name
if update.message.from_user.last_name is not None:
username += " " + update.message.from_user.last_name
auth = self._RB._DB.get_user_auth(userid, username)
if auth == 0: # Not authorized
logger.debug("NOT AUTHORIZED USER")
update.message.reply_text(TEXTS["NOT_AUTH_REPLY"].format(username=username),
reply_markup=ReplyKeyboardRemove())
self._RB.ask_admin_for_access(bot, userid, username)
ret_code = ConversationHandler.END
else: # Authorized
logger.debug("AUTHORIZED USER")
self._start_conv_for_user(userid)
update.message.reply_text(TEXTS["OPTION_SELECTION"],
reply_markup=ReplyKeyboardMarkup(
KEYBOARDS["MAIN_OPTIONS"]),
one_time_keyboard=True)
ret_code = ConvStates.OPTION
return ret_code
def handler_cancel(self, bot, update):
return ConversationHandler.END
def handler_option(self, bot, update):
userid = update.message.from_user.id
ret_code = 0
if update.message.text == TEXTS["MAIN_OP_DO_QUERY"]:
ret_code = self._h_op_do_query(userid, bot, update)
elif update.message.text == TEXTS["MAIN_OP_ADD_QUERY"]:
ret_code = self._h_op_add_query(userid, bot, update)
elif update.message.text == TEXTS["MAIN_OP_DEL_QUERY"]:
ret_code = self._h_op_del_query(userid, bot, update)
elif update.message.text == TEXTS["MAIN_OP_CHECK_QUERY"]:
ret_code = self._h_op_check_queries(userid, bot, update)
else:
update.message.reply_text(TEXTS["MAIN_OP_UNKNOWN"])
ret_code = ConversationHandler.END
return ret_code
def _h_op_do_query(self, userid, bot, update):
self._conversations[userid]._option = BotOptions.DO_QUERY
update.message.reply_text(TEXTS["DO_ONETIME_QUERY"])
update.message.reply_text(TEXTS["SELECT_ORIGIN_STATION"],
reply_markup=ReplyKeyboardMarkup(KEYBOARDS["STATIONS"],
one_time_keyboard=True))
return ConvStates.STATION
def _h_op_add_query(self, userid, bot, update):
self._conversations[userid]._option = BotOptions.ADD_QUERY
update.message.reply_text(TEXTS["ADD_PERIODIC_QUERY"])
update.message.reply_text(TEXTS["SELECT_ORIGIN_STATION"],
reply_markup=ReplyKeyboardMarkup(KEYBOARDS["STATIONS"],
one_time_keyboard=True))
return ConvStates.STATION
def _h_op_del_query(self, userid, bot, update):
self._conversations[userid]._option = BotOptions.DEL_QUERY
user_queries = self._RB._DB.get_user_queries(userid)
ret_code = 0
if len(user_queries) == 0:
update.message.reply_text(TEXTS["NO_QUERIES_FOR_USERID"])
ret_code = ConversationHandler.END
else:
options = []
for q in user_queries:
options.append(TEXTS["QUERY_IN_DB"].
format(origin=q["origin"],
destination=q["destination"],
date=self._RB._DB.timestamp_to_date(q["date"])))
bot.send_message(chat_id=userid,
text=TEXTS["SELECT_TRIP_TO_DETELE"],
reply_markup=telegramoptions.create_options_keyboard(options,TEXTS["CANCEL"]))
self._conversations[userid]._data = user_queries
ret_code = ConvStates.NUMERIC_OPTION
return ret_code
def _h_op_check_queries(self, userid, bot, update):
user_queries = self._RB._DB.get_user_queries(userid)
if len(user_queries) == 0:
update.message.reply_text(TEXTS["NO_QUERIES_FOR_USERID"])
else:
update.message.reply_text(TEXTS["QUERIES_FOR_USERID"])
for q in user_queries:
update.message.reply_text(TEXTS["QUERY_IN_DB"].
format(origin=q["origin"],
destination=q["destination"],
date=self._RB._DB.timestamp_to_date(q["date"])))
update.message.reply_text(TEXTS["END_MESSAGE"],reply_markup=ReplyKeyboardRemove())
return ConversationHandler.END
def handler_numeric_option(self, bot, update):
logger.debug("Processing numeric opion")
userid = update.callback_query.from_user.id
user_queries = self._conversations[userid]._data
selected, query_index = telegramoptions.process_option_selection(bot, update)
if not selected:
logger.debug("Nothing selected")
bot.send_message(chat_id= userid, text=TEXTS["DB_QUERY_NOT_REMOVED"],reply_markup=ReplyKeyboardRemove())
return ConversationHandler.END
else:
logger.debug("Deleting query with index "+str(query_index))
if len(user_queries) > query_index:
query = user_queries[query_index]
if self._RB._DB.remove_periodic_query(query["userid"], query["origin"],
query["destination"], query["date"]):
bot.send_message(chat_id=userid,text=TEXTS["DB_QUERY_REMOVED"],reply_markup=ReplyKeyboardRemove())
else:
bot.send_message(chat_id=userid,text=TEXTS["DB_QUERY_NOT_PRESENT"],reply_markup=ReplyKeyboardRemove())
return ConversationHandler.END
def handler_date(self, bot, update):
logger.debug("Processing date")
selected, date = telegramcalendar.process_calendar_selection(bot, update)
if not selected:
logger.debug("Not selected")
return ConvStates.DATE
else:
logger.debug("selected")
userid = update.callback_query.from_user.id
conv = self._conversations[userid]
conv._date = date.strftime("%d/%m/%Y")
logger.debug("Date is " + conv._date)
bot.send_message(chat_id=userid, text=TEXTS["SELECTED_DATA"].
format(origin=conv._origin, destination=conv._dest, date=conv._date))
if conv._option == BotOptions.ADD_QUERY:
res = self._RB._DB.add_periodic_query(
userid, conv._origin, conv._dest, conv._date)
bot.send_message(chat_id=userid,text=res[1])
elif conv._option == BotOptions.DO_QUERY:
bot.send_message(chat_id=userid,text=TEXTS["WAIT_FOR_TRAINS"])
res = self._RB._RF.check_trip(conv._origin, conv._dest, conv._date)
self._RB.send_query_results_to_user(bot, userid, res,
conv._origin, conv._dest, conv._date)
else:
logger.error("Problem, no other option should lead HERE!")
return ConversationHandler.END
def handler_station(self, bot, update):
logger.debug("Setting Station")
userid = update.message.from_user.id
if self._conversations[userid]._origin is None:
logger.debug("Origin Station")
self._conversations[userid]._origin = update.message.text.upper()
update.message.reply_text(TEXTS["SELECT_DESTINATION_STATION"],
reply_markup=ReplyKeyboardMarkup(KEYBOARDS["STATIONS"], one_time_keyboard=True))
return ConvStates.STATION
else:
logger.debug("Destination Station")
self._conversations[userid]._dest = update.message.text.upper()
bot.send_message(chat_id=userid,
text=TEXTS["SELECTED_TRIP"].format(
origin=self._conversations[userid]._origin,
destination=self._conversations[userid]._dest
),
reply_markup=ReplyKeyboardRemove())
bot.send_message(chat_id=userid, text=TEXTS["SELECT_TRIP_DATE"],
reply_markup=telegramcalendar.create_calendar())
return ConvStates.DATE | 2.390625 | 2 |
FullStackTests.py | stefanos-86/Remember | 3 | 12799675 | <reponame>stefanos-86/Remember<gh_stars>1-10
# Test rig to do tests on the completed machinery.
# Runs GDB on one (or all) test core files and compare the test result with what
# is stored in the <test case name>_result.txt file(s).
# This too relies on a convention on the file names linking test cases, expected results, executables and core files.
import argparse
import difflib
import os
import re
import subprocess
import TestSuite as ts
LOGS_FOR_TESTS = "FullStackTest.log"
def parse_command_line():
parser = argparse.ArgumentParser(description='Utility to quickly run the full stack test cases. '
'Run CreateTestCores.py first.'
'Stick to the file naming conventions.'
'Test cases are listed in the CMakeList.txt in'
' ' + ts.TEST_PROGRAMS_FOLDER,
epilog="(C) 2017 - Stefano",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-t", "--test_case",
help="Runs only the specified test case. Runs everything if not provided (None).",
required=False)
return parser.parse_args()
def find_core_file(test_name):
"""Walks the test directory to detect a core file with the same name as the test case."""
for subdir, dirs, files in os.walk(ts.CORES_FOLDER):
for file in files:
if file.startswith(test_name):
return os.path.join(subdir, file)
return None
def assert_result(test_name):
"""Compares the expected and actual results. Prints the diff in case of error, nothing otherwise."""
expected_result_file = os.path.join(ts.TEST_PROGRAMS_FOLDER, test_name + "_result.dot")
with open(expected_result_file) as f:
expected = f.readlines()
with open(os.path.abspath("RememberOutput.dot")) as f:
actual = f.readlines()
expected = generic_addresses(expected)
actual = generic_addresses(actual)
changes = difflib.unified_diff(expected, actual,
fromfile='expected_result_file',
tofile='RESULT_FROM_TEST', lineterm='')
result_lines = []
for line in changes:
result_lines.append(line)
if len(result_lines) > 0:
print " #################### FAIL ####################"
for line in result_lines:
print line,
print " ##############################################"
def generic_addresses(dot_content):
"""The stack changes every time the core files are recreated.
Should I commit the core files and the binaries in the repo?
Or should I "wildcard" the addresses? Or abandon this way of testing?
...I wish I knew. For now, I replace the addresses with "generics"."""
address_translation = {}
address = re.compile("(0x[0-9a-f]+)")
address_counter = 0
filtered_result = []
for line in dot_content:
parts = address.split(line)
filtered_line = ""
for part in parts:
if re.match(address, part):
replacement = address_translation.get(part)
if replacement is None:
replacement = "0xAddress_" + str(address_counter)
address_translation[part] = replacement
filtered_line += replacement
address_counter += 1
else:
filtered_line += part
filtered_result.append(filtered_line)
return filtered_result
def run_test(test_name):
"""Calls gdb with our driver and compares the result with the expected output."""
core_file = find_core_file(test_name)
if core_file is None:
raise Exception("No core file for " + test_name)
exeutable_file = os.path.join(ts.TEST_PROGRAMS_FOLDER, test_name)
subprocess.call(["python", "remember.py", core_file, exeutable_file,
"-l", LOGS_FOR_TESTS, "-o", "GraphFromLastTest.svg"])
assert_result(test_name)
if __name__ == "__main__":
args = parse_command_line()
if args.test_case is None:
test_list = ts.find_test_cases()
else:
test_list = [args.test_case]
print "Tests to run " + str(test_list)
for test_case in test_list:
run_test(test_case)
| 2.71875 | 3 |
models/room.py | Kaezon/BoredRPG | 0 | 12799676 | """
Module containing the Room class
"""
from collections import namedtuple
from entity import Entity
"""
Exit is a namedtuple which describes a unidirectional connection between rooms.
Properties:
direction: Short name string
destination: Room refrence
"""
Exit = namedtuple("Exit", ['direction', 'destination'])
class Room(Entity):
"""
Class representing locations in the game world.
Properties:
exits: List of Exit namedtuples
"""
def __init__(self,
name,
short_description,
full_description=None,
exits=[]
meta={}):
super(name, location, short_description, full_description, meta)
self._exits = exits
@property
def exits(self):
"""
Return the list of exits.
"""
return self._exits
@property
def short_description(self):
"""
Return the short description of this room.
Exits are appended to the end.
"""
description = self._short_description + "\n\nThe exits are "
for exit in exits:
description += "{}, ".formatexit.direction)
return description
@property
def full_description(self):
"""
Return the short description of this room.
Exits are appended to the end.
"""
description = self._full_description + "\n\nThe exits are "
for exit in exits:
description += "{}, ".format(exit.direction)
return description
| 3.8125 | 4 |
main.py | jsleb333/quadboost | 1 | 12799677 | import torch
import logging
from quadboost import QuadBoostMHCR
from quadboost.label_encoder import LabelEncoder, OneHotEncoder, AllPairsEncoder
from quadboost.weak_learner import *
from quadboost.callbacks import *
from quadboost.datasets import MNISTDataset
from quadboost.utils import parse, timed
from quadboost.data_preprocessing.data_augmentation import extend_mnist
from quadboost.weak_learner.random_convolution import plot_images
@timed
@parse
def main(m=60_000, val=10_000, da=0, dataset='mnist', center=True, reduce=True, encodings='onehot', wl='rccridge', max_round=1000, patience=1000, resume=0, n_jobs=1, max_n_leaves=4, n_filters=10, fs=11, fsh=0, locality=4, init_filters='from_bank', bank_ratio=.05, fn='c', seed=42, nl='maxpool', maxpool=3, device='cpu', degrees=.0, scale=.0, shear=.0, margin=2, nt=1):
if seed:
torch.manual_seed(seed)
np.random.seed(seed)
### Data loading
mnist = MNISTDataset.load(dataset+'.pkl')
(Xtr, Ytr), (X_val, Y_val), (Xts, Yts) = mnist.get_train_valid_test(valid=val, center=False, reduce=False, shuffle=seed)
Xtr, Ytr = Xtr[:m], Ytr[:m]
if da:
logging.info(f'Adding {da} examples with data augmentation.')
Xtr, Ytr = extend_mnist(Xtr, Ytr, N=da, degrees=degrees, scale=(1-scale, 1/(1-scale)), shear=shear)
mnist.fit_scaler(Xtr, center=center, reduce=reduce)
Xtr, Ytr = mnist.transform_data(Xtr.reshape(Xtr.shape[0],-1), Ytr)
X_val, Y_val = mnist.transform_data(X_val.reshape(X_val.shape[0],-1), Y_val)
Xts, Yts = mnist.transform_data(Xts.reshape(Xts.shape[0],-1), Yts)
logging.info(f'Loaded dataset: {dataset} (center: {center}, reduce: {reduce})')
logging.info(f'Number of examples - train: {len(Xtr)}, valid: {len(X_val)}, test: {len(Xts)}')
### Choice of encoder
if encodings == 'onehot':
encoder = OneHotEncoder(Ytr)
elif encodings == 'allpairs':
encoder = AllPairsEncoder(Ytr)
else:
encoder = LabelEncoder.load_encodings(encodings)
if all(label.isdigit() for label in encoder.labels_encoding):
encoder = LabelEncoder({int(label):encoding for label, encoding in encoder.labels_encoding.items()})
logging.info(f'Encoding: {encodings}')
filename = f'd={dataset}-e={encodings}-wl={wl}'
### Choice of weak learner
kwargs = {}
if wl in ['ds', 'decision-stump']:
weak_learner = MulticlassDecisionStump()
kwargs = dict(zip(('sorted_X', 'sorted_X_idx'), weak_learner.sort_data(Xtr)))
kwargs['n_jobs'] = n_jobs
elif wl in ['dt', 'decision-tree']:
weak_learner = MulticlassDecisionTree(max_n_leaves=max_n_leaves)
kwargs = dict(zip(('sorted_X', 'sorted_X_idx'), weak_learner.sort_data(Xtr)))
kwargs['n_jobs'] = n_jobs
filename += f'{max_n_leaves}'
elif wl == 'ridge':
weak_learner = WLThresholdedRidge(threshold=.5)
elif wl.startswith('rcc') or wl.startswith('rlc'):
if device.startswith('cuda'):
Xtr = RandomConvolution.format_data(Xtr).to(device=device)
X_val = RandomConvolution.format_data(X_val).to(device=device)
Xts = RandomConvolution.format_data(Xts).to(device=device)
filename += f'-nf={n_filters}-fs={fs}'
if fsh: filename += f'_to_{fsh}'
if wl.startswith('rlc'): filename += f'-loc={locality}'
activation = None
if 'maxpool' in nl:
filename += f'-maxpool{maxpool}'
if 'relu' in nl:
filename += f'-relu'
activation = torch.nn.functional.relu
elif 'sigmoid' in nl:
filename += f'-sigmoid'
activation = torch.sigmoid
filename += f'-{init_filters}'
if degrees:
filename += f'-deg={degrees}'
if scale:
filename += f'-scale={scale}'
scale = (1-scale, 1/(1-scale))
else:
scale = None
if shear:
filename += f'-shear={shear}'
else:
shear = None
filter_bank = None
if init_filters == 'from_bank':
if 0 < bank_ratio < 1:
bank_size = int(m*bank_ratio)
filter_bank = Xtr[:bank_size]
Xtr, Ytr = Xtr[bank_size:], Ytr[bank_size:]
logging.info(f'Bank size: {bank_size}')
else:
raise ValueError(f'Invalid bank_size {bank_size}.')
filename += f'_br={bank_ratio}'
elif init_filters == 'from_data':
filter_bank = Xtr
if fn:
filename += f'_{fn}'
f_proc = []
if 'c' in fn:
f_proc.append(center_weight)
if 'n' in fn:
f_proc.append(normalize_weight)
if 'r' in fn:
f_proc.append(reduce_weight)
w_gen = WeightFromBankGenerator(filter_bank=filter_bank,
filters_shape=(fs, fs),
filters_shape_high=(fsh, fsh) if fsh else None,
filter_processing=f_proc,
margin=margin,
degrees=degrees,
scale=scale,
shear=shear,
)
if wl.startswith('rcc'):
filters = Filters(n_filters=n_filters,
weights_generator=w_gen,
activation=activation,
maxpool_shape=(nt, maxpool, maxpool))
elif wl.startswith('rlc'):
filters = LocalFilters(n_filters=n_filters,
weights_generator=w_gen,
locality=locality,
maxpool_shape=(nt, maxpool, maxpool))
if nt > 1:
filename += f'-nt={nt}'
if wl.endswith('ridge'):
weak_learner = RandomConvolution(filters=filters, weak_learner=Ridge)
if wl.endswith('ds'):
weak_learner = RandomConvolution(filters=filters, weak_learner=MulticlassDecisionStump)
kwargs['n_jobs'] = n_jobs
else:
raise ValueError(f'Invalid weak learner name: "{wl}".')
logging.info(f'Weak learner: {type(weak_learner).__name__}')
### Callbacks
ckpt = ModelCheckpoint(filename=filename+'-{round}.ckpt', dirname='./results', save_last=True)
logger = CSVLogger(filename=filename+'-log.csv', dirname='./results/log')
zero_risk = BreakOnZeroRiskCallback()
callbacks = [ckpt,
logger,
zero_risk,
]
logging.info(f'Filename: {filename}')
### Fitting the model
if not resume:
logging.info(f'Beginning fit with max_round_number={max_round} and patience={patience}.')
qb = QuadBoostMHCR(weak_learner, encoder=encoder)
qb.fit(Xtr, Ytr, max_round_number=max_round, patience=patience,
X_val=X_val, Y_val=Y_val,
callbacks=callbacks,
**kwargs)
### Or resume fitting a model
else:
logging.info(f'Resuming fit with max_round_number={max_round}.')
qb = QuadBoostMHCR.load(f'results/{filename}-{resume}.ckpt')
qb.resume_fit(Xtr, Ytr,
X_val=X_val, Y_val=Y_val,
max_round_number=max_round,
**kwargs)
print(f'Best round recap:\nBoosting round {qb.best_round.step_number+1:03d} | Train acc: {qb.best_round.train_acc:.3%} | Valid acc: {qb.best_round.valid_acc:.3%} | Risk: {qb.best_round.risk:.3f}')
print(f'Test accuracy on best model: {qb.evaluate(Xts, Yts):.3%}')
print(f'Test accuracy on last model: {qb.evaluate(Xts, Yts, mode="last"):.3%}')
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, style='{', format='[{levelname}] {message}')
main()
| 2.0625 | 2 |
test/run/t418.py | timmartin/skulpt | 2,671 | 12799678 | # lists
print "\nlists"
print min([1,2,3,4])
print min([2,1],[1,2],[1,1],[1,1,0])
# tuples
print "\ntuples"
print min((1,2,3,4))
print min((2,1),(1,2),(1,1),(1,1,0))
# dictionaries
print "\ndictionaries"
print min({1:2,3:4,5:6})
print min({1:6,3:4,5:2})
| 3.359375 | 3 |
devel/.private/hector_uav_msgs/lib/python2.7/dist-packages/hector_uav_msgs/srv/__init__.py | arijitnoobstar/UAVProjectileCatcher | 10 | 12799679 | from ._EnableMotors import *
| 1.21875 | 1 |
ServiceRelationExtraction/relationExtractService.py | black938/RelationExtractionProject | 0 | 12799680 | from concurrent import futures
import grpc
import relationExtractService_pb2
import relationExtractService_pb2_grpc
import tools
class relationExtractService(relationExtractService_pb2_grpc.relationExtractServiceServicer):
def ExtractTriple(self,request,context):
sentence = request.sentence
triples = tools.extract_items(sentence)
response = relationExtractService_pb2.relationExtractResponse()
for triple in triples:
data = response.triples.add()
data.sub=triple[0]
data.pred=triple[1]
data.obj=triple[2]
return response
def serve():
server = grpc.server(futures.ThreadPoolExecutor(max_workers=8))
relationExtractService_pb2_grpc.add_relationExtractServiceServicer_to_server(relationExtractService(),server)
server.add_insecure_port("[::]:4232")
server.start()
server.wait_for_termination()
if __name__ == '__main__':
serve()
| 2.453125 | 2 |
src/delete_network.py | chrisdxie/rice | 16 | 12799681 |
import itertools
from collections import OrderedDict
import numpy as np
import cv2
import torch
import torch.nn as nn
from torch.nn import Sequential as Seq, Linear, ReLU
import torch.nn.functional as F
from torch_geometric.data import Data, Batch
from . import base_networks
from . import graph_construction as gc
from . import constants
from .util import utilities as util_
class DeleteNet(nn.Module):
def __init__(self, config):
super(DeleteNet, self).__init__()
self.node_encoder = base_networks.NodeEncoder(config['node_encoder_config'])
self.bg_fusion_module = base_networks.LinearEncoder(config['bg_fusion_module_config'])
def forward(self, graph):
"""DeleteNet forward pass.
Note: Assume that the graph contains the background node as the first node.
Args:
graph: a torch_geometric.Data instance with attributes:
- rgb: a [N, 256, h, w] torch.FloatTensor of ResnNet50+FPN rgb image features
- depth: a [N, 3, h, w] torch.FloatTensor. XYZ image
- mask: a [N, h, w] torch.FloatTensor of values in {0, 1}
- orig_masks: a [N, H, W] torch.FloatTensor of values in {0, 1}. Original image size.
- crop_indices: a [N, 4] torch.LongTensor. xmin, ymin, xmax, ymax.
Returns:
a [N] torch.FloatTensor of delete score logits. The first logit (background) is always low,
so BG is never deleted.
"""
encodings = self.node_encoder(graph) # dictionary
concat_features = torch.cat([encodings[key] for key in encodings], dim=1) # [N, \sum_i d_i]
bg_feature = concat_features[0:1] # [1, \sum_i d_i]
node_features = concat_features[1:] # [N-1, \sum_i d_i]
node_minus_bg_features = node_features - bg_feature # [N-1, \sum_i d_i]
node_delete_logits = self.bg_fusion_module(node_minus_bg_features) # [N-1, 1]
delete_logits = torch.cat([torch.ones((1, 1), device=constants.DEVICE) * -100,
node_delete_logits], dim=0)
return delete_logits[:,0]
class DeleteNetWrapper(base_networks.NetworkWrapper):
def setup(self):
if 'deletenet_model' in self.config:
self.model = self.config['deletenet_model']
else:
self.model = DeleteNet(self.config)
self.model.to(self.device)
def get_new_potential_masks(self, masks, fg_mask):
"""Compute new potential masks.
See if any connected components of fg_mask _setminus_ mask can be
considered as a new mask. Concatenate them to masks.
Args:
masks: a [N, H, W] torch.Tensor with values in {0, 1}.
fg_mask: a [H, W] torch.Tensor with values in {0, 1}.
Returns:
a [N + delta, H, W] np.ndarray of new masks. delta = #new_masks.
"""
occupied_mask = masks.sum(dim=0) > 0.5
fg_mask = fg_mask.cpu().numpy().astype(np.uint8)
fg_mask[occupied_mask.cpu().numpy()] = 0
fg_mask = cv2.erode(fg_mask, np.ones((3,3)), iterations=1)
nc, components = cv2.connectedComponents(fg_mask, connectivity=8)
components = torch.from_numpy(components).float().to(constants.DEVICE)
for j in range(1, nc):
mask = components == j
component_size = mask.sum().float()
if component_size > self.config['min_pixels_thresh']:
masks = torch.cat([masks, mask[None].float()], dim=0)
return masks
def delete_scores(self, graph):
"""Compute delete scores for each node in the graph.
Args:
graph: a torch_geometric.Data instance
Returns:
a [N] torch.Tensor with values in [0, 1]
"""
return torch.sigmoid(self.model(graph))
| 2.359375 | 2 |
util.py | CSI-Woo-Lab/PandaSchedulingModel | 3 | 12799682 | def get_util_range(num_proc):
util = [str(x) for x in range(10, num_proc * 100, 10)]
ret = []
for x in util:
if len(x) == 2:
ret.append('0.' + x)
else:
ret.append(x[:len(x) - 2] + '.' + x[len(x) - 2:])
return ret
| 2.765625 | 3 |
rss/subreddits.py | victorchen796/reddit-submission-scraper | 0 | 12799683 | from resources import get_subreddits, update_subreddits
"""
subreddits:
{
'<subreddit name>': {
'phrases': [
'<phrases>'
],
'flairs': [
'<flairs>'
],
'include': <boolean>,
'unflaired': <boolean>
},
...
}
"""
subreddits = get_subreddits()
def list():
return subreddits.keys()
def add(name):
subreddits[name] = {
'phrases': [],
'flairs': [],
'include': False,
'unflaired': True
}
update_subreddits(subreddits)
def remove(name):
del subreddits[name]
update_subreddits(subreddits)
def clear():
subreddits.clear()
update_subreddits(subreddits) | 2.78125 | 3 |
events/migrations/0006_auto_20150811_1213.py | Morozzzko/django-events | 0 | 12799684 | <filename>events/migrations/0006_auto_20150811_1213.py<gh_stars>0
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
from django.conf import settings
class Migration(migrations.Migration):
dependencies = [
('events', '0005_auto_20150809_0203'),
]
operations = [
migrations.RemoveField(
model_name='team',
name='members',
),
migrations.AlterField(
model_name='teammembership',
name='team',
field=models.ForeignKey(null=True, blank=True, to='events.Team'),
),
migrations.AlterField(
model_name='teammembership',
name='user',
field=models.OneToOneField(to=settings.AUTH_USER_MODEL),
),
]
| 1.328125 | 1 |
tests/test_nested_sampling.py | LoLab-VU/Gleipnir | 2 | 12799685 | <filename>tests/test_nested_sampling.py
"""
Tests using an implementation of a 5-dimensional Gaussian problem and its
Nested Sampling using via Gleipnir's built-in Nested Sampler.
Adapted from the DNest4 python gaussian example:
https://github.com/eggplantbren/DNest4/blob/master/python/examples/gaussian/gaussian.py
"""
import pytest
import numpy as np
from numpy import exp, log, pi
from scipy.stats import uniform
from scipy.special import erf
from gleipnir.sampled_parameter import SampledParameter
from gleipnir.nestedsampling import NestedSampling
from gleipnir.nestedsampling.samplers import MetropolisComponentWiseHardNSRejection
from gleipnir.nestedsampling.stopping_criterion import NumberOfIterations
import os
import glob
# Number of paramters to sample is 5
ndim = 5
# Set up the list of sampled parameters: the prior is Uniform(-5:5) --
# we are using a fixed uniform prior from scipy.stats
sampled_parameters = [SampledParameter(name=i, prior=uniform(loc=-5.0,scale=10.0)) for i in range(ndim)]
# Set the active point population size
population_size = 20
sampler = MetropolisComponentWiseHardNSRejection(iterations=10, tuning_cycles=1)
stopping_criterion = NumberOfIterations(120)
# Define the loglikelihood function
def loglikelihood(sampled_parameter_vector):
const = -0.5*np.log(2*np.pi)
return -0.5*np.sum(sampled_parameter_vector**2) + ndim * const
width = 10.0
def analytic_log_evidence(ndim, width):
lZ = (ndim * np.log(erf(0.5*width/np.sqrt(2)))) - (ndim * np.log(width))
return lZ
shared = {'NS': None}
def test_initialization():
NS = NestedSampling(sampled_parameters=sampled_parameters,
loglikelihood=loglikelihood,
sampler = sampler,
population_size=population_size,
stopping_criterion=stopping_criterion)
shared['NS'] = NS
def test_attributes():
NS = shared['NS']
sp = NS.sampled_parameters
assert sp == sampled_parameters
lnl = NS.loglikelihood
spv = np.array([5.,5.,5.,5.,5.])
assert lnl(spv) == loglikelihood(spv)
pop = NS.population_size
assert pop == population_size
def test_func_run():
NS = shared['NS']
log_evidence, log_evidence_error = NS.run(verbose=False)
analytic = analytic_log_evidence(ndim, width)
print(analytic, log_evidence)
assert np.isclose(log_evidence, analytic, rtol=1.)
shared['NS'] = NS
def test_properties():
NS = shared['NS']
analytic = analytic_log_evidence(ndim, width)
lnZ = NS.log_evidence
assert np.isclose(lnZ, analytic, rtol=1.)
lnZ_err = NS.log_evidence_error
Z = NS.evidence
Z_err = NS.evidence_error
H = NS.information
def test_func_posteriors():
NS = shared['NS']
posteriors = NS.posteriors()
keys = list(posteriors.keys())
assert len(keys) == len(sampled_parameters)
def test_func_akaike_ic():
NS = shared['NS']
aic = NS.akaike_ic()
def test_func_bayesian_ic():
NS = shared['NS']
bic = NS.bayesian_ic(n_data=5)
def test_func_deviance_ic():
NS = shared['NS']
dic = NS.deviance_ic()
if __name__ == '__main__':
test_initialization()
test_attributes()
test_func_run()
test_properties()
test_func_posteriors()
test_func_akaike_ic()
test_func_bayesian_ic()
test_func_deviance_ic()
| 2.546875 | 3 |
src/objects/variable.py | CameronWr/ModelTranslator | 0 | 12799686 | class Variable:
var_type_dic = {'int' : 0,
'bool' : 1,
'boolean' : 1,
'float' : 2,
'double' : 2,
'string' : 3,
'str' : 3}
def __init__(self, var_type, var_name, var_value):
self.var_type = var_type
self.var_name = var_name
self.var_value = var_value
if var_value == "":
self.set_defualt_value(var_type)
else:
self.var_value = var_value
def set_defualt_value(self, var_type):
var_type = var_type.lower()
var_type_index = Variable.var_type_dic.get(var_type, None)
if var_type_index == 0:
self.var_value = 0
elif var_type_index == 1:
self.var_value = False
elif var_type_index == 2:
self.var_value = 0.0
elif var_type_index == 3:
self.var_value = ""
else:
print("Variable type error")
def set_variable_type(self, type):
self.var_type = type
def set_variable_name(self, name):
self.var_name = name
def set_variable_value(self, value):
self.var_value = value
def get_variable_type(self):
return self.var_type
def get_variable_name(self):
return self.var_name
def get_variable_value(self):
return self.var_value
| 3.4375 | 3 |
real_robots/generate_goals.py | GOAL-Robots/real_robots | 35 | 12799687 | # -*- coding: utf-8 -*-
"""Console script to generate goals for real_robots"""
import click
import numpy as np
from real_robots.envs import Goal
import gym
import math
basePosition = None
slow = False
render = False
def pairwise_distances(a):
b = a.reshape(a.shape[0], 1, a.shape[1])
return np.sqrt(np.einsum('ijk, ijk->ij', a-b, a-b))
def runEnv(env, max_t=1000):
reward = 0
done = False
render = slow
action = {'joint_command': np.zeros(9), 'render': render}
objects = env.robot.used_objects[1:]
positions = np.vstack([env.get_obj_pose(obj) for obj in objects])
still = False
stable = 0
for t in range(max_t):
old_positions = positions
observation, reward, done, _ = env.step(action)
positions = np.vstack([env.get_obj_pose(obj) for obj in objects])
maxPosDiff = 0
maxOrientDiff = 0
for i, obj in enumerate(objects):
posDiff = np.linalg.norm(old_positions[i][:3] - positions[i][:3])
q1 = old_positions[i][3:]
q2 = positions[i][3:]
orientDiff = min(np.linalg.norm(q1 - q2), np.linalg.norm(q1+q2))
maxPosDiff = max(maxPosDiff, posDiff)
maxOrientDiff = max(maxOrientDiff, orientDiff)
if maxPosDiff < 0.0001 and maxOrientDiff < 0.001 and t > 10:
stable += 1
else:
stable = 0
action['render'] = slow
if stable > 19:
action['render'] = True
if stable > 20:
still = True
break
pos_dict = {}
for obj in objects:
pos_dict[obj] = env.get_obj_pose(obj)
print("Exiting environment after {} timesteps..".format(t))
if not still:
print("Failed because maxPosDiff:{:.6f},"
"maxOrientDiff:{:.6f}".format(maxPosDiff, maxOrientDiff))
return observation['retina'], pos_dict, not still, t, observation['mask']
class Position:
def __init__(self, start_state=None, fixed_state=None, retina=None, mask=None):
self.start_state = start_state
self.fixed_state = fixed_state
self.retina = retina
self.mask = mask
def generatePosition(env, obj, fixed=False, tablePlane=None):
if tablePlane is None:
min_x = -.25
max_x = .25
elif tablePlane:
min_x = -.25
max_x = .05
else:
min_x = .10
max_x = .25
min_y = -.45
max_y = .45
x = np.random.rand()*(max_x-min_x)+min_x
y = np.random.rand()*(max_y-min_y)+min_y
if x <= 0.05:
z = 0.40
else:
z = 0.50
if fixed:
orientation = basePosition[obj][3:]
else:
orientation = (np.random.rand(3)*math.pi*2).tolist()
orientation = env._p.getQuaternionFromEuler(orientation)
pose = [x, y, z] + np.array(orientation).tolist()
return pose
def generateRealPosition(env, startPositions):
env.reset()
runEnv(env)
# Generate Images
for obj in startPositions:
pos = startPositions[obj]
env.robot.object_bodies[obj].reset_pose(pos[:3], pos[3:])
actual_image, actual_position, failed, it, mask = runEnv(env)
return actual_image, actual_position, failed, it, mask
def checkMinSeparation(state):
positions = np.vstack([state[obj][:3] for obj in state])
if len(positions) > 1:
distances = pairwise_distances(positions)
clearance = distances[distances > 0].min()
else:
clearance = np.inf
return clearance
def drawPosition(env, fixedOrientation=False, fixedObjects=[],
fixedPositions=None, minSeparation=0, objOnTable=None):
failed = True
while failed:
# skip 1st object, i.e the table
objects = env.robot.used_objects[1:]
position = Position()
startPositions = {}
for obj in fixedObjects:
startPositions[obj] = fixedPositions[obj]
for obj in np.random.permutation(objects):
if obj in fixedObjects:
continue
while True:
table = None
if objOnTable is not None:
if obj in objOnTable:
table = objOnTable[obj]
startPose = generatePosition(env, obj,
fixedOrientation,
tablePlane=table)
startPositions[obj] = startPose
if len(startPositions) == 1:
break
clearance = checkMinSeparation(startPositions)
if clearance >= minSeparation:
break
print("Failed minimum separation ({}), draw again {}.."
.format(clearance, obj))
(a, p, f, it, m) = generateRealPosition(env, startPositions)
actual_image = a
actual_mask = m
actual_position = p
failed = f
if failed:
print("Failed image generation...")
continue
clearance = checkMinSeparation(actual_position)
if clearance < minSeparation:
failed = True
print("Failed minimum separation ({}) after real generation, "
"draw again everything..".format(clearance))
continue
if fixedOrientation:
for obj in objects:
q1 = startPositions[obj][3:]
q2 = actual_position[obj][3:]
orientDiff = min(np.linalg.norm(q1 - q2),
np.linalg.norm(q1+q2))
# TODO CHECK This - we had to rise it many times
failed = failed or orientDiff > 0.041
if failed:
print("{} changed orientation by {}"
.format(obj, orientDiff))
break
else:
print("{} kept orientation.".format(obj))
if failed:
print("Failed to keep orientation...")
continue
for obj in fixedObjects:
posDiff = np.linalg.norm(startPositions[obj][:3] -
actual_position[obj][:3])
q1 = startPositions[obj][3:]
q2 = actual_position[obj][3:]
orientDiff = min(np.linalg.norm(q1 - q2), np.linalg.norm(q1+q2))
failed = failed or posDiff > 0.002 or orientDiff > 0.041
if failed:
print("{} changed pos by {} and orientation by {}"
.format(obj, posDiff, orientDiff))
print(startPositions[obj])
print(actual_position[obj])
break
if failed:
print("Failed to keep objects fixed...")
continue
position.start_state = startPositions
position.fixed_state = actual_position
position.retina = actual_image
position.mask = actual_mask
return position
def checkRepeatability(env, goals):
maxDiffPos = 0
maxDiffOr = 0
for goal in goals:
_, pos, failed, _, _ = generateRealPosition(env, goal.initial_state)
objects = [o for o in goal.initial_state]
p0 = np.vstack([goal.initial_state[o] for o in objects])
p1 = np.vstack([pos[o] for o in objects])
diffPos = np.linalg.norm(p1[:, :3]-p0[:, :3])
diffOr = min(np.linalg.norm(p1[:, 3:]-p0[:, 3:]),
np.linalg.norm(p1[:, 3:]+p0[:, 3:]))
maxDiffPos = max(maxDiffPos, diffPos)
maxDiffOr = max(maxDiffPos, diffOr)
print("Replicated diffPos:{} diffOr:{}".format(diffPos, diffOr))
if failed:
print("*****************FAILED************!!!!")
return 1000000
return maxDiffPos, maxDiffOr
def isOnShelf(obj, state):
z = state[obj][2]
if obj == 'cube' and z > 0.55 - 0.15:
return True
if obj == 'orange' and z > 0.55 - 0.15:
return True
if obj == 'tomato' and z > 0.55 - 0.15:
return True
if obj == 'mustard' and z > 0.545 - 0.15:
return True
return False
def isOnTable(obj, state):
z = state[obj][2]
if obj == 'cube' and z < 0.48 - 0.15:
return True
if obj == 'orange' and z < 0.48 - 0.15:
return True
if obj == 'tomato' and z < 0.49 - 0.15:
return True
if obj == 'mustard' and z < 0.48 - 0.15:
return True
return False
def generateGoalREAL2020(env, n_obj, goal_type, on_shelf=False, min_start_goal_dist=0.1, min_objects_dist=0.05, max_objects_dist=2):
print("Generating GOAL..")
objOnTable = None
if not on_shelf:
objects = env.robot.used_objects[1:]
objOnTable = {}
for obj in objects:
objOnTable[obj] = True
if goal_type == '3D':
fixedOrientation = False
else:
fixedOrientation = True
found = False
while not(found):
initial = drawPosition(env, fixedOrientation=fixedOrientation, objOnTable=objOnTable, minSeparation=min_objects_dist)
found = True
# checks whether at least two objects are close together as specified in max_objects_dist
if n_obj == 1:
at_least_two_near_objects = True
else:
at_least_two_near_objects = False
for obj1 in initial.fixed_state.keys():
for obj2 in initial.fixed_state.keys():
if obj1 == obj2:
continue
if np.linalg.norm(initial.fixed_state[obj1][:3]-initial.fixed_state[obj2][:3]) <= max_objects_dist or goal_type != '3D' or len(initial.fixed_state.keys()) == 1:
at_least_two_near_objects = True
break
if at_least_two_near_objects:
break
# checks if at least one object is on the table
at_least_one_on_shelf = False
for obj in initial.fixed_state.keys():
if isOnShelf(obj, initial.fixed_state) or goal_type == '2D':
at_least_one_on_shelf = True
break
found = False
while not(found):
found = True
final = drawPosition(env, fixedOrientation=fixedOrientation, objOnTable=objOnTable, minSeparation=min_objects_dist)
# checks whether at least two objects are close together as specified in max_objects_dist. This only if in the initial positions it is not true
if not at_least_two_near_objects:
found = False
for obj1 in final.fixed_state.keys():
for obj2 in final.fixed_state.keys():
if obj1 == obj2:
continue
if np.linalg.norm(final.fixed_state[obj1][:3]-final.fixed_state[obj2][:3]) <= max_objects_dist:
found = True
break
if found:
break
# checks if at least one object is on the table. This only if in the initial positions it is not true
if found and not at_least_one_on_shelf:
found = False
for obj in final.fixed_state.keys():
if isOnShelf(obj, final.fixed_state):
found = True
break
# checks if the distance between initial and final positions of the objects is at least how much specified in min_start_goal_dist
for obj in final.fixed_state.keys():
if min_start_goal_dist > np.linalg.norm(final.fixed_state[obj][:2]-initial.fixed_state[obj][:2]):
found = False
break
goal = Goal()
goal.challenge = goal_type
goal.subtype = str(n_obj)
goal.initial_state = initial.fixed_state
goal.final_state = final.fixed_state
goal.retina_before = initial.retina
goal.retina = final.retina
goal.mask = final.mask
print("SUCCESSFULL generation of GOAL {}!".format(goal_type))
return goal
def visualizeGoalDistribution(all_goals, images=True):
import matplotlib.pyplot as plt
challenges = np.unique([goal.challenge for goal in all_goals])
fig, axes = plt.subplots(max(2, len(challenges)), 3)
for c, challenge in enumerate(challenges):
goals = [goal for goal in all_goals if goal.challenge == challenge]
if len(goals) > 0:
if images:
# Superimposed images view
tomatos = sum([goal.mask == 2 for goal in goals])
mustards = sum([goal.mask == 3 for goal in goals])
cubes = sum([goal.mask == 4 for goal in goals])
axes[c, 0].imshow(tomatos, cmap='gray')
axes[c, 1].imshow(mustards, cmap='gray')
axes[c, 2].imshow(cubes, cmap='gray')
else:
# Positions scatter view
for i, o in enumerate(goals[0].final_state.keys()):
positions = np.vstack([goal.final_state[o] for goal in goals])
axes[c, i].set_title("{} {}".format(o, challenge))
axes[c, i].hist2d(positions[:, 0], positions[:, 1])
axes[c, i].set_xlim([-0.3, 0.3])
axes[c, i].set_ylim([-0.6, 0.6])
plt.show()
@click.command()
@click.option('--seed', type=int,
help='Generate goals using this SEED for numpy.random')
@click.option('--n_2d_goals', type=int, default=25,
help='# of 2D goals (default 25)')
@click.option('--n_25d_goals', type=int, default=15,
help='# of 2.5D goals (default 15)')
@click.option('--n_3d_goals', type=int, default=10,
help='# of 3D goals (default 10)')
@click.option('--n_obj', type=int, default=3,
help='# of objects (default 3)')
def main(seed=None, n_2d_goals=25, n_25d_goals=15, n_3d_goals=10, n_obj=3):
"""
Generates the specified number of goals
and saves them in a file.\n
The file is called goals-REAL2020-s{}-{}-{}-{}-{}.npy.npz
where enclosed brackets are replaced with the
supplied options (seed, n_2d_goals, n_25d_goals, n_3d_goals, n_obj)
or the default value.
"""
np.random.seed(seed)
allgoals = []
env = gym.make('REALRobot2020-R1J{}-v0'.format(n_obj))
if render:
env.render('human')
env.reset()
global basePosition
_, basePosition, _, _, _ = runEnv(env)
# In these for loops, we could add some progress bar...
for _ in range(n_2d_goals):
allgoals += [generateGoalREAL2020(env, n_obj, "2D", on_shelf=False, min_start_goal_dist=0.2, min_objects_dist=0.25)]
for _ in range(n_25d_goals):
allgoals += [generateGoalREAL2020(env, n_obj, "2.5D", on_shelf=True, min_start_goal_dist=0.2, min_objects_dist=0.25)]
for _ in range(n_3d_goals):
allgoals += [generateGoalREAL2020(env, n_obj, "3D", on_shelf=True, min_start_goal_dist=0.2, min_objects_dist=0)]
np.savez_compressed('goals-REAL2020-s{}-{}-{}-{}-{}.npy'
.format(seed, n_2d_goals, n_25d_goals, n_3d_goals, n_obj), allgoals)
checkRepeatability(env, allgoals)
visualizeGoalDistribution(allgoals)
if __name__ == "__main__":
main()
| 2.46875 | 2 |
tools/objects/object_gen.py | andyc655/gunyah-hypervisor | 61 | 12799688 | <gh_stars>10-100
#!/usr/bin/env python3
#
# © 2021 Qualcomm Innovation Center, Inc. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
from Cheetah.Template import Template
import argparse
import subprocess
import sys
class Object:
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
def type_enum(self):
return "OBJECT_TYPE_{:s}".format(self.name.upper())
def rcu_destroy_enum(self):
return "RCU_UPDATE_CLASS_{:s}_DESTROY".format(self.name.upper())
def main():
args = argparse.ArgumentParser()
mode_args = args.add_mutually_exclusive_group(required=True)
mode_args.add_argument('-t', '--template',
type=argparse.FileType('r', encoding="utf-8"),
help="Template file used to generate output")
args.add_argument('-o', '--output',
type=argparse.FileType('w', encoding="utf-8"),
default=sys.stdout, help="Write output to file")
args.add_argument("-f", "--formatter",
help="specify clang-format to format the code")
args.add_argument('input', metavar='INPUT', nargs='+', action='append',
help="List of objects to process")
options = args.parse_args()
object_list = [Object(o) for group in options.input for o in group]
output = "// Automatically generated. Do not modify.\n"
output += "\n"
ns = {'object_list': object_list}
output += str(Template(file=options.template, searchList=ns))
if options.formatter:
ret = subprocess.run([options.formatter], input=output.encode("utf-8"),
stdout=subprocess.PIPE)
output = ret.stdout.decode("utf-8")
if ret.returncode != 0:
raise Exception("failed to format output:\n ", ret.stderr)
options.output.write(output)
if __name__ == '__main__':
main()
| 2.265625 | 2 |
main.py | bichu136/svgrasterize.py | 0 | 12799689 | import os
import argparse
from svgrasterize import *
import numpy as np
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
parser = argparse.ArgumentParser()
parser.add_argument("svg", help="input SVG file")
parser.add_argument("output", help="output PNG file")
parser.add_argument("-bg", type=svg_color, help="set default background color")
parser.add_argument("-fg", type=svg_color, help="set default foreground color")
parser.add_argument("-w", "--width", type=int, help="output width")
parser.add_argument("-id", help="render single element with specified `id`")
parser.add_argument(
"-t", "--transform", type=svg_transform, help="apply additional transformation"
)
parser.add_argument("--linear-rgb", action="store_true", help="use linear RGB for rendering")
parser.add_argument("--fonts", nargs="*", help="paths to SVG files containing all fonts")
opts = parser.parse_args()
if not os.path.exists(opts.svg):
sys.stderr.write(f"[error] file does not exsits: {opts.svg}\n")
sys.exit(1)
fonts = FontsDB()
for font in opts.fonts or [DEFAULT_FONTS]:
fonts.register_file(font)
transform = Transform().matrix(0, 1, 0, 1, 0, 0)
if opts.transform:
transform @= opts.transform
if opts.svg.endswith(".path"):
path = Path.from_svg(open(opts.svg).read())
print(path,"\n")
opts.bg = svg_color("white") if opts.bg is None else opts.bg
opts.fg = svg_color("black") if opts.fg is None else opts.fg
scene = Scene.fill(path, opts.fg)
ids, size = {}, None
else:
scene, ids, size = svg_scene_from_filepath(
opts.svg, fg=opts.fg, width=opts.width, fonts=fonts
)
if scene is None:
sys.stderr.write("[error] nothing to render\n")
else:
pass
if opts.id is not None:
size = None
scene = ids.get(opts.id)
if scene is None:
sys.stderr.write(f"[error] no object with id: {opts.id}\n")
sys.exit(1)
start = time.time()
if size is not None:
w, h = size
result = scene.render(
transform, viewport=[0, 0, int(h), int(w)], linear_rgb=opts.linear_rgb
)
else:
result = scene.render(transform, linear_rgb=opts.linear_rgb)
stop = time.time()
sys.stderr.write("[info] rendered in {:.2f}\n".format(stop - start))
sys.stderr.flush()
if result is None:
sys.stderr.write("[error] nothing to render\n")
sys.exit(1)
output, _convex_hull = result
if size is not None:
w, h = size
output = output.convert(pre_alpha=True, linear_rgb=opts.linear_rgb)
base = np.zeros((int(h), int(w), 4), dtype=FLOAT)
image = canvas_merge_at(base, output.image, output.offset)
output = Layer(image, (0, 0), pre_alpha=True, linear_rgb=opts.linear_rgb)
if opts.bg is not None:
output = output.background(opts.bg)
filename = opts.output if opts.output != "-" else 1
closefd = opts.output != "-"
with open(filename, "wb", closefd=closefd) as file:
output.write_png(file)
#path.fill trả về vùng ảnh, offset của ảnh lớn.
#hàm gộp là Layer.compose trả về vùng ảnh và offset, trả về ảnh lớn nhất.
# canvas_compose cho biết cách mà blend tam giác vào ảnh.
# blend của hàm canvas_merge_union là canvas_compose truyền vào tham số đầu tiên, Mặc định là COMPOSE_OVER
# Path.mask trả về mass của tam giác. bên trong tam giác là 1, ngoài tam giác là 0
# còn các cạnh của tam giác sẽ được là có giá trị trong khoảng từ 0 đến 1.
# còn trả về offset nữa.
| 2.84375 | 3 |
bin/train_lm.py | mcharnelli/DenoiseSum | 0 | 12799690 | <gh_stars>0
import argparse
from DenoiseSum import DATA_PATH
from DenoiseSum.LanguageModel.training import train_language_model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='rotten', type=str)
parser.add_argument('--no_instance', default=40, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--word_dim', default=300, type=int)
parser.add_argument('--hidden_dim', default=512, type=int)
parser.add_argument('--disc_size', default=50, type=int)
parser.add_argument('--num_epoch', default=20, type=int)
parser.add_argument('--eval_every', default=2500, type=int)
parser.add_argument('--stop_after', default=5, type=int)
parser.add_argument('--train_file', default='reviews_large_train.csv', type=str)
parser.add_argument('--dev_file', default='reviews_large_validation.csv', type=str)
parser.add_argument('--test_file', default='reviews_large_test.csv', type=str)
parser.add_argument('--replace_word_dict', default='False', type=str)
parser.add_argument('--retrain_model', default='False', type=str)
parser.add_argument('--model_file', default='lm.model', type=str)
parser.add_argument('--sos', default=2, type=int)
parser.add_argument('--eos', default=3, type=int)
parser.add_argument('--coverage_rate', default=0, type=int)
args = parser.parse_args()
args.train_file = DATA_PATH / args.dataset / args.train_file
args.dev_file = DATA_PATH / args.dataset / args.dev_file
args.test_file = DATA_PATH / args.dataset / args.test_file
if args.replace_word_dict == 'False':
args.replace_word_dict = False
else:
args.replace_word_dict = True
if args.retrain_model == 'False':
args.retrain_model = False
else:
args.retrain_model = True
(DATA_PATH / 'model' / args.dataset).mkdir(parents = True, exist_ok=True)
args.model_file = DATA_PATH / 'model' / args.dataset / args.model_file
train_language_model(args)
| 2.203125 | 2 |
test/test_head.py | zydmayday/pamda | 1 | 12799691 | import unittest
import ramda as R
"""
https://github.com/ramda/ramda/blob/master/test/head.js
"""
class TestHead(unittest.TestCase):
def test_returns_the_first_element_of_an_ordered_collection(self):
self.assertEqual(1, R.head([1, 2, 3]))
self.assertEqual(2, R.head([2, 3]))
self.assertEqual(3, R.head([3]))
self.assertEqual(None, R.head([]))
self.assertEqual('a', R.head('abc'))
self.assertEqual('b', R.head('bc'))
self.assertEqual('c', R.head('c'))
self.assertEqual('', R.head(''))
def test_throws_if_applied_to_None(self):
with self.assertRaises(TypeError):
R.head(None)
if __name__ == '__main__':
unittest.main()
| 3.375 | 3 |
exhaust/urls.py | lewiscollard/exhaust | 0 | 12799692 | from django.conf import settings
from django.conf.urls.static import static
from django.contrib import admin
from django.contrib.sitemaps.views import sitemap
from django.urls import include, path
from django.views.generic import TemplateView
from markdownx.views import MarkdownifyView
from exhaust.posts.sitemaps import POSTS_SITE_MAPS
urlpatterns = [
path('', include('exhaust.posts.urls', namespace='posts')),
path('exogram/', include('exhaust.exogram.urls', namespace='exogram')),
path('robots.txt', TemplateView.as_view(template_name='robots.txt', content_type='text/plain')),
path('admin/', admin.site.urls),
path('markdownx/markdownify/', MarkdownifyView.as_view(), name='markdownx_markdownify'),
path('sitemap.xml', sitemap, {'sitemaps': POSTS_SITE_MAPS}, name='django.contrib.sitemaps.views.sitemap'),
# Error page styling tests. It's OK to have these outside of DEBUG (if
# someone wants to pretend they're having a 500 they're more than welcome
# to). It means there's one less branch to test in settings.
path('404/', TemplateView.as_view(template_name='404.html')),
path('500/', TemplateView.as_view(template_name='500.html')),
] + static(
settings.MEDIA_URL, document_root=settings.MEDIA_ROOT
) + static(
settings.STATIC_URL, document_root=settings.STATIC_ROOT
)
| 2.140625 | 2 |
Python3/tests/test_key.py | combofish/chips-get | 2 | 12799693 | <filename>Python3/tests/test_key.py<gh_stars>1-10
import unittest
class TeskKey(unittest.TestCase):
def test_key(self):
a = ['a', 'b']
b = ['b']
self.assertEqual(a,b)
| 2.765625 | 3 |
src/quakestats/system/context.py | LaudateCorpus1/quakestats | 21 | 12799694 | import logging
import pymongo
from quakestats.datasource.mongo2 import (
DataStoreMongo,
)
from quakestats.system import (
conf,
)
logger = logging.getLogger(__name__)
class SystemContext:
def __init__(self):
self.config = conf.cnf
self.ds: DataStoreMongo = None
self.ds_client: pymongo.MongoClient = None
self.configure()
def configure(self):
uri = conf.get_conf_val('MONGO_URI')
self.ds_client = pymongo.MongoClient(uri)
parsed_uri = pymongo.uri_parser.parse_uri(uri)
database_name = parsed_uri["database"]
self.ds = DataStoreMongo(self.ds_client.get_database(database_name))
| 2.421875 | 2 |
keys.py | Hudson-AmalembaL/daraja_mpesa_api | 0 | 12799695 | business_shortCode = "174379"
phone_number = "254746468686"
lipa_na_mpesa_passkey = "<KEY>"
consumer_key = "ryHq5u8TIFcyps7lIYQThAP1Al0zXAcU"
consumer_secrete = "O9kOqvHmN5sGViKI " | 1.015625 | 1 |
helper.py | Ellectronx/wsb-oceny | 5 | 12799696 |
import smtplib
from email.message import EmailMessage
from credent import secret
tb_headers=["id","przedmiot","wykladowca","forma_zaliczenia","rodz_zajec","ocena1","data1","ocena2","data2"]
def sendEmail(subject,eml_from,eml_to,message):
msg = EmailMessage()
msg.set_content(message)
msg['Subject'] = subject
msg['From'] = eml_from
msg['To'] = eml_to
# Send the message via SMTP server.
print("SENDING INFO EMAIL...")
try:
server = smtplib.SMTP(secret["smtp_host"], secret["smtp_port"])
server.ehlo()
server.login(secret["smtp_login"], secret["smtp_password"])
server.send_message(msg)
server.quit()
print("SENDING OK!")
except:
#raise
print("...sending email: somethin went wrong:(")
def preetyGrade(grade):
if grade=="-":
return "brak"
else:
return str(grade)
def compareT(T1,T2): #T1,T2 krotka z wierszem z bazy danych (wiersz tabeli z ocenami starymi/nowymi)
lenT1 = len(T1)
lenT2 = len(T2)
if lenT1!=9 and lenT2!=9:
return {"private":"Błąd E1. Nieodpowiednia ilość kolumn. Być może zmeniła się struktura strony źródłowej ?!","public":""}
if lenT2 > lenT1 and lenT1==0:
return {"private":"Dopisano nowy przedmiot: "+T2[1],"public":""}
if lenT1 == lenT2 and lenT1 == 9:
zm=""
L = len(T1)
for i in range(0,L):
if(T1[i]!=T2[i]):
zm = zm +"\r\nZmiana "+tb_headers[i]+" z "+preetyGrade(T1[i])+" na "+preetyGrade(T2[i])+", "
if len(zm)>1:
zm = zm[:-2]
return {"private":"Przedmiot: "+T1[1]+" ("+T1[3]+", "+T1[2]+")"+zm, "public":"Możliwa nowe oceny z przedmiotu: "+T1[1]+" ("+T1[3]+", "+T1[2]+") [powiadomienie automatyczne, grupa WZ_INiN3_PG2]"}
return {"private":"Nieokreślony błąd. Być moze załadowane zostały przedmioty z nowego semestru lub zmeniła się struktura strony źródłowej ?!","public":""}
| 3.0625 | 3 |
treestruct/__init__.py | srafehi/treestruct | 0 | 12799697 | from collections import MutableSet
from . import helpers
FORWARD = 1 # used to look at Node children
BACKWARD = -1 # used to look at Node parents
class NodeSet(MutableSet):
"""
A mutable set which automatically populates parent/child node sets.
For example, if this NodeSet contains `children` nodes and a new node was added, that
node's `parent` NodeSet will automatically be populated with the owner of this NodeSet.
"""
__slots__ = ('owner', 'items', 'direction')
def __init__(self, owner, items, direction):
"""
:type owner: Node
:type items: set[Node]
:type direction: int
"""
self.owner = owner
self.items = set()
self.direction = direction
self.update(items)
def __iter__(self):
return iter(self.items)
def __len__(self):
return len(self.items)
def add(self, value):
"""
Adds the node to this NodeSet and populates the node's NodeSet with the owner
of this NodeSet.
:type value: Node
"""
if value not in self:
value.direction(self.direction * -1).items.add(self.owner)
return self.items.add(value)
def discard(self, value):
"""
Removes the node from this NodeSet and removes this NodeSet's owner from the
node's NodeSets.
:type value: Node
"""
if value in self:
value.direction(self.direction * -1).items.discard(self.owner)
return self.items.discard(value)
def update(self, nodes):
for node in nodes:
self.add(node)
def discard_many(self, nodes):
for node in nodes:
self.discard(node)
def one(self, raise_on_empty=False):
"""
Returns an item from this NodeSet if there is only one item.
:type raise_on_empty: bool
:rtype: Node | None
:raises: ValueError
"""
if not self.items and raise_on_empty:
raise ValueError('Called NodeSet.one on empty set')
elif len(self.items) > 1:
raise ValueError('Called NodeSet.one on set with multiple values')
return next(iter(self.items), None)
def __contains__(self, x):
return self.items.__contains__(x)
def __repr__(self):
return 'NodeSet{}'.format(tuple(self.items))
class Node(object):
__slots__ = ('parents', 'children', 'data')
def __init__(self, data=None, parents=None, children=None):
self.parents = NodeSet(self, [] if parents is None else parents, BACKWARD)
self.children = NodeSet(self, [] if children is None else children, FORWARD)
self.data = data
def __repr__(self):
return '<{} {}>'.format(type(self).__name__, self.data)
@property
def connections(self):
"""
Returns all parents and children associated with this Node.
:rtype: set[Node]
"""
return set(list(self.parents) + list(self.children))
def direction(self, direction):
"""
Returns this node's parents if direction is BACKWARD, else, returns children nodes.
:int direction: int
:rtype: NodeSet
"""
return self.parents if direction == BACKWARD else self.children
def depth_first_traversal(self, callback, direction, obj=None):
"""
Executes a depth-first traversal from this node in a given direction. Raising
a StopIteration will terminate the traversal.
:type callback: (Node, object) -> ()
:type direction: int
:type obj: Any
:return: Returns `obj` (or None if no `obj` is supplied).
:rtype: Any
"""
return helpers.depth_first_traversal_for_node(node=self, callback=callback, direction=direction, obj=obj)
def breadth_first_traversal(self, callback, direction, obj=None):
"""
Executes a breadth-first traversal from this node in a given direction. Raising
a StopIteration will terminate the traversal.
:type callback: (Node, object) -> ()
:type direction: int
:type obj: Any
:return: Returns `obj` (or None if no `obj` is supplied).
:rtype: Any
"""
return helpers.breadth_first_traversal_for_node(node=self, callback=callback, direction=direction, obj=obj)
def walk_links(self, callback, direction, obj=None):
"""
Walks the each link for this node. Raising a StopIteration will terminate the
traversal.
:type callback: (Node, Node, object) -> ()
:type direction: int
:type obj: Any
:return: Returns `obj` (or None if no `obj` is supplied).
:rtype: Any
"""
return helpers.walk_links_for_node(node=self, callback=callback, direction=direction, obj=obj)
def root(self):
"""
Returns the root node of this node if it only has one root node.
:rtype: Node
:raises: ValueError
"""
roots = self.roots()
if len(roots) > 1:
raise ValueError('Node.root is not applicable when the node has multiple roots')
return next(iter(roots))
def gather_nodes(self, direction=None):
"""
Returns all nodes in the tree. Nodes can be restricted by specifying a direction.
:type direction: int
:rtype: set[Node]
"""
return helpers.gather_nodes(node=self, direction=direction)
def flatten(self, direction=None):
"""
Returns a list of node lists representing a path on the tree.
:type direction: int | None
:rtype: list[list[treestruct.Node]]
"""
return helpers.flatten_from_node(node=self, direction=direction)
def roots(self):
"""
Returns all roots (any parent nodes with no parents) of this node.
:rtype: set[Node]
"""
return helpers.roots_for_node(node=self)
def leaves(self):
"""
Returns all leaves (any child nodes with no children) of this node.
:rtype: set[Node]
"""
return helpers.leaves_for_node(node=self)
def delete(self, direction=None):
"""
Removes this node from the NodeSets of connected nodes. If direction is
given, only remove the node from the connected nodes in the given direction.
:type direction: int
:rtype: Node
"""
return helpers.delete_node_relationships(node=self, direction=direction)
def clone(self):
"""
Clones the node and all its child nodes and forms a new root.
:rtype: Node
"""
return helpers.clone_subtree(node=self, cls=type(self))
def find_all(self, condition, direction=None):
"""
Returns all nodes which match the given condition.
:type condition: (Node) -> bool
:type direction: int
:rtype: set[Node]
"""
return helpers.find_nodes(node=self, condition=condition, direction=direction)
def find(self, condition, direction=None, raise_on_empty=False):
"""
Returns a single node which matches the given condition.
:type condition: (Node) -> bool
:type direction: int
:type raise_on_empty: bool
:rtype: Node | None
:raises: ValueError
"""
return helpers.find_node(node=self, condition=condition, direction=direction, raise_on_empty=raise_on_empty)
def to_dict(self, data_converter=None):
"""
Converts this node's complete structure into a dictionary.
:type data_converter: (Any) -> (Any) | None
:rtype: list[dict]
"""
return helpers.to_dict_from_node(node=self, data_converter=data_converter)
@classmethod
def from_dict(cls, tree_dict, data_converter=None):
"""
Converts a dict into a tree of Nodes, with the return value being the
root node.
:param tree_dict: dict
:type data_converter: (Any) -> (Any) | None
:rtype: Node
"""
return helpers.from_dict(tree_dict=tree_dict, data_converter=data_converter, cls=cls)
@classmethod
def from_nodes(cls, nodes):
"""
Creates a flat tree structure from a list of nodes. It is assumed that the first Node
in the list is the root and each subsequent Node is a child. Any existing parents or
children will be disregarded.
:type nodes: collections.Sequence[Node]
:rtype: Node
"""
return helpers.node_from_node_sequence(nodes=nodes, cls=cls)
| 3.921875 | 4 |
pyresx/__init__.py | cola314/pyresx | 3 | 12799698 | <reponame>cola314/pyresx
from pyresx.ResXWriter import ResXWriter
| 1.0625 | 1 |
tests/test_connect.py | chdean/usajobs | 2 | 12799699 | <gh_stars>1-10
import usajobs
import pytest
def test_connect():
email, apikey = 'email', 'apikey'
headers = usajobs.connect(email=email, apikey=apikey)
assert headers == {'Host': 'data.usajobs.gov',
'User-Agent': 'email',
'Authorization-Key': 'apikey'}
| 1.992188 | 2 |
indra_world/sources/__init__.py | yanzv/indra_world | 3 | 12799700 | import tqdm
import pickle
import logging
import functools
from typing import List, Mapping, Optional
from multiprocessing import Pool
from indra.statements import Statement
from indra_world.sources import eidos, hume, sofia
logger = logging.getLogger(__name__)
def _reader_wrapper(fname, reader, dart_ids=None, **kwargs):
if reader == 'eidos':
pr = eidos.process_json_file(fname, **kwargs)
pr.doc.tree = None
elif reader == 'sofia':
pr = sofia.process_json_file(fname, **kwargs)
elif reader == 'hume':
pr = hume.process_jsonld_file(fname, **kwargs)
if dart_ids:
dart_id = dart_ids.get(fname)
for stmt in pr.statements:
for ev in stmt.evidence:
ev.text_refs['DART'] = dart_id
return pr.statements
def process_reader_outputs(fnames: List[str],
reader: str,
dart_ids: Mapping[str, str] = None,
extract_filter: List[str] = None,
grounding_mode: str = 'compositional',
nproc: int = 8,
output_pkl: str = None) -> List[Statement]:
"""Process a set of reader outputs in parallel.
Parameters
----------
fnames :
The list of file paths to the reader outputs to be processed.
reader :
The name of the reader which produced the outputs.
dart_ids :
A dict which maps each fname in the fnames list to a DART document ID.
These are then set in the evidences of statements exxtracted from
the output.
extract_filter :
What types of statements to extract.
grounding_mode :
The type of grounding mode to use for processing.
nproc :
The number of workers to use for parallelization.
output_pkl :
The path to an output pickle file in which to dump the statements
extracted from the outputs.
Returns
-------
:
The list of statements extracted from the outputs.
"""
if extract_filter is None:
extract_filter = ['influence']
pool = Pool(nproc)
chunk_size = 10
process_fun = functools.partial(_reader_wrapper,
reader=reader, dart_ids=dart_ids,
extract_filter=extract_filter,
grounding_mode=grounding_mode)
stmts = []
for res in tqdm.tqdm(pool.imap_unordered(process_fun, fnames,
chunksize=chunk_size),
total=len(fnames)):
stmts += res
logger.debug('Closing pool...')
pool.close()
logger.debug('Joining pool...')
pool.join()
logger.info('Pool closed and joined.')
if output_pkl:
logger.info(f'Writing into {output_pkl}')
with open(output_pkl, 'wb') as fh:
pickle.dump(stmts, fh)
return stmts | 2.265625 | 2 |
megawidget/confirmation/__init__.py | pyrustic/megawidget | 0 | 12799701 | <reponame>pyrustic/megawidget<gh_stars>0
import tkinter as tk
import tkutil
from viewable import Viewable, CustomView
from tkutil import merge_megaconfig
# parts
BODY = "body"
LABEL_HEADER = "label_header"
LABEL_MESSAGE = "label_message"
FRAME_FOOTER = "frame_footer"
BUTTON_CANCEL = "button_cancel"
BUTTON_CONFIRM = "button_confirm"
class Confirmation(tk.Toplevel):
"""
Confirmation is a dialog box to ask the user to confirm an action.
Example:
import tkinter as tk
from megawidget import Confirmation
def my_handler(result):
print(result)
root = tk.Tk()
confirmation = Confirmation(root, title="Confirmation", header="Confirmation",
message="Do you really want to continue ?",
handler=my_handler)
confirmation.build()
root.mainloop()
"""
def __init__(self,
master=None,
title=None,
header=None,
message=None,
on_close=None,
geometry=None,
megaconfig=None):
"""
PARAMETERS:
- master: widget parent. Example: an instance of tk.Frame
- title: title of dialog box
- header: the text to show as header
- message: the text to show as message
- handler: a callback to be executed immediately after closing the dialog box.
This callback should accept a boolean positional argument.
True means Ok, confirmed.
- geometry: str, as the dialog box is a toplevel (BODY),
you can edit its geometry. Example: "500x300"
- options: dictionary of widgets options
The widgets keys are: BODY, LABEL_HEADER,
LABEL_MESSAGE, FRAME_FOOTER, BUTTON_CANCEL, BUTTON_CONFIRM.
Example: Assume that you want to set the LABEL_MESSAGE's background to black
and the BODY's background to red:
options = { BODY: {"background": "red"},
LABEL_MESSAGE: {"background": "black"} }
"""
self.__megaconfig = merge_megaconfig(secondary=megaconfig)
super().__init__(master=master,
class_="Confirmation",
cnf=self.__megaconfig.get(BODY))
self.__title = title
self.__header = header
self.__message = message
self.__on_close = on_close
self.__geometry = geometry
self.__parts = {}
self.__ok = False
# build
self.__setup()
# ====================================
# PROPERTIES
# ====================================
@property
def header(self):
return self.__header
@property
def message(self):
return self.__message
@property
def on_close(self):
return self.__on_close
@property
def ok(self):
"""
Returns True if user confirmed, else get False
"""
return self.__ok
@property
def parts(self):
"""
Get the parts (widgets instances) used to build this dialog.
This property returns a dict. The keys are:
BODY, LABEL_HEADER,
LABEL_MESSAGE, FRAME_FOOTER, BUTTON_CANCEL, BUTTON_CONFIRM
Warning: check the presence of key before usage
"""
return self.__parts
# ====================================
# INTERNAL
# ====================================
def __setup(self):
custom_view = CustomView(body=self,
builder=self.__build,
on_map=self.__on_map,
on_destroy=self.__on_destroy)
return custom_view.build()
def __build(self):
self.title(self.__title)
self.resizable(0, 0)
#
#
if self.__geometry:
self.geometry(self.__geometry)
#
if self.__header:
label_header = tk.Label(self,
text=self.__header,
anchor="w",
justify=tk.LEFT,
name=LABEL_HEADER,
cnf=self.__megaconfig.get(LABEL_HEADER))
self.__parts[LABEL_HEADER] = label_header
label_header.pack(fill=tk.X, expand=1, anchor="w", pady=5, padx=5)
#
if self.__message:
label_message = tk.Label(self,
name=LABEL_MESSAGE,
text=self.__message,
anchor="w",
justify=tk.LEFT,
cnf=self.__megaconfig.get(LABEL_MESSAGE))
self.__parts[LABEL_MESSAGE] = label_message
label_message.pack(fill=tk.BOTH,
expand=1, padx=5, pady=(5, 10))
#
frame_footer = tk.Frame(self, cnf=self.__megaconfig.get(FRAME_FOOTER))
self.__parts[FRAME_FOOTER] = frame_footer
frame_footer.pack(anchor="e", pady=(0, 2), padx=2)
#
button_confirm = tk.Button(frame_footer,
text="Confirmation",
name=BUTTON_CONFIRM,
command=self.__on_click_confirm,
cnf=self.__megaconfig.get(BUTTON_CONFIRM))
self.__parts[BUTTON_CONFIRM] = button_confirm
button_confirm.pack(side=tk.RIGHT)
#
button_cancel = tk.Button(frame_footer,
text="Cancel",
name=BUTTON_CANCEL,
command=self.__on_click_cancel,
cnf=self.__megaconfig.get(BUTTON_CANCEL))
self.__parts[BUTTON_CANCEL] = button_cancel
button_cancel.pack(side=tk.RIGHT, padx=(0, 2))
def __on_map(self):
tkutil.center_dialog_effect(self,
within=self.master.winfo_toplevel())
def __on_destroy(self):
if self.__on_close:
self.__on_close(self.__ok)
def __on_click_cancel(self):
self.__ok = False
self.destroy()
def __on_click_confirm(self):
self.__ok = True
self.destroy()
class Error(Exception):
def __init__(self, *args, **kwargs):
self.message = args[0] if args else ""
super().__init__(self.message)
def __str__(self):
return self.message
class _ConfirmTest(Viewable):
def __init__(self, root):
super().__init__()
self._root = root
self._body = None
def _build(self):
self._body = tk.Frame(self._root)
btn_launch = tk.Button(self._body, text="Launch",
command=self._on_click_launch)
btn_launch.pack()
def _on_click_launch(self):
confirmation = Confirmation(self._body, title="Confirmation",
header="Confirmation",
message="Do you really want to continue ?\nPress ok to continue\nOr die !")
confirmation.wait_window()
print("Confirmation:", confirmation.ok)
if __name__ == "__main__":
root = tk.Tk()
root.geometry("500x300+0+0")
confirm_test = _ConfirmTest(root)
confirm_test.build_pack()
root.mainloop()
| 3.234375 | 3 |
utils/inter_area.py | edosedgar/mtcnnattack | 68 | 12799702 | <gh_stars>10-100
from __future__ import division, print_function, absolute_import
import tensorflow as tf
import numpy as np
def inter_area_batch(im_inp,h,w,hs,ws):
# Do INTER_AREA resize here
# h, w - input size
# hs, ws - scaled size
whole = im_inp
return tf.clip_by_value(whole,0.,1.)
def resize_area_batch(imgs, hs, ws):
_, h, w, _ = imgs.shape
with tf.variable_scope("resize_area"):
out = inter_area_batch(imgs, int(h), int(w), hs, ws)
return out | 2.1875 | 2 |
output/models/ms_data/regex/re_c43_xsd/__init__.py | tefra/xsdata-w3c-tests | 1 | 12799703 | <filename>output/models/ms_data/regex/re_c43_xsd/__init__.py
from output.models.ms_data.regex.re_c43_xsd.re_c43 import (
Regex,
Doc,
)
__all__ = [
"Regex",
"Doc",
]
| 1.195313 | 1 |
monet/visualize/force.py | flo-compbio/monet | 39 | 12799704 | <gh_stars>10-100
# Author: <NAME> <<EMAIL>>
# Copyright (c) 2021 <NAME>
#
# This file is part of Monet.
from typing import Tuple
import pandas as pd
import scanpy.tl as tl
import scanpy.pp as pp
import plotly.graph_objs as go
from ..core import ExpMatrix
from ..latent import PCAModel
from .cells import plot_cells
def force_plot(
matrix: ExpMatrix,
num_components: int = 50,
transform_name: str = 'freeman-tukey',
pca_model: PCAModel = None,
**kwargs) -> Tuple[go.Figure, pd.DataFrame]:
if pca_model is None:
pca_model = PCAModel(num_components=num_components, transform_name=transform_name)
pc_scores = pca_model.fit_transform(matrix)
else:
pc_scores = pca_model.transform(matrix)
adata = ExpMatrix(pc_scores.T).to_anndata()
adata.obsm['pc_scores'] = pc_scores.values
# determine nearest-neighbors
pp.neighbors(adata, use_rep='pc_scores')
tl.draw_graph(adata)
Y = adata.obsm['X_draw_graph_fa']
scores = pd.DataFrame(
index=adata.obs_names, columns=['Dim. 1', 'Dim. 2'], data=Y)
fig = plot_cells(scores, **kwargs)
return fig, scores
| 2.375 | 2 |
add_exp_to_ref.py | C2SM/clim-sanity-checker | 0 | 12799705 | # standard modules
import os
import shutil
import argparse
# aliased standard modules
import pandas as pd
# modules of sanity checker
import lib.paths as paths
import lib.utils as utils
import lib.logger_config as logger_config
# standalone imports
from lib.logger_config import log
from lib.test_config import get_config_of_current_test
from lib.color import Style
'''
Module providing the functionality to add an experiment
to the reference pool. It contains:
- add_line_descr_f: Add a new line to the experiment description file
with all information about an experiment
- main: asks user for additional information about experiment, commits
data of new experiment to git-repository
Help: python add_exp_tp_ref.py --help
C.Siegenthaler 07.2020 (C2SM)
J.Jucker 01.2021 (C2SM)
'''
def add_line_descr_f(exp,f_exp_descr):
'''
Add line for exp exp in file f_exp_descr
:param exp: new expirement name
:param f_exp_descr: file in which the new line has to be added
return: None
'''
log.info('Adding line {} in the file {}:'.format(exp,f_exp_descr))
# open file in dataframe
if not os.path.isfile(f_exp_descr):
# create dataframe
cols_exp_descr_f = ['Experiment name',
'Platform',
'OS',
'Compiler (with version)',
'Optimisation level (-OX)',
'-fast-transcendentals (y/n)',
'-no-prec-sqrt (y/n)',
'-no-prec-div (y/n)',
'welch (y/n)',
'fldcor (y/n)',
'rmse (y/n)',
'emi (y/n)',
'Date of experiment (month yyyy)']
df_exp_descr = pd.DataFrame(columns=cols_exp_descr_f)
else:
df_exp_descr = pd.read_csv(f_exp_descr, sep=';')
# collect information from user
log.banner('Please give the following informations '
'about your experiment')
dict_line = {'Experiment name': exp}
for col_name in df_exp_descr.keys():
if col_name != 'Experiment name':
# ask the user for info
dict_line[col_name] = input('{} : '.format(col_name))
# amend the information if needed
while True:
# new dataframe containing new line for exp
df_exp_descr_new = df_exp_descr.append(dict_line, ignore_index=True)
log.banner('Here is the content of the description '
'file including your new experiment.')
log.info(df_exp_descr_new)
answ_chg = input('Is the new file right ? (y/n/abort).\n'
'If you type n, you will be able to change '
'column values\n'
'If you type abort, the process of adding '
'the experiment {} to the reference is stoped.\n'
'(y/n/abort) : '
''.format(exp))
if answ_chg.upper() == 'Y':
# save new file
df_exp_descr_new.to_csv(f_exp_descr,sep=';',index=False)
# get out of the loop
return False
elif answ_chg.upper() == 'N':
answ_col = input('Which column field you want to change ?')
if answ_col in df_exp_descr.keys():
dict_line[answ_col] = input('{} : '.format(answ_col))
else:
log.warning('{} not in columns!'.format(answ_col))
log.info('Columns are {}\n'.format(list(df_exp_descr.columns)))
elif answ_chg.upper() == 'ABORT':
exit()
return()
def main(exp,
tests,
p_stages=paths.p_stages,
p_ref_csv_files=paths.p_ref_csv_files,
ltestsuite=False,
lverbose=False):
# initialisation
new_branch_name = 'test_add_{}'.format(exp)
files_to_commit = []
# fill up file 'Exps_description.csv' with additional
# information via user input
f_exp_descr = os.path.join(p_ref_csv_files,'Exps_description.csv')
if not ltestsuite:
add_line_descr_f(exp=exp,f_exp_descr=f_exp_descr)
files_to_commit.append(f_exp_descr)
for test in tests:
test_cfg = get_config_of_current_test(test)
csv_file = utils.clean_path(p_stages,
'test_postproc_{}_{}.csv'
.format(test,exp))
# what is the filename in the reference pool
filename_in_ref_dir = '{}_{}.csv'.format(test_cfg.ref_name,exp)
# what is the location to store that file
place_for_reference = os.path.join(p_ref_csv_files,
test,
filename_in_ref_dir)
log.debug('Copy {} to {}'.format(csv_file,place_for_reference))
if not ltestsuite:
shutil.copy(csv_file,place_for_reference)
files_to_commit.append(place_for_reference)
# copy pdf with bar-plots from Welch's-test
if test == 'welch':
pdf_file = utils.clean_path(p_stages,
'{}_{}.pdf'.format(test_cfg.ref_name,
exp))
# what is the name of the pdf in the reference pool
filename_in_ref_dir = '{}_plots.pdf'.format(test_cfg.ref_name)
# what is the location to store that file
place_for_reference = os.path.join(p_ref_csv_files,
test,
filename_in_ref_dir)
log.debug('Copy {} to {}'.format(csv_file,place_for_reference))
files_to_commit.append(place_for_reference)
if not ltestsuite:
shutil.copy(pdf_file,place_for_reference)
# root is important to not fail during git commands
os.chdir(paths.rootdir)
# checkout new branch
if not ltestsuite:
log.info('Create and checkout new branch {}'.format(new_branch_name))
git_cmd = 'git checkout -B {}'.format(new_branch_name)
utils.shell_cmd(git_cmd,py_routine='add_exp_to_ref.py')
# commit all modified files prior in the function to git
for file in files_to_commit:
git_cmd = 'git add {}'.format(file)
log.debug(git_cmd)
utils.shell_cmd(git_cmd, py_routine=__name__)
log.debug('Commit files {}'.format(files_to_commit))
commit_message = input('Please type your commit message :')
git_cmd = 'git commit -m "{}"'.format(commit_message)
utils.shell_cmd(git_cmd, py_routine=__name__)
# Finish
log.info(Style.GREEN('Files are added in the new branch: '
'{} in your local git repository.'
.format(new_branch_name)))
log.info('To add the file to the official repository, '
'please perform the following steps:')
log.info('1. Push the new branch into the official repo:')
log.info(' git push --set-upstream origin {}'.format(new_branch_name))
log.info('2. On the Open Web interface (GitHub) , open a Pull Request.')
log.banner('End add_exp_to_ref for experiment {}'.format(exp))
return()
if __name__ == '__main__':
# parsing arguments
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--exp','-e', dest='exp',
required=True,
help='exp to add')
parser.add_argument('--p_stages', dest='p_stages',
default=paths.p_stages,
help='relative or absolute path of the csv \
files of the testresults')
parser.add_argument('--p_ref_csv_files', dest='p_ref_csv_files',
default=paths.p_ref_csv_files,
help='path to the pool of csv files, \
one per reference experiment')
parser.add_argument('--tests','-t', dest='tests',
default=['welch','fldcor','rmse','emi'],
nargs='+',
help='Tests to add to reference pool')
parser.add_argument('--verbose','-v', dest='lverbose',
action='store_true',
help='Debug output')
parser.add_argument('--testsuite','-ts', dest='ltestsuite',
action='store_true',
help='Run of testsuite')
args = parser.parse_args()
# init logger
logger_config.init_logger(args.lverbose,__file__)
log.banner('Start execute {} as main()'.format(__file__))
# make all paths from user to absolute paths
args.p_stages = utils.abs_path(args.p_stages)
args.p_ref_csv_files = utils.abs_path(args.p_ref_csv_files)
main(exp=args.exp,
tests=args.tests,
p_stages=args.p_stages,
p_ref_csv_files=args.p_ref_csv_files,
ltestsuite=args.ltestsuite,
lverbose=args.lverbose)
log.banner('End execute {} as main()'.format(__file__))
| 2.25 | 2 |
ml_rest_api/api/health/liveness.py | jgbustos/ml-rest-api | 15 | 12799706 | <gh_stars>10-100
"""This module implements the HealthLiveness class."""
from flask_restx import Resource
from ml_rest_api.api.restx import api, FlaskApiReturnType
@api.default_namespace.route("/liveness")
class HealthLiveness(Resource):
"""Implements the /liveness GET method."""
@staticmethod
@api.doc(
responses={
200: "Success",
}
)
def get() -> FlaskApiReturnType:
"""
Returns liveness status.
"""
return {"Alive": True}, 200
| 2.25 | 2 |
tools/Vitis-AI-Quantizer/vai_q_tensorflow2.x/tensorflow_model_optimization/python/core/quantization/keras/vitis/common/vitis_custom_wrapper.py | hito0512/Vitis-AI | 1 | 12799707 | <reponame>hito0512/Vitis-AI
# Copyright 2019 Xilinx Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper which is custom layer over underlying layer.
`CustomOpWrapper` is responsible for modifying the construction of the
underlying layer to ensure proper attributes are placed in the
graph.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import copy
from tensorflow.python.util import tf_inspect
from tensorflow_model_optimization.python.core.quantization.keras.vitis.utils import common_utils
register_keras_serializable = tf.keras.utils.register_keras_serializable
deserialize_keras_object = tf.keras.utils.deserialize_keras_object
serialize_keras_object = tf.keras.utils.serialize_keras_object
logger = common_utils.VAILogger
@register_keras_serializable(package='Vitis', name='CustomOpWrapper')
class CustomOpWrapper(tf.keras.layers.Wrapper):
"""Mark this layer as a custom layer and set some attributes"""
def __init__(self, layer, **kwargs):
"""Create a custom layer wrapper for a keras layer.
Args:
layer: The keras layer to be quantized.
**kwargs: Additional keyword arguments to be passed to the keras layer.
"""
if layer is None:
logger.error('`layer` cannot be None.')
# Check against keras.Model since it is an instance of keras.layers.Layer.
if not isinstance(layer, tf.keras.layers.Layer) or isinstance(
layer, tf.keras.Model):
logger.error('`layer` can only be a `tf.keras.layers.Layer` instance. '
'You passed an instance of type: {input}.'.format(
input=layer.__class__.__name__))
if 'name' not in kwargs:
kwargs['name'] = layer.name
super(CustomOpWrapper, self).__init__(layer, **kwargs)
self._track_trackable(layer, name='layer')
def build(self, input_shape):
super(CustomOpWrapper, self).build(input_shape)
def compute_output_shape(self, input_shape):
return self.layer.compute_output_shape(self.layer.input_shape)
def call(self, inputs, training=None):
args = tf_inspect.getfullargspec(self.layer.call).args
if 'training' in args:
outputs = self.layer.call(inputs, training=training)
else:
outputs = self.layer.call(inputs)
return outputs
def get_config(self):
base_config = super(CustomOpWrapper, self).get_config()
config = {}
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config):
config = config.copy()
layer = tf.keras.layers.deserialize(config.pop('layer'))
return cls(layer=layer, **config)
@property
def trainable_weights(self):
return self.layer.trainable_weights
@property
def non_trainable_weights(self):
return self.layer.non_trainable_weights
@property
def updates(self):
return self.layer.updates + self._updates
@property
def losses(self):
return self.layer.losses + self._losses
_types_dict = {"CustomOpWrapper", CustomOpWrapper}
| 1.984375 | 2 |
crosswalk_client/methods/domain/update_domain.py | The-Politico/django-crosswalk-client | 3 | 12799708 | from urllib.parse import urljoin
import requests
from crosswalk_client.exceptions import BadResponse
from crosswalk_client.objects.domain import DomainObject
from crosswalk_client.validators.domain import validate_required_domain_arg
class UpdateDomain(object):
@validate_required_domain_arg
def update_domain(self, domain, update_attrs):
response = requests.patch(
urljoin(self.service_address, f"domains/{domain}/"),
headers=self.headers,
json=update_attrs,
)
if response.status_code != 200:
raise BadResponse(
"The service responded with a {}: {}".format(
response.status_code, response.content
)
)
return DomainObject(response.json(), client=self)
| 2.75 | 3 |
openprocurement/auctions/core/plugins/awarding/v3/tests/migration.py | EBRD-ProzorroSale/openprocurement.auctions.core | 2 | 12799709 | <filename>openprocurement/auctions/core/plugins/awarding/v3/tests/migration.py
from zope import deprecation
deprecation.moved('openprocurement.auctions.core.tests.plugins.awarding.v3.tests.migration', 'version update')
| 0.964844 | 1 |
pybetter/item.py | cjwcommuny/pybetter | 0 | 12799710 | <filename>pybetter/item.py
def item(x):
assert len(x) == 1
return x[0]
| 2.078125 | 2 |
mozdns/sshfp/views.py | jlin/inventory | 22 | 12799711 | # Create your views here.
from mozdns.views import MozdnsDeleteView
from mozdns.views import MozdnsCreateView
from mozdns.views import MozdnsDetailView
from mozdns.views import MozdnsUpdateView
from mozdns.views import MozdnsListView
from mozdns.sshfp.models import SSHFP
from mozdns.sshfp.forms import SSHFPForm
class SSHFPView(object):
model = SSHFP
form_class = SSHFPForm
queryset = SSHFP.objects.all()
class SSHFPDeleteView(SSHFPView, MozdnsDeleteView):
""" """
class SSHFPDetailView(SSHFPView, MozdnsDetailView):
""" """
template_name = 'sshfp/sshfp_detail.html'
class SSHFPCreateView(SSHFPView, MozdnsCreateView):
""" """
class SSHFPUpdateView(SSHFPView, MozdnsUpdateView):
""" """
class SSHFPListView(SSHFPView, MozdnsListView):
""" """
| 2.09375 | 2 |
pyppeteer_stealth/__init__.py | ramiezer2/pyppeteer_stealth | 1 | 12799712 | <reponame>ramiezer2/pyppeteer_stealth
from pyppeteer.page import Page
from .chrome_app import chrome_app
from .chrome_runtime import chrome_runtime
from .iframe_content_window import iframe_content_window
from .media_codecs import media_codecs
from .sourceurl import sourceurl
from .navigator_hardware_concurrency import navigator_hardware_concurrency
from .navigator_languages import navigator_languages
from .navigator_permissions import navigator_permissions
from .navigator_plugins import navigator_plugins
from .navigator_vendor import navigator_vendor
from .navigator_webdriver import navigator_webdriver
from .user_agent_override import user_agent_override
from .utils import with_utils
from .webgl_vendor import webgl_vendor
from .window_outerdimensions import window_outerdimensions
async def stealth(page: Page, **kwargs) -> None:
if not isinstance(page, Page):
raise ValueError("page must be pyppeteer.page.Page")
await with_utils(page, **kwargs)
await chrome_app(page, **kwargs)
await chrome_runtime(page, **kwargs)
await iframe_content_window(page, **kwargs)
await media_codecs(page, **kwargs)
await sourceurl(page, **kwargs)
await navigator_hardware_concurrency(page, **kwargs)
await navigator_languages(page, **kwargs)
await navigator_permissions(page, **kwargs)
await navigator_plugins(page, **kwargs)
await navigator_vendor(page, **kwargs)
await navigator_webdriver(page, **kwargs)
await user_agent_override(page, **kwargs)
await webgl_vendor(page, **kwargs)
await window_outerdimensions(page, **kwargs)
| 2.125 | 2 |
1-99/10-19/10.py | dcragusa/LeetCode | 0 | 12799713 | <filename>1-99/10-19/10.py
"""
Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'.
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like . or *.
Example 1:
Input:
s = "aa", p = "a", Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa", p = "a*", Output: true
Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".
Example 3:
Input:
s = "ab", p = ".*", Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".
Example 4:
Input:
s = "aab", p = "c*a*b", Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".
Example 5:
Input:
s = "mississippi", p = "mis*is*p*.", Output: false
"""
"""
We go backwards through the string and pattern. If there is a character match and there is no *, advance through the
string and pattern by one. If there is a *, examine whether combinations of consuming more characters from the string
(repeating characters) or more characters from the pattern (the * matching 0 characters). If we get to the end of the
string and there is still a pattern remaining, discard any * sets. The regex is a match if at the end the string and
pattern are equal.
"""
import functools
@functools.lru_cache()
def is_match(s, p):
if s == p:
return True
elif s and not p:
return False
elif not s:
return is_match(s, p[:-2]) if len(p) >= 2 and p[-1] == '*' else False
if s[-1] == p[-1] or p[-1] == '.':
# simple match
return is_match(s[:-1], p[:-1])
elif p[-1] == '*':
if p[-2] != s[-1] and p[-2] != '.':
# no match, but * after
return is_match(s, p[:-2])
else:
# match, with * after
for idx in range(1, len(s)+1):
# examine if consuming more string characters leads to a match
if s[-idx] != s[-1] and p[-2] != '.':
break
if is_match(s[:-idx], p):
return True
# examine if skipping the pattern leads to a match
return is_match(s, p[:-2])
else:
# no match, no * after
return False
assert is_match('a', 'ab*') is True
assert is_match('abc', 'abc') is True
assert is_match('aa', 'a') is False
assert is_match('aab', 'c*aab') is True
assert is_match('aa', 'a*') is True
assert is_match('ab', '.*') is True
assert is_match('ab', '.*c') is False
assert is_match('aab', 'c*a*b') is True
assert is_match('mississippi', 'mis*is*p*.') is False
assert is_match('a', 'a*a') is True
assert is_match('bbbba', '.*a*a') is True
assert is_match('a', '.*..a*') is False
assert is_match('aaaaaaaaaaaaab', 'a*a*a*a*a*a*a*a*a*a*c') is False
assert is_match('aa', 'ab*a*') is True
| 4.375 | 4 |
skyutils/aircraft.py | jacob-zeiger/skyspy | 12 | 12799714 | <reponame>jacob-zeiger/skyspy
from datetime import datetime, timedelta
from shapely.geometry import Point
class Aircraft:
def __init__(self, line):
ts = datetime.now()
self.hexcode = line[0:6]
self.flight = line[7:14].replace(" ", "")
self.description = f"{self.flight} (Details N/A)"
self.altitude = line[15:21].replace(" ", "")
self.speed = line[26:29]
lat = line[34:41].replace(" ", "")
lon = line[44:52].replace(" ", "")
try:
lat = float(lat)
lon = float(lon)
except ValueError:
lat = 0
lon = 0
self.coordinates = Point(lat, lon)
self.track = line[54:57]
self.msg = line[60:63]
self.last = line[69:73]
self.in_geofence = False
self.origin = "N/A"
self.origin_name = "N/A"
self.destination = "N/A"
self.destination_name = "N/A"
self.type = "N/A"
self.dist_to_home = 1001
self.ts = ts
| 2.765625 | 3 |
setup.py | espg/mortie | 0 | 12799715 | # A minimal setup.py file to make a Python project installable.
import setuptools
import yaml
with open("README.md", "r") as fh:
long_description = fh.read()
with open("environment.yml", "r") as fh:
env = yaml.safe_load(fh)
requirements = [a.split('=', 1)[0].strip() for a in env['dependencies'] ]
setuptools.setup(
name = "mortie",
version = "0.1.0",
author = "<NAME>",
author_email = "<EMAIL>",
description = "Morton numbering for healpix grids",
long_description = long_description,
long_description_content_type = "text/markdown",
packages = setuptools.find_packages(),
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: BSD License",
"Operating System :: OS Independent",
],
python_requires = '>= 3.5',
install_requires = requirements,
)
| 1.734375 | 2 |
tests/test_main_return_ptr.py | jiamo/pcc | 4 | 12799716 | import os
import sys
import ctypes
this_dir = os.path.dirname(__file__)
parent_dir = os.path.dirname(this_dir)
sys.path.insert(0, parent_dir)
from pcc.evaluater.c_evaluator import CEvaluator
import unittest
class TestMainReturnPtr(unittest.TestCase):
def test_simple(self):
pcc = CEvaluator()
ret = pcc.evaluate('''
int a = 50;
int b = 4;
int* swap(int *x, int *y){
int tmp;
tmp = *x;
*x = *y;
*y = tmp;
return x;
}
int* main(){
swap(&a, &b);
return &a ;
}
''', llvmdump=True)
# ret_value = ret.contents
print("The answer is {} ret type is {} content ".format(ret, type(ret)))
# so the global var
assert ret.contents.value == 4
if __name__ == "__main__":
unittest.main() | 2.8125 | 3 |
src/gilbert/plugins/markdown.py | funkybob/gilbert | 11 | 12799717 | from pathlib import Path
from markdown import markdown
from gilbert import Site
from gilbert.content import Page
from gilbert.types import LoaderResult
from gilbert.utils import oneshot
class MarkdownPage(Page):
"""
Page type that renders its content as Markdown.
Extensions can be configured in ``config.yml`` via:
content_type:MarkdownPage
or using the ``extras`` attribute.
"""
# List of Markdown extensions to enable.
extras: list = []
@oneshot
def content(self) -> str:
extras = self.extras
if not extras:
extras = self.site.config.get("content_type", {}).get("MarkdownPage", [])
return markdown(self.data, output_format="html5", extensions=extras)
def load_md(path: Path) -> LoaderResult:
data = path.read_text(encoding="utf-8")
return data, {"content_type": "MarkdownPage"}
Site.register_loader("md", load_md)
| 2.578125 | 3 |
lib/exutils.py | miyagaw61/old_exgdb | 27 | 12799718 | import os
import sys
EXGDBFILE = os.path.abspath(os.path.expanduser(__file__))
sys.path.insert(0, os.path.dirname(EXGDBFILE) + "/lib/")
import utils
from enert import *
def clearscreen():
"""
Customized clearscreen from https://github.com/longld/peda
"""
print("\x1b[2J\x1b[H")
utils.clearscreen = clearscreen
| 1.914063 | 2 |
classes/player.py | mcappleman/scoresheet-selenium | 0 | 12799719 | class Player():
def __init__(self, player):
self.name = player['espn_name']
self.position = player['espn_pos']
self.mlb_team = player['mlb_team']
self.throws = player['throws']
self.bats = player['bats']
self.espn_id = str(int(player['espn_id']))
self.bref_id = player['bref_id']
self.fg_id = ''
self.mine = False
self.batter = self.position != 'RP' and self.position != 'SP'
self.stats = {}
self.team = player['team_id']
def to_dict(self):
mine = ''
if self.mine:
mine = 'x'
player_dict = {
'name': self.name,
'position': self.position,
'mlb_team': self.mlb_team,
'throws': self.throws,
'bats': self.bats,
'espn_id': self.espn_id,
'bref_id': self.bref_id,
'fg_id': self.fg_id,
'mine': mine,
'team_number': self.team
}
for key, value in self.stats.items():
player_dict[key] = value
return player_dict
def get_stats(self, row, key_start, site):
key = key_start + "_" + site
if site == 'ESPN':
self.get_espn_stats(row, key)
elif site == 'BR':
self.get_br_stats(row, key)
def get_br_stats(self, row, key_start):
try:
self.stats[key_start + '_ba'] = row.find_element_by_xpath('.//td[@data-stat="batting_avg"]').text
self.stats[key_start + '_obp'] = row.find_element_by_xpath('.//td[@data-stat="onbase_perc"]').text
self.stats[key_start + '_slg'] = row.find_element_by_xpath('.//td[@data-stat="slugging_perc"]').text
self.stats[key_start + '_ops'] = row.find_element_by_xpath('.//td[@data-stat="onbase_plus_slugging"]').text
except Exception:
self.stats[key_start + '_era'] = row.find_element_by_xpath('.//td[@data-stat="earned_run_avg"]').text
self.stats[key_start + '_ip'] = row.find_element_by_xpath('.//td[@data-stat="IP"]').text
self.stats[key_start + '_so'] = row.find_element_by_xpath('.//td[@data-stat="SO"]').text
self.stats[key_start + '_bb'] = row.find_element_by_xpath('.//td[@data-stat="BB"]').text
def get_espn_stats(self, row, key_start):
if self.batter:
self.get_espn_batter_stats(row, key_start)
else:
self.get_espn_pitcher_stats(row, key_start)
def get_espn_batter_stats(self, row, key_start):
self.stats[key_start + '_ba'] = row.find_element_by_xpath('.//td[14]').text
self.stats[key_start + '_obp'] = row.find_element_by_xpath('.//td[15]').text
self.stats[key_start + '_slg'] = row.find_element_by_xpath('.//td[16]').text
self.stats[key_start + '_ops'] = row.find_element_by_xpath('.//td[17]').text
def get_espn_pitcher_stats(self, row, key_start):
self.stats[key_start + '_era'] = row.find_element_by_xpath('.//td[2]').text
self.stats[key_start + '_ip'] = row.find_element_by_xpath('.//td[10]').text
self.stats[key_start + '_so'] = row.find_element_by_xpath('.//td[16]').text
self.stats[key_start + '_bb'] = row.find_element_by_xpath('.//td[15]').text | 3.0625 | 3 |
clickatell/__init__.py | Kapooral/clickatell-python | 9 | 12799720 | import httplib2
import urllib
import json
import re
import sys
class Transport:
"""
Abstract representation of a transport class. Defines
the supported API methods
"""
endpoint = "platform.clickatell.com"
def __init__(self):
"""
Construct a new transportation instance.
:param boolean secure: Should we try and use a secure connection
"""
pass
def merge(self, *args):
"""
Merge multiple dictionary objects into one.
:param variadic args: Multiple dictionary items
:return dict
"""
values = []
for entry in args:
values = values + list(entry.items())
return dict(values)
def parseResponse(self, response):
"""
Parse the response from json.
Remapping error code and messages to be a level higher
"""
response['body'] = json.loads(response['body'])
response['messages'] = response['body']['messages']
response['error'] = response['body']['error']
del response['body']
return response
def request(self, action, data={}, headers={}, method='GET'):
"""
Run the HTTP request against the Clickatell API
:param str action: The API action
:param dict data: The request parameters
:param dict headers: The request headers (if any)
:param str method: The HTTP method
:return: The request response
"""
http = httplib2.Http()
body = urllib.urlencode(data) if (sys.version_info[0] < 3) else urllib.parse.urlencode(data)
url = 'https://' + self.endpoint + '/' + action
url = (url + '?' + body) if (method == 'GET') else url
resp, content = http.request(url, method, headers=headers, body=json.dumps(data))
return self.merge(resp, {'body': content})
def sendMessage(self, to, message, extra={}):
"""
Send a message.
:param list to: The number you want to send to (list of strings, or one string)
:param string message: The message you want to send
:param dict extra: Any extra parameters (see Clickatell documentation)
:return dict
:raises NotImplementedError
"""
raise NotImplementedError() | 3.625 | 4 |
pkg/yc.py | rmc8/bibliography_alert | 0 | 12799721 | import os
import yaml
class YamlConfig:
def __init__(self, file_path: str = "./settings/config.yml"):
self.file_path = file_path
def exists(self) -> bool:
return os.path.exists(self.file_path)
def load(self) -> dict:
"""
:return: Return yaml data as dictionary format
"""
with open(self.file_path, "r", encoding="utf-8") as yf:
return yaml.load(yf, Loader=yaml.FullLoader)
def write(self, data: dict) -> None:
"""
Export yaml
:param data: A dictionary of data that will be output in Yaml format
"""
with open(self.file_path, "w", encoding="utf-8") as yf:
yaml.dump(data, yf, default_flow_style=False)
| 3.078125 | 3 |
src/pr_Sentinel1LakeArea_Ver3_Export.py | mbonnema/SWAV | 0 | 12799722 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
*******************************************************************************
Google Earth Engine Setninel-1 Lake Area
o Purpose: Estimate surface are of lake from Sentinel-1 SAR date, using
Google Earth Engine cloud computing platform
o Inputs:
* ROI: Google Earth Engine geometry object describing the region of
interest
o Outputs:
* Results: List containing 4 elements (GEE objects):
1) List of lake surface areas from ascending passes
2) List of lake surface areas from descending passes
3) List of time steps ascoiated with ascending pass surface areas
4) List of time steps ascoiated with descending pass surface areas
Written by: <NAME>, <EMAIL>
Version 0.3
*******************************************************************************
"""
import ee
ee.Initialize()
def GetS1ResTimeSeries(roi):
ID = roi.get('ID')
ROI = roi.geometry()
ROI_Diff = ROI.difference(roi)
Date_Start = ee.Date('2017-01-01');
Date_End = ee.Date('2020-01-01');
date_interval = ee.Number(1); #month
angle_threshold_1 = ee.Number(45.4);
angle_threshold_2 = ee.Number(31.66)
AreaImg = ee.Image.pixelArea()
#****Get WaterProb Threshold************************************************
waterProb = ee.Image('JRC/GSW1_1/GlobalSurfaceWater').select('occurrence')
wProbThresh = ee.Number(ee.Image.constant(0).blend(waterProb).rename('occurrence').reduceRegion(
reducer = ee.Reducer.max(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
).get('occurrence'))
waterConfident = waterProb.gte(wProbThresh)
landConfident = (ee.Image.constant(0).blend(waterProb)).Not().rename('occurrence')
waterConfidentArea = ee.Number(waterConfident.multiply(AreaImg).reduceRegion(
reducer = ee.Reducer.sum(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16,
).get('occurrence'))
landConfidentArea = ee.Number(landConfident.multiply(AreaImg).reduceRegion(
reducer = ee.Reducer.sum(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16,
).get('occurrence'))
#****Create list of dates for time series********************************************
n_steps = Date_End.difference(Date_Start,'month').divide(date_interval).round();
dates = ee.List.sequence(0,n_steps,1);
def make_datelist(n):
return(Date_Start.advance(ee.Number(n).multiply(date_interval),'month'))
dates = dates.map(make_datelist);
#****Filter Edge Pixels**************************************************************
def maskByAngle(img):
I = ee.Image(img)
angle = I.select('angle');
mask1 = angle.lt(angle_threshold_1);
mask2 = angle.gt(angle_threshold_2);
I = I.updateMask(mask1)
return(I.updateMask(mask2))
#****Make S1 Image Collection********************************************************
def create_collection(d):
start = ee.Date(d);
end = ee.Date(d).advance(date_interval,'month');
date_range = ee.DateRange(start,end);
S1 = ee.ImageCollection('COPERNICUS/S1_GRD') \
.filterDate(date_range) \
.filterBounds(ROI) \
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) \
.filter(ee.Filter.eq('instrumentMode', 'IW'))
S1 = ee.ImageCollection(ee.Algorithms.If(
condition = S1.size().gt(0),
trueCase = S1.map(maskByAngle),
falseCase = S1
))
S1_median = ee.Image(S1.select('VV').mean()).clip(ROI)
S1_median = S1_median.set('system:time_start',start.millis())
S1_median = S1_median.set('Number_of_images',S1.size())
return(S1_median)
#****Calc ROI Area**********************************************************************
def calcArea(img):
I = ee.Image(img)
area = I.select('VV').lt(99999999).multiply(AreaImg).reduceRegion(
reducer = ee.Reducer.sum(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16,
).get('VV')
return(I.set('ROI_area',area))
#****Apply Filter**********************************************************************
def focal_median(img):
I = ee.Image(img)
#fm = I.select('VV').rename('VV_smooth')
fm = I.select('VV').focal_median(50,'circle','meters').rename('VV_smooth')
return(I.addBands(fm))
#****Make Water Mask****************************************************************
def MakeWaterMask(img):
I = ee.Image(img)
wThresh = ee.Number(I.get('wThresh'))
waterProb = ee.Image('JRC/GSW1_1/GlobalSurfaceWater').select('occurrence')
Mask = I.select('VV_smooth').updateMask(waterProb).lt(wThresh).rename('WaterMask')
Sum = Mask.multiply(AreaImg).reduceRegion(
reducer = ee.Reducer.sum(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
)
I = I.set('water_pixels',Sum.get('WaterMask'))
I = I.set('Water_Area',ee.Number(Sum.get('WaterMask')))
return I.addBands(Mask)
#****Round time*********************************************************************
def makeBackscatterStats(img):
img = ee.Image(img)
wMask = img.select('WaterMask')
vv = img.select('VV_smooth')
wPixelmean = vv.updateMask(wMask).reduceRegion(
reducer = ee.Reducer.mean(),
geometry = ROI,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
wPixelStd = vv.updateMask(wMask).reduceRegion(
reducer = ee.Reducer.stdDev(),
geometry = ROI,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
lPixelmean = vv.updateMask(wMask.Not()).reduceRegion(
reducer = ee.Reducer.mean(),
geometry = ROI,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
lPixelStd = vv.updateMask(wMask.Not()).reduceRegion(
reducer = ee.Reducer.stdDev(),
geometry = ROI,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
inPixelmean = vv.reduceRegion(
reducer = ee.Reducer.mean(),
geometry = roi,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
inPixelStd = vv.reduceRegion(
reducer = ee.Reducer.stdDev(),
geometry = roi,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
outPixelmean = vv.reduceRegion(
reducer = ee.Reducer.mean(),
geometry = ROI_Diff,
scale = 1000,
maxPixels = 6098838800,
tileScale = 16
)
outPixelStd = vv.updateMask(wMask.Not()).reduceRegion(
reducer = ee.Reducer.stdDev(),
geometry = ROI_Diff,
scale = 300,
maxPixels = 6098838800,
tileScale = 16
)
img = img.set('wPixelmean',wPixelmean.get('VV_smooth'))
img = img.set('wPixelStd',wPixelStd.get('VV_smooth'))
img = img.set('lPixelmean',lPixelmean.get('VV_smooth'))
img = img.set('lPixelStd',lPixelStd.get('VV_smooth'))
img = img.set('inPixelmean',inPixelmean.get('VV_smooth'))
img = img.set('inPixelStd',inPixelStd.get('VV_smooth'))
img = img.set('outPixelmean',outPixelmean.get('VV_smooth'))
img = img.set('outPixelStd',outPixelStd.get('VV_smooth'))
return img
def makeBackScatterFromJRC(img):
img = ee.Image(img)
waterProb = ee.Image('JRC/GSW1_1/GlobalSurfaceWater').select('occurrence')
waterConfident = waterProb.gte(wProbThresh)
landConfident = (ee.Image.constant(0).blend(waterProb)).Not()
vv = img.select('VV_smooth')
wMean = vv.updateMask(waterConfident).reduceRegion(
reducer = ee.Reducer.mean(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
)
wStd = vv.updateMask(waterConfident).reduceRegion(
reducer = ee.Reducer.stdDev(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
)
lMean = vv.updateMask(landConfident).reduceRegion(
reducer = ee.Reducer.mean(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
)
lStd = vv.updateMask(landConfident).reduceRegion(
reducer = ee.Reducer.stdDev(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
)
img = img.set('wMean',wMean.get('VV_smooth')).set('lMean',lMean.get('VV_smooth'))
img = img.set('wStd',wStd.get('VV_smooth')).set('lStd',lStd.get('VV_smooth'))
return img
#****Round time*********************************************************************
def Roundtime(img):
I = ee.Image(img)
time = ee.Number(I.get('system:time_start')).round()
return(I.set('system:time_start',time))
#****Caclulate Threshold**************************************************************
def calcThresh(img):
img = ee.Image(img)
wMean = ee.Number(img.get('wMean'))
wStd = ee.Number(img.get('wStd'))
lMean = ee.Number(img.get('lMean'))
lStd = ee.Number(img.get('lStd'))
x = (lMean.subtract(wMean)).divide(wStd.add(lStd))
wThresh = wMean.add(wStd.multiply(x))
return img.set('wThresh',wThresh)
#****Caclulate Errors*************************************************************
def calcError(img):
img = ee.Image(img)
waterProb = ee.Image('JRC/GSW1_1/GlobalSurfaceWater').select('occurrence')
waterConfident = waterProb.gte(wProbThresh)
landConfident = (ee.Image.constant(0).blend(waterProb)).Not()
vv = img.select('VV_smooth')
thresh = ee.Number(img.get('wThresh'))
wError = ee.Number(vv.gt(thresh).updateMask(waterConfident).rename('wError').multiply(AreaImg).reduceRegion(
reducer = ee.Reducer.sum(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
).get('wError'))
lError = ee.Number(vv.lt(thresh).updateMask(landConfident).rename('lError').multiply(AreaImg).reduceRegion(
reducer = ee.Reducer.sum(),
geometry = ROI,
scale = 100,
maxPixels = 6098838800,
tileScale = 16
).get('lError'))
#wError = wError.divide(waterConfidentArea.subtract(wError))
#lError = lError.divide(landConfidentArea.subtract(lError))
return img.set('wError',wError).set('lError',lError)
def calcError2(img):
img = ee.Image(img)
wError = ee.Number(img.get('wError'))
lError = ee.Number(img.get('lError'))
wError = wError.divide(waterConfidentArea.subtract(wError))
lError = lError.divide(landConfidentArea.subtract(lError))
return img.set('wError2',wError).set('lError2',lError)
#****Run Functions******************************************************************
S1 = ee.ImageCollection(dates.map(create_collection,True))
S1 = S1.set('wProbThresh',wProbThresh)
S1 = S1.filter(ee.Filter.gt('Number_of_images',0))
S1 = S1.map(calcArea)
S1 = S1.filter(ee.Filter.gt('ROI_area',ee.Number(ROI.area().multiply(0.95))))
S1 = S1.map(focal_median)
#S1 = S1.map(Roundtime)
S1 = S1.map(makeBackScatterFromJRC)
S1 = S1.filter(ee.Filter.gt('wMean',-9999))
S1 = S1.filter(ee.Filter.gt('lMean',-9999))
S1 = S1.filter(ee.Filter.gt('wStd',-9999))
S1 = S1.filter(ee.Filter.gt('lStd',-9999))
S1 = S1.map(calcThresh)
S1 = S1.map(calcError)
S1 = S1.filter(ee.Filter.lt('wError',9999999999999))
S1 = S1.filter(ee.Filter.lt('lError',9999999999999))
S1 = S1.map(calcError2)
S1 = S1.filter(ee.Filter.lt('wError2',9999999999999))
S1 = S1.filter(ee.Filter.lt('lError2',9999999999999))
S1 = S1.map(MakeWaterMask)
#S1 = S1.map(makeBackscatterStats)
#****Extract Time Series***************************************************************
def extractTimeSeries(collection):
WaterArea = ee.Array(collection.aggregate_array('Water_Area')).multiply(0.000001) #Conversion to km^2
time = ee.Array(collection.aggregate_array('system:time_start'))
wMean = ee.Array(collection.aggregate_array('wMean'))
wStd = ee.Array(collection.aggregate_array('wStd'))
lMean = ee.Array(collection.aggregate_array('lMean'))
lStd = ee.Array(collection.aggregate_array('lStd'))
wProbThresh = collection.get('wProbThresh')
ROIArea = ee.Array(collection.aggregate_array('ROI_area')).multiply(0.000001)
WThresh = ee.Array(collection.aggregate_array('wThresh'))
WError = WaterArea.multiply(ee.Array(collection.aggregate_array('wError2')))
LError = ee.Array(collection.aggregate_array('lError2')).multiply(ROIArea.subtract(WaterArea))
exportDict = ee.Dictionary({
'Date': time,
'WaterArea': WaterArea,
'WThresh': WThresh,
'LakeID': ID,
'WError': WError,
'LError': LError
})
exportTable = ee.Feature(None, exportDict)
return exportTable
Export = ee.Algorithms.If(
condition = S1.size().gt(0),
trueCase = ee.Feature(extractTimeSeries(S1)),
falseCase = None
)
return Export
#return([WaterAreaA,WaterAreaD,timeA,timeD,wPixelmeanA, wPixelStdA, lPixelmeanA, lPixelStdA, wPixelmeanD, wPixelStdD, lPixelmeanD, lPixelStdD, inPixelmeanA, inPixelStdA, outPixelmeanA, outPixelStdA, inPixelmeanD, inPixelStdD, outPixelmeanD, outPixelStdD ]) | 2.921875 | 3 |
tests/test_error_messages.py | tberlok/psecas | 10 | 12799723 | <filename>tests/test_error_messages.py
import numpy as np
from psecas import Solver, System
from psecas import ChebyshevExtremaGrid
import pytest
"""
We set up systems with errors, and see if Psecas gives a reasonable
error, i.e., a NameError.
"""
# Create grid
N = 32
grid = ChebyshevExtremaGrid(N, -1, 1)
# Create a solver object
def test_parser_findmatrices(verbose=False):
"""
Here we add the value A
to the equation without setting it in the system.
This should return a NameError
"""
# Create system
system = System(grid, variables='f', eigenvalue='sigma')
# Add the first (and only) equation
system.add_equation("sigma*z*f = dz(dz(f)) + 2*A*f")
with pytest.raises(NameError) as e_info:
solver = Solver(grid, system)
if verbose:
print(str(e_info.value))
def test_parser_boundaries(verbose=False):
"""
Here we add the value B
to the boundary without setting it in the system.
This should return a NameError
"""
# Create system
system = System(grid, variables='f', eigenvalue='sigma')
# Add the first (and only) equation
system.add_equation("sigma*z*f = dz(dz(f))")
system.add_boundary('f', 'Dirichlet', 'B*f = 0')
solver = Solver(grid, system)
with pytest.raises(NameError) as e_info:
# The error is found when the solve method is called
solver.solve()
if verbose:
print(str(e_info.value))
if __name__ == '__main__':
test_parser_findmatrices(True)
test_parser_boundaries(True)
| 2.796875 | 3 |
deepblink/cli/_check.py | BioinfoTongLI/deepBlink | 13 | 12799724 | <reponame>BioinfoTongLI/deepBlink
"""CLI submodule for checking image shapes."""
import logging
import os
import textwrap
from ..io import load_image
from ..util import predict_shape
class HandleCheck:
"""Handle checking submodule for CLI.
Args:
arg_input: Path to image.
logger: Verbose logger.
"""
def __init__(self, arg_input: str, logger: logging.Logger):
self.raw_input = arg_input
self.logger = logger
self.logger.info("\U0001F537 starting checking submodule")
self.abs_input = os.path.abspath(self.raw_input)
def __call__(self) -> None:
"""Run check for input image."""
print(
textwrap.dedent(
f"""
1. Your image has a shape of: {self.image.shape}
----------
2. Possible parameters
\U000027A1 x, y: single 2D image used for one prediction
\U000027A1 z: third (height) dimension
\U000027A1 c: color channels
\U000027A1 t: time dimension
\U000027A1 3: RGB color stack
----------
3. By default we would assign: "({predict_shape(self.image.shape)})"
\U0001F449 If this is incorrect, please provide the proper shape using the --shape flag to the
submodule predict in deepblink's command line interface
"""
)
)
@property
def image(self):
"""Load a single image."""
return load_image(self.abs_input)
| 2.625 | 3 |
pnad/transformer/economy.py | fabiommendes/pnad | 1 | 12799725 | from .base import IncomeField, FunctionField, sum_na, Field
class IncomeDataMixin:
"""
All income-related variables
"""
year: int
#
# Main job
#
income_work_main_money_fixed = IncomeField({
(1992, ...): 'V9532', (1981, 1990): 'V537', 1979: 'V2318', 1978: 'V2426',
1977: 'V75', 1976: 'V2308',
}, descr='Fixed monthly salary')
income_work_main_money_variable = IncomeField({
(1981, ...): None, # do not ask this in recent surveys
1979: 'V2338', 1978: 'V2446', 1977: 'V76', 1976: 'V2358',
}, descr='Variable part of monthly salary')
income_work_main_products = IncomeField({
(1992, ...): 'V9535', (1981, 1990): 'V538', 1979: 'V2339', 1978: 'V2447',
1977: 'V77', 1976: 'V2359',
}, descr='Salary received in products')
@FunctionField
def income_work_main_money(self, df):
"""Sum of fixed + variable money income from main job"""
return sum_na(df.income_work_main_money_variable,
df.income_work_main_money_fixed)
@FunctionField
def income_work_main(self, df):
"""Total income from main work"""
# Also computed in PNAD as V4718 (yr > 1992)
return sum_na(df.income_work_main_money, df.income_work_main_products)
#
# Secondary job
#
income_work_secondary_money_fixed = IncomeField(
{(1992, ...): 'V9982', (1980, 1990): None, 1979: 'V2427', (..., 1978): None, },
descr='Salary of secondary job (fixed part)')
income_work_secondary_money_variable = IncomeField(
{(1980, ...): None, 1979: 'V2457', (..., 1978): None, },
descr='Salary of secondary job (variable)')
income_work_secondary_products = IncomeField(
{(1992, ...): 'V9985', (1980, 1990): None, 1979: 'V2458', (..., 1978): None, },
descr='Salary of secondary job (products)')
@FunctionField
def income_work_secondary_money(self, df):
"""Total income from secondary job"""
return sum_na(df.income_work_secondary_money_fixed,
df.income_work_secondary_money_variable)
@FunctionField
def income_work_secondary(self, df):
"""Total income from secondary job"""
return sum_na(df.income_work_secondary_money, df.income_work_secondary_products)
#
# Other jobs
#
income_work_extra_money_fixed = IncomeField({
(1992, ...): 'V1022', (1981, 1990): 'V549', 1979: 'V2319', 1978: 'V2428',
1977: 'V85', 1976: 'V2362',
}, descr='')
income_work_extra_money_variable = IncomeField({
(1992, ...): None, (1981, 1990): None, 1979: 'V2349', 1978: 'V2468', 1977: 'V86',
1976: None,
}, descr='')
income_work_extra_products = IncomeField({
(1992, ...): 'V1025', (1981, 1990): 'V550', 1979: 'V2350', 1978: 'V2469',
1977: 'V87', 1976: None,
}, descr='')
@FunctionField
def income_work_extra_money(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_extra_money_fixed,
df.income_work_extra_money_variable)
@FunctionField
def income_work_extra(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_extra_money, df.income_work_extra_products)
@FunctionField
def income_work_other_money(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_extra_money, df.income_work_secondary_money)
@FunctionField
def income_work_other_products(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_extra_products, df.income_work_secondary_products)
@FunctionField
def income_work_other(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_other_money, df.income_work_other_products)
@FunctionField
def income_work_money(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_extra_money, df.income_work_main_money)
@FunctionField
def income_work_products(self, df):
"""Total income from jobs other than primary and secondary"""
return sum_na(df.income_work_extra_products, df.income_work_main_products)
#
# Social security
#
income_retirement_main = IncomeField({
(1992, ...): 'V1252', (1981, 1990): 'V578', 1979: 'V2350', 1978: 'V2479',
1977: 'V90', 1976: 'V2365',
# actually, this is retirement + pension
}, descr='')
income_retirement_other = IncomeField({
(1992, ...): 'V1258', (..., 1990): None,
}, descr='')
income_pension_main = IncomeField({
(1992, ...): 'V1255', (1981, 1990): 'V579', 1979: None, 1978: 'V2480',
1977: 'V91', 1976: None,
}, descr='')
income_pension_other = IncomeField({
(1992, ...): 'V1261', (..., 1990): None,
}, descr='')
income_permanence_bonus = IncomeField(
{(1992, ...): 'V1264', (1981, 1990): 'V580', (..., 1979): None},
descr='Paid to workers that can retire, but decide to continue working', )
@FunctionField
def income_pension(self, df):
return sum_na(df.income_pension_main, df.income_pension_other)
@FunctionField
def income_retirement(self, df):
return sum_na(df.income_retirement_main, df.income_retirement_other)
@FunctionField
def income_social(self, df):
return sum_na(df.income_pension, df.income_retirement,
df.income_permanence_bonus)
#
# Capital income
#
income_rent = IncomeField({
(1992, ...): 'V1267', (1981, 1990): 'V581', 1979: 'V2363', 1978: 'V2482',
1977: 'V93', 1976: 'V2363',
}, descr='')
income_investments = IncomeField({
(1992, ...): 'V1273', (..., 1990): None,
# does it have a better description?
# OUTR. REC. EMPREG.CAPITA
1979: 'V2361', 1978: 'V2483', 1977: 'V95', 1976: None,
}, descr='All sources of financial yield except for rents')
@FunctionField
def income_capital(self, df):
"""All sources of capital income"""
total = sum_na(df.income_rent, df.income_investiments)
if self.year == 1977:
sum_na(df.V94, df.V97)
return total
# Other income sources ####################################################
income_other = IncomeField({
(1992, ...): None, (1981, 1990): 'V582', (1978, 1979): None, 1977: 'V96',
1976: 'V2366',
}, descr='')
income_donation = IncomeField({
(1992, ...): 'V1270', (1981, 1990): None, 1979: 'V2362', 1978: 'V2481',
1977: 'V92', 1976: 'V2364',
}, descr='')
@FunctionField
def income_misc(self, df):
return sum_na(df.income_donation, df.income_other)
#
# Total incomes
#
@FunctionField
def income_work(self, df): # @NoSelf
"""Sum of all income sources due to labor"""
# Also computed in PNAD as V4719 (yr > 1992)
total = sum_na(df.income_work_main, df.income_work_other)
# These are used to quantify total income due to work for people who
# do not want to declare each job separately
if self.year > 1992 and 'V7122' in df and 'V7125' in df:
T = IncomeField.remove_missing
total = sum_na(total, T(df.V7122), T(df.V7125))
return total
@FunctionField
def income(self, df):
"""Total income of an individual"""
return sum_na(df.income_work, df.income_social, df.income_capital,
df.income_misc)
#
# Family and household
#
income_household = IncomeField(
{(1992, ...): 'V4721', (1981, 1990): 'V410', (..., 1979): None, }, descr='')
income_family = IncomeField(
{(1992, ...): 'V4722', (1981, 1990): 'V5010', (..., 1979): None, }, descr='')
income_household_per_capta = IncomeField(
{(1992, ...): 'V4742', (1981, 1990): None, (..., 1979): None, }, descr='')
income_family_per_capta = IncomeField(
{(1992, ...): 'V4750', (1981, 1990): None, (..., 1979): None, }, descr='')
class OccupationDataMixin:
occupation_week = Field({(1992, ...): 'V9906', (..., 1990): 'V503', }, descr='Occupation at the week the survey was taken')
occupation_year = Field({(1992, ...): 'V9971', (..., 1990): None, }, descr='')
occupation_secondary = Field({(1992, ...): 'V9990', (..., 1990): None, }, descr='')
occupation_previous = Field({(1992, ...): 'V9910', (..., 1990): None, }, descr='')
occupation_first = Field({(1992, ...): 'V1298', (..., 1990): None, }, descr='')
occupation_father = Field({(1992, ...): 'V1293', (..., 1990): None, }, descr='')
occupation_father_previous = Field({(1992, ...): 'V1258', (..., 1990): None, },
descr='')
is_occupied = Field({(1992, ...): 'V4705', (..., 1990): None, }, descr='')
is_active = Field({(1992, ...): 'V4704', (..., 1990): None, }, descr='')
work_duration = Field({(1992, ...): 'V4707', (..., 1990): None, }, descr='')
@FunctionField
def occupation(self, df):
return df.occupation_week # TODO: improve this!
| 2.890625 | 3 |
Macroeconomia/Argentina/IndicadoresEmpleoDesocupacion.py | alejivo/Macroeconomics | 0 | 12799726 | <reponame>alejivo/Macroeconomics
import pandas as pd
import io
import requests
import json
class IndicadoresEmpleoDesocupacion:
def __init__(self):
"""
Los indicadores de empleo y desocupacion se basan en gran medida en la
EPC (encuesta permanente de hogares) en 31 aglomeraciones urbanas.
"""
pass
def getTasaActividad(self, periodo = "Anual"):
"""
La tasa de actividad es PEA/PoblacionTotal
Se considera como una tasa indicadora de la oferta laboral por parte
de los trabajadores.
Parameters
----------
periodo : str, optional (puede ser "Anual", "Trimestral")
DESCRIPTION. The default is "Anual".
Returns
-------
pd.DataFrame().
"""
#Obtener la url de descarga del cvs
urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-principales-variables-ocupacionales-eph-continua-actividad"
s=requests.get(urlPackage).content
objJson = json.loads(s)
resultado = objJson['result']['resources']
selector = 1 if periodo == "Trimestral" else 0 #si no es trimestral siempre es anual
ultimoResultado = resultado[selector]
urlDescarga = ultimoResultado['url']
descripcion = ultimoResultado['description']
print("Descargando: {}".format(descripcion))
print("Archivo: {}".format(urlDescarga))
#Descargar la url con cvs y generar pandas dataframe
contenidoCVS = requests.get(urlDescarga).content
flujoCVS = io.StringIO(contenidoCVS.decode('utf-8'))
df_temp = pd.read_csv(flujoCVS)
#transform string to datetime
df_temp['indice_tiempo'] = pd.to_datetime(df_temp['indice_tiempo'], format='%Y-%m-%d', errors='ignore')
df_temp['indice_tiempo'] = df_temp['indice_tiempo'].dt.date
#set index
df_temp.set_index('indice_tiempo', inplace=True)
return df_temp
def getTasaEmpleo(self, periodo = "Anual"):
"""
La tasa de empleo se calcula como poblacion ocupada/poblacion total
Se concidera como una tasa representativa de la demanda laboral ejercida
por la empresas.
Parameters
----------
periodo : str, optional (puede ser "Anual", "Trimestral")
DESCRIPTION. The default is "Anual".
Returns
-------
pd.DataFrame().
"""
#Obtener la url de descarga del cvs
urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-principales-variables-ocupacionales-eph-continua-empleo"
s=requests.get(urlPackage).content
objJson = json.loads(s)
resultado = objJson['result']['resources']
selector = 1 if periodo == "Trimestral" else 0 #si no es trimestral siempre es anual
ultimoResultado = resultado[selector]
urlDescarga = ultimoResultado['url']
descripcion = ultimoResultado['description']
print("Descargando: {}".format(descripcion))
print("Archivo: {}".format(urlDescarga))
#Descargar la url con cvs y generar pandas dataframe
contenidoCVS = requests.get(urlDescarga).content
flujoCVS = io.StringIO(contenidoCVS.decode('utf-8'))
df_temp = pd.read_csv(flujoCVS)
#transform string to datetime
df_temp['indice_tiempo'] = pd.to_datetime(df_temp['indice_tiempo'], format='%Y-%m-%d', errors='ignore')
df_temp['indice_tiempo'] = df_temp['indice_tiempo'].dt.date
#set index
df_temp.set_index('indice_tiempo', inplace=True)
return df_temp
def getTasaDesocupacion(self, periodo = "Anual"):
"""
Se calcula como: poblacion desocupada/PEA
Parameters
----------
periodo : str, optional (puede ser "Anual", "Trimestral")
DESCRIPTION. The default is "Anual".
Returns
-------
pd.DataFrame().
"""
#Obtener la url de descarga del cvs
urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-principales-variables-ocupacionales-eph-continua-desempleo"
s=requests.get(urlPackage).content
objJson = json.loads(s)
resultado = objJson['result']['resources']
selector = 1 if periodo == "Trimestral" else 0 #si no es trimestral siempre es anual
ultimoResultado = resultado[selector]
urlDescarga = ultimoResultado['url']
descripcion = ultimoResultado['description']
print("Descargando: {}".format(descripcion))
print("Archivo: {}".format(urlDescarga))
#Descargar la url con cvs y generar pandas dataframe
contenidoCVS = requests.get(urlDescarga).content
flujoCVS = io.StringIO(contenidoCVS.decode('utf-8'))
df_temp = pd.read_csv(flujoCVS)
#transform string to datetime
df_temp['indice_tiempo'] = pd.to_datetime(df_temp['indice_tiempo'], format='%Y-%m-%d', errors='ignore')
df_temp['indice_tiempo'] = df_temp['indice_tiempo'].dt.date
#set index
df_temp.set_index('indice_tiempo', inplace=True)
return df_temp
def getTasaSubocupacionDemandante(self, periodo = "Anual"):
"""
Se calcula como poblacion desocupada demandante/PEA
Parameters
----------
periodo : str, optional (puede ser "Anual", "Trimestral")
DESCRIPTION. The default is "Anual".
Returns
-------
pd.DataFrame().
"""
#Obtener la url de descarga del cvs
urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-principales-variables-ocupacionales-eph-continua-subocupacion-demandante"
s=requests.get(urlPackage).content
objJson = json.loads(s)
resultado = objJson['result']['resources']
selector = 1 if periodo == "Trimestral" else 0 #si no es trimestral siempre es anual
ultimoResultado = resultado[selector]
urlDescarga = ultimoResultado['url']
descripcion = ultimoResultado['description']
print("Descargando: {}".format(descripcion))
print("Archivo: {}".format(urlDescarga))
#Descargar la url con cvs y generar pandas dataframe
contenidoCVS = requests.get(urlDescarga).content
flujoCVS = io.StringIO(contenidoCVS.decode('utf-8'))
df_temp = pd.read_csv(flujoCVS)
#transform string to datetime
df_temp['indice_tiempo'] = pd.to_datetime(df_temp['indice_tiempo'], format='%Y-%m-%d', errors='ignore')
df_temp['indice_tiempo'] = df_temp['indice_tiempo'].dt.date
#set index
df_temp.set_index('indice_tiempo', inplace=True)
return df_temp
def getTasaSubocupacionNoDemandante(self, periodo = "Anual"):
"""
Se calcula como poblacion desocupada NO demandante/PEA
Parameters
----------
periodo : str, optional (puede ser "Anual", "Trimestral")
DESCRIPTION. The default is "Anual".
Returns
-------
pd.DataFrame().
"""
#Obtener la url de descarga del cvs
urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-principales-variables-ocupacionales-eph-continua-subocupacion-no-demandante"
s=requests.get(urlPackage).content
objJson = json.loads(s)
resultado = objJson['result']['resources']
selector = 1 if periodo == "Trimestral" else 0 #si no es trimestral siempre es anual
ultimoResultado = resultado[selector]
urlDescarga = ultimoResultado['url']
descripcion = ultimoResultado['description']
print("Descargando: {}".format(descripcion))
print("Archivo: {}".format(urlDescarga))
#Descargar la url con cvs y generar pandas dataframe
contenidoCVS = requests.get(urlDescarga).content
flujoCVS = io.StringIO(contenidoCVS.decode('utf-8'))
df_temp = pd.read_csv(flujoCVS)
#transform string to datetime
df_temp['indice_tiempo'] = pd.to_datetime(df_temp['indice_tiempo'], format='%Y-%m-%d', errors='ignore')
df_temp['indice_tiempo'] = df_temp['indice_tiempo'].dt.date
#set index
df_temp.set_index('indice_tiempo', inplace=True)
return df_temp
def getIndiceSalariosBase2016(self):
"""
Es un indice que estima la evolucion de los salarios de la economia
Base octubre 2016
Returns
-------
pd.DataFrame().
"""
#Obtener la url de descarga del cvs
urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-indice-salarios-base-octubre-2016"
s=requests.get(urlPackage).content
objJson = json.loads(s)
resultado = objJson['result']['resources']
selector = 0 #si no es trimestral o mensual siempre es anual
ultimoResultado = resultado[selector]
urlDescarga = ultimoResultado['url']
descripcion = ultimoResultado['description']
print("Descargando: {}".format(descripcion))
print("Archivo: {}".format(urlDescarga))
#Descargar la url con cvs y generar pandas dataframe
contenidoCVS = requests.get(urlDescarga).content
flujoCVS = io.StringIO(contenidoCVS.decode('utf-8'))
df_temp = pd.read_csv(flujoCVS)
#transform string to datetime
df_temp['indice_tiempo'] = pd.to_datetime(df_temp['indice_tiempo'], format='%Y-%m-%d', errors='ignore')
df_temp['indice_tiempo'] = df_temp['indice_tiempo'].dt.date
#set index
df_temp.set_index('indice_tiempo', inplace=True)
return df_temp
| 3.4375 | 3 |
cs15211/KthLargestElementinaStream.py | JulyKikuAkita/PythonPrac | 1 | 12799727 | __source__ = 'https://leetcode.com/problems/kth-largest-element-in-a-stream/'
# Time: O()
# Space: O()
#
# Description: Leetcode # 703. Kth Largest Element in a Stream
#
# Design a class to find the kth largest element in a stream.
# Note that it is the kth largest element in the sorted order, not the kth distinct element.
#
# Your KthLargest class will have a constructor which accepts an integer k and an integer array nums,
# which contains initial elements from the stream. For each call to the method KthLargest.add,
# return the element representing the kth largest element in the stream.
#
# Example:
#
# int k = 3;
# int[] arr = [4,5,8,2];
# KthLargest kthLargest = new KthLargest(3, arr);
# kthLargest.add(3); // returns 4
# kthLargest.add(5); // returns 5
# kthLargest.add(10); // returns 5
# kthLargest.add(9); // returns 8
# kthLargest.add(4); // returns 8
# Note:
# You may assume that nums length >= k-1 and k >= 1.
#
import unittest
class Solution(object):
pass # your function here
class TestMethods(unittest.TestCase):
def test_Local(self):
self.assertEqual(1, 1)
if __name__ == '__main__':
unittest.main()
Java = '''
# Thought:
# use PQ
# 77ms 83.97%
class KthLargest {
private PriorityQueue<Integer> pq;
private int k;
public KthLargest(int k, int[] nums) {
this.k = k;
this.pq = new PriorityQueue<>();
for (int num : nums) {
pq.offer(num);
if (pq.size() > k)
pq.poll();
}
}
public int add(int val) {
pq.offer(val);
if (pq.size() > k)
pq.poll();
return pq.peek();
}
}
# use BST
# 428ms 5.74%
class KthLargest {
TreeNode root;
private int k;
public KthLargest(int k, int[] nums) {
this.k = k - 1;
for (int n : nums) {
root = insert(root, n);
}
}
public int add(int val) {
root = insert(root, val);
return findKthLargest(k, root);
}
private int findKthLargest(int k, TreeNode root) {
if (root == null) return -1;
if (root.mRightSum == k) return root.mVal;
if (root.mRightSum > k) {
return findKthLargest(k, root.right);
} else {
return findKthLargest(k - root.mRightSum - 1, root.left);
}
}
private TreeNode insert(TreeNode root, int val) {
if (root == null) return new TreeNode(val, 0);
if (val < root.mVal) {
root.left = insert(root.left, val);
} else {
root.mRightSum++;
root.right = insert(root.right, val);
}
return root;
}
private class TreeNode {
int mVal;
int mRightSum;
TreeNode left;
TreeNode right;
TreeNode(int val, int rightSum) {
mVal = val;
mRightSum = rightSum;
}
}
}
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/
''' | 3.875 | 4 |
examples/nv-hpc-sdk_test.py | owainkenwayucl/gepy | 0 | 12799728 | <gh_stars>0
#/usr/bin/env python3
# This script does a test of a particular nvidia compiler on Myriad
import sys
import os
import copy
import time
import gepy
import gepy.executor
compiler_module = 'compilers/nvhpc/21.11'
repo = 'https://github.com/UCL-RITS/pi_examples.git'
if (len(sys.argv) > 1):
compiler_module = sys.argv[1]
print('Generating job scripts for compiler module: ' + compiler_module)
template_job = gepy.job(name='nvtest')
template_job.modules.append('personal-modules')
template_job.modules.append('testing-modules')
template_job.modules.append(compiler_module)
template_job.add_resource('gpu','1')
template_job.set_node_classes('EFL')
tmp_dir = 'nvtest_'+str(time.time())
os.mkdir(tmp_dir)
template_job.location=os.getcwd() + '/' + tmp_dir
status = gepy.executor.run(['git', 'clone', repo, tmp_dir + '/pi_examples'])
if (status.returncode != 0):
sys.exit('Error cloning repo: ' + status.stderr)
template_job.workload.append(gepy.serial_command('cd ', ['pi_examples']))
# Right, that's the repo cloned and a template job created.
doconc_job = copy.deepcopy(template_job)
cudaf_job = copy.deepcopy(template_job)
openmp_job = copy.deepcopy(template_job)
openacc_job = copy.deepcopy(template_job)
# do concurrent test
doconc_job.workload.append(gepy.serial_command('cd ', ['fortran_do_concurrent_pi_dir']))
doconc_job.workload.append(gepy.serial_command('make ', ['clean']))
doconc_job.workload.append(gepy.serial_command('make ', ['nvhpc']))
doconc_job.workload.append(gepy.serial_command('./pi', []))
doconc_job.name = template_job.name + 'doconc'
# cuda fortran test
cudaf_job.workload.append(gepy.serial_command('cd ', ['cudafortran_pi_dir']))
cudaf_job.workload.append(gepy.serial_command('make ', ['clean']))
cudaf_job.workload.append(gepy.serial_command('make ', []))
cudaf_job.workload.append(gepy.serial_command('./pi', []))
cudaf_job.name = template_job.name + 'cudaf'
# openmp fortran test
openmp_job.workload.append(gepy.serial_command('cd ', ['fortran_omp_pi_dir']))
openmp_job.workload.append(gepy.serial_command('make ', ['clean']))
openmp_job.workload.append(gepy.serial_command('make ', ['nvhpc_offload']))
openmp_job.workload.append(gepy.serial_command('./pi_gpu', []))
openmp_job.name = template_job.name + 'openmp'
# openacc fortran test
openacc_job.workload.append(gepy.serial_command('cd ', ['fortran_openacc_pi_dir']))
openacc_job.workload.append(gepy.serial_command('make ', ['clean']))
openacc_job.workload.append(gepy.serial_command('make ', ['-f' 'Makefile.myriad', 'pi']))
openacc_job.workload.append(gepy.serial_command('./pi', []))
openacc_job.name = template_job.name + 'openacc'
print('Submitting jobs')
j,t = gepy.executor.qsub(doconc_job.get_job_script())
j,t = gepy.executor.qsub(cudaf_job.get_job_script())
j,t = gepy.executor.qsub(openmp_job.get_job_script())
j,t = gepy.executor.qsub(openacc_job.get_job_script())
print('Done') | 2.140625 | 2 |
robotino_ros/src/twist_motor_omni.py | aadi-mishra/robotino | 2 | 12799729 | <filename>robotino_ros/src/twist_motor_omni.py
#!/usr/bin/env python
import rospy
import roslib
import math
from std_msgs.msg import Float32,Int32, UInt8MultiArray, Bool, String
from geometry_msgs.msg import Twist
from sensor_msgs.msg import Range
import numpy as np
from numpy import linalg as al
class TwistToMotors():
def __init__(self):
rospy.init_node("twist_to_motors")
nodename = rospy.get_name()
rospy.loginfo("%s started" % nodename)
self.M_PI = math.pi
self.motor_velocities = []
# Create publishers that publishes target velocity to the PID controller
self.pub_lmotor = rospy.Publisher('lwheel_vtarget', Float32,queue_size=10)
self.pub_rmotor = rospy.Publisher('rwheel_vtarget', Float32,queue_size=10)
self.pub_bmotor = rospy.Publisher('bwheel_vtarget', Float32,queue_size=10)
# Subscribe to the velocity commands from teleop
rospy.Subscriber('/robotino/cmd_vel', Twist, self.twistCallback, queue_size=10)
self.rate = rospy.get_param("~rate", 100)
self.timeout_ticks = rospy.get_param("~timeout_ticks", 100)
self.left = 0
self.right = 0
self.back = 0
def spin(self):
r = rospy.Rate(self.rate)
idle = rospy.Rate(100)
self.ticks_since_target = self.timeout_ticks
while not rospy.is_shutdown():
while not rospy.is_shutdown() and self.ticks_since_target < self.timeout_ticks:
self.spinOnce()
r.sleep()
idle.sleep()
def spinOnce(self):
# Calculating the individual motor velocity for a motion command
angle_mat = np.array([[math.cos(30*(self.M_PI/180)), math.cos(150*(self.M_PI/180)), math.cos(90*(self.M_PI/180))],
[-math.sin(30*(self.M_PI/180)), -math.sin(150*(self.M_PI/180)),math.sin(90*(self.M_PI/180))],
[1, 1, 1]])
angle_mat_inv = al.inv(angle_mat)
[v_r, v_l, v_b] = np.dot(angle_mat_inv, np.array([self.dx, self.dy, self.dr]))
# Assigning the calculated velocities to each motors
self.right = v_r
self.left = v_l
self.back = v_b
self.pub_lmotor.publish(self.left)
self.pub_rmotor.publish(self.right)
self.pub_bmotor.publish(self.back)
self.ticks_since_target += 1
# Callback function
def twistCallback(self,msg):
self.ticks_since_target = 0
self.dx = msg.linear.x
self.dr = msg.angular.z
self.dy = msg.linear.y
if __name__ == '__main__':
""" main """
twistToMotors = TwistToMotors()
twistToMotors.spin()
| 2.5 | 2 |
ai.py | AyushAryal/chess | 9 | 12799730 | <gh_stars>1-10
from stockfish import Stockfish
def get_best_move(board):
stockfish = Stockfish()
move_list = []
for move in board.moves:
move_list.append(move.to_long_algebraic())
stockfish.set_position(move_list)
return long_algebraic_to_coordinate(stockfish.get_best_move())
def long_algebraic_to_coordinate(move):
initial, final, promotion_piece = move[:2], move[2:4], move[4:]
i_x, i_y = initial[1], initial[0]
f_x, f_y = final[1], final[0]
i_y = ord(i_y) - ord("a")
f_y = ord(f_y) - ord("a")
i_x = 8 - int(i_x)
f_x = 8 - int(f_x)
return ((i_x, i_y), (f_x, f_y), promotion_piece)
| 2.75 | 3 |
src/service/start.py | Ellie-Yen/-Python-Tic-Tac-Toe-Game | 0 | 12799731 | <gh_stars>0
from ..gameModel import GameModel
from ..appLib.messageFormatters import msgWelcome
async def start(cls: GameModel) -> None:
return msgWelcome() | 1.554688 | 2 |
exercicio_py/ex0002_tabuada_multiplicacao/main_v2.py | danielle8farias/Exercicios-Python-3 | 0 | 12799732 | <gh_stars>0
#!/usr/bin/env python3.8
########
# autora: <EMAIL>
# repositório: https://github.com/danielle8farias
# Descrição: Usuário digita um número inteiro e programa retorna a tabuada de multiplicação desse.
########
import sys
sys.path.append('/home/danielle8farias/hello-world-python3/meus_modulos')
from mensagem import *
from numeros import ler_num_nat
ler_cabecalho('tabuada de multiplicação')
while True:
num = ler_num_nat('Digite um número: ')
i = 1
for i in range(i, 10):
print(f'{num:4} x {i} = {num*i}')
print()
resposta = ' '
while resposta not in 'SN':
resposta = ler_resposta('\nDeseja rodar o programa de novo? [S/N] ')
if resposta == 'N':
break
criar_linha()
criar_rodape()
| 4.0625 | 4 |
beverages/models.py | vchrisb/Kudo4Coffee | 0 | 12799733 | from django.db import models
from django.utils import timezone
# Create your models here.
class Beverage(models.Model):
"""( description)"""
created_by = models.ForeignKey('auth.User', on_delete=models.SET_NULL, null=True)
name = models.CharField(max_length=100)
key = models.CharField(max_length=100)
description = models.CharField(max_length=200)
fill_quantity_min = models.IntegerField()
fill_quantity_max = models.IntegerField()
fill_quantity_steps = models.IntegerField()
def __str__(self):
return str(self.name)
class BeverageHistory(models.Model):
bean_amount_choices = (
('VeryMild', 'Very mild'),
('Mild', 'Mild'),
('MildPlus', 'Mild +'),
)
temperature_choices = (
('88C', '88 °C'),
('90C', '90 °C'),
('92C', '92 °C'),
)
created_by = models.ForeignKey('auth.User', on_delete=models.SET_NULL, null=True)
created_at = models.DateTimeField(default=timezone.now)
bean_amount = models.CharField(max_length=100, choices=bean_amount_choices, default='Mild')
temperature = models.CharField(max_length=100, choices=temperature_choices, default='90C')
beverage = models.ForeignKey(Beverage, on_delete=models.CASCADE) | 2.578125 | 3 |
glu/cli.py | chongkong/glu | 7 | 12799734 | <reponame>chongkong/glu
import argparse
import json
import yaml
import os
import logging
from collections import OrderedDict
from glu.util import OrderedDictYamlLoader
from glu import create_scope
def load_file(path):
if path.lower().endswith('.yml') or path.lower().endswith('.yaml'):
with open(path, 'r') as f:
return yaml.load(f, Loader=OrderedDictYamlLoader)
else:
with open(path, 'r') as f:
return json.load(f, object_pairs_hook=OrderedDict)
def load_scope_from_file(scope, file_uri):
path = file_uri
params = {}
if '?' in file_uri:
path, params = file_uri.split('?')
params = dict(tuple(field_and_value.split('='))
for field_and_value in params.split('&'))
scope.load(load_file(path), **params)
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source', required=True, dest='sources', nargs='+', help='Path to the source file')
parser.add_argument('-e', '--use-env', action='store_true', help='Use environment variable')
parser.add_argument('-t', '--template', required=True, help='Path to the template file')
parser.add_argument('-o', '--output', required=True, help='Path for output file')
return parser.parse_args()
def main():
args = parse()
scope = create_scope()
if args.use_env:
scope.load(dict(os.environ.items()), load_to='@env')
for file_uri in args.sources:
load_scope_from_file(scope, file_uri)
template = load_file(args.template)
res = scope.glue(template)
logging.info('Result:\n{}'.format(json.dumps(res, indent=2)))
with open(args.output, 'w') as f:
json.dump(res, f, indent=2, separators=(',', ': '))
f.write('\n')
| 2.328125 | 2 |
handover/evaluation/test_cases/test_58_std.py | CN-UPB/sharp | 2 | 12799735 | <gh_stars>1-10
from ._base import *
class TestCase003(TestCase):
def __init__(self):
TestCase.__init__(self,
id='003',
alt_id='fixed_pps_increasing_pps_58_bytes',
description='Fixed PPS. Increasing State Transfer Duration. 58 Byte Packets',
pps=1000,
packet_size=58,
state_duration=[0, 1, 0.1],
reports=STD_REPORTS)
| 1.820313 | 2 |
assignments/assignment2/layers.py | INeedTractorPlz/dlcourse_ai | 1 | 12799736 | <gh_stars>1-10
import numpy as np
from math import exp, log
def l2_regularization(W, reg_strength):
"""
Computes L2 regularization loss on weights and its gradient
Arguments:
W, np array - weights
reg_strength - float value
Returns:
loss, single value - l2 regularization loss
gradient, np.array same shape as W - gradient of weight by l2 loss
"""
# TODO: Copy from the previous assignment
loss = reg_strength*sum(sum(W**2));
grad = reg_strength*2*W;
return loss, grad
def cross_entropy_loss(probs, target_index):
'''
Computes cross-entropy loss
Arguments:
probs, np array, shape is either (N) or (batch_size, N) -
probabilities for every class
target_index: np array of int, shape is (1) or (batch_size) -
index of the true class for given sample(s)
Returns:
loss: single value
'''
# TODO implement cross-entropy
#print("probs:", probs);
return -log(probs[target_index - 1]);
def softmax_with_cross_entropy(predictions, target_index):
"""
Computes softmax and cross-entropy loss for model predictions,
including the gradient
Arguments:
predictions, np array, shape is either (N) or (N, batch_size) -
classifier output
target_index: np array of int, shape is (1) or (batch_size) -
index of the true class for given sample(s)
Returns:
loss, single value - cross-entropy loss
dprediction, np array same shape as predictions - gradient of predictions by loss value
"""
# TODO: Copy from the previous assignment
# TODO implement softmax with cross-entropy
#One-dimension option
if predictions.ndim == 1:
predictions_ = predictions - np.max(predictions);
dprediction = np.array(list(map(exp, predictions_)));
summ = sum(dprediction);
dprediction /= summ;
loss = cross_entropy_loss(dprediction, target_index);
dprediction[target_index - 1] -= 1;
return loss, dprediction;
else:
predictions_ = predictions - np.max(predictions, axis = 1)[:, np.newaxis];
exp_vec = np.vectorize(exp);
#print("predictions_:", predictions_);
dprediction = np.apply_along_axis(exp_vec, 1, predictions_);
#print("dprediction before division: ", dprediction);
summ = sum(dprediction.T);
#print("summ: ", summ);
dprediction /= summ[:, np.newaxis];
#print("dprediction after division: ", dprediction);
loss = np.array([cross_entropy_loss(x,y) for x,y in zip(dprediction, target_index)]);
#print("loss: ", loss);
#print("target_index - 1:", target_index - 1);
it = np.nditer(target_index - 1, flags = ['c_index'] )
while not it.finished:
#print("it[0] = ", it[0]);
dprediction[it.index, it[0]] -= 1
it.iternext()
dprediction /= len(target_index);
#print("dprediction after subtraction: ", dprediction);
return loss.mean(), dprediction;
raise Exception("Not implemented!")
class Param:
"""
Trainable parameter of the model
Captures both parameter value and the gradient
"""
def __init__(self, value):
#self.init = value.copy();
self.value = value;
self.grad = np.zeros_like(value);
class ReLULayer:
def __init__(self):
self.X = None
def forward(self, X):
# TODO: Implement forward pass
# Hint: you'll need to save some information about X
# to use it later in the backward pass
self.X = X;
return (X > 0)*X;
def backward(self, d_out):
"""
Backward pass
Arguments:
d_out, np array (batch_size, num_features) - gradient
of loss function with respect to output
Returns:
d_result: np array (batch_size, num_features) - gradient
with respect to input
"""
# TODO: Implement backward pass
# Your final implementation shouldn't have any loops
return (self.X > 0)*d_out;
def params(self):
# ReLU Doesn't have any parameters
return {}
class FullyConnectedLayer:
def __init__(self, n_input, n_output):
self.W = Param(0.01 * np.random.randn(n_input, n_output))
self.B = Param(0.01 * np.random.randn(1, n_output))
self.X = None
def forward(self, X):
# TODO: Implement forward pass
# Your final implementation shouldn't have any loops
self.X = X;
#if np.any(self.W.init != self.W.value) or np.any(self.B.init != self.B.value):
self.W.grad = np.zeros_like(self.W.value);
self.B.grad = np.zeros_like(self.B.value);
# self.W.init = self.W.value;
# self.B.init = self.B.value;
return np.dot(self.X, self.W.value) + self.B.value;
def backward(self, d_out):
"""
Backward pass
Computes gradient with respect to input and
accumulates gradients within self.W and self.B
Arguments:
d_out, np array (batch_size, n_output) - gradient
of loss function with respect to output
Returns:
d_result: np array (batch_size, n_input) - gradient
with respect to input
"""
# TODO: Implement backward pass
# Compute both gradient with respect to input
# and gradients with respect to W and B
# Add gradients of W and B to their `grad` attribute
# It should be pretty similar to linear classifier from
# the previous assignment
dW = np.dot(self.X.T, d_out);
dB = np.dot(np.ones((1, d_out.shape[0])), d_out);
d_input = np.dot(d_out, self.W.value.T);
self.W.grad += dW;
self.B.grad += dB;
return d_input;
def params(self):
return {'W': self.W, 'B': self.B}
| 3.4375 | 3 |
senergy/fixed_assets/doctype/fixed_asset_request/fixed_asset_request.py | TridotsTech/senergy | 0 | 12799737 | <reponame>TridotsTech/senergy
# -*- coding: utf-8 -*-
# Copyright (c) 2020, TeamPRO and contributors
# For license information, please see license.txt
from __future__ import unicode_literals
import frappe
from frappe.model.document import Document
from frappe.model.mapper import get_mapped_doc
from frappe.utils import cstr, flt, getdate, new_line_sep, nowdate, add_days, get_link_to_form
class FixedAssetRequest(Document):
pass
def set_missing_values(source, target_doc):
if target_doc.doctype == "Purchase Order" and getdate(target_doc.schedule_date) < getdate(nowdate()):
target_doc.schedule_date = None
target_doc.run_method("set_missing_values")
target_doc.run_method("calculate_taxes_and_totals")
@frappe.whitelist()
def get_default_supplier_query(doctype, txt, searchfield, start, page_len, filters):
doc = frappe.get_doc("Fixed Asset Request", filters.get("doc"))
item_list = []
for d in doc.items:
item_list.append(d.item_code)
return frappe.db.sql("""select default_supplier
from `tabItem Default`
where parent in ({0}) and
default_supplier IS NOT NULL
""".format(', '.join(['%s']*len(item_list))),tuple(item_list))
@frappe.whitelist()
def make_supplier_quotation(source_name, target_doc=None):
def postprocess(source, target_doc):
set_missing_values(source, target_doc)
doclist = get_mapped_doc("Fixed Asset Request", source_name, {
"Fixed Asset Request": {
"doctype": "Supplier Quotation",
"validation": {
"docstatus": ["=", 1],
"material_request_type": ["=", "Purchase"]
}
},
"Fixed Asset Request Item": {
"doctype": "Supplier Quotation Item",
"field_map": [
["name", "fixed_asset_request_item"],
["parent", "fixed_asset_request"],
["uom", "uom"],
["uom", "stock_uom"],
]
}
}, target_doc, postprocess)
return doclist
@frappe.whitelist()
def make_request_for_quotation(source_name, target_doc=None):
doclist = get_mapped_doc("Fixed Asset Request", source_name, {
"Fixed Asset Request": {
"doctype": "Request for Quotation",
"validation": {
"docstatus": ["=", 1],
"material_request_type": ["=", "Purchase"]
}
},
"Fixed Asset Request Item": {
"doctype": "Request for Quotation Item",
"field_map": [
["name", "fixed_asset_request_item"],
["parent", "fixed_asset_request"],
["uom", "stock_uom"],
["uom", "Nos"]
]
}
}, target_doc)
return doclist
# def update_item(obj, target, source_parent):
# target.conversion_factor = obj.conversion_factor
# target.qty = flt(flt(obj.stock_qty) - flt(obj.ordered_qty))/ target.conversion_factor
# target.stock_qty = (target.qty * target.conversion_factor)
# if getdate(target.schedule_date) < getdate(nowdate()):
# target.schedule_date = None
@frappe.whitelist()
def make_purchase_order(source_name, target_doc=None):
def postprocess(source, target_doc):
if frappe.flags.args and frappe.flags.args.default_supplier:
# items only for given default supplier
supplier_items = []
for d in target_doc.items:
default_supplier = get_item_defaults(d.item_code, target_doc.company).get('default_supplier')
if frappe.flags.args.default_supplier == default_supplier:
supplier_items.append(d)
target_doc.items = supplier_items
set_missing_values(source, target_doc)
# def select_item(d):
# frappe.errprint(d)
# return d.ordered_qty < d.stock_qty
doclist = get_mapped_doc("Fixed Asset Request", source_name, {
"Fixed Asset Request": {
"doctype": "Purchase Order",
"validation": {
"docstatus": ["=", 1],
"material_request_type": ["=", "Purchase"]
}
},
"Fixed Asset Request Item": {
"doctype": "Purchase Order Item",
"field_map": [
["name", "fixed_asset_request_item"],
["parent", "fixed_asset_request"],
["uom", "stock_uom"],
["uom", "uom"],
["sales_order", "sales_order"],
["sales_order_item", "sales_order_item"]
],
# "postprocess": update_item,
# "condition": select_item
}
}, target_doc, postprocess)
return doclist
| 1.703125 | 2 |
learn/decorator/1.py | PuddingWalker/py_small_projects | 0 | 12799738 | <reponame>PuddingWalker/py_small_projects
#########################################################################
# File Name: 1.py
# Author: Walker
# mail:<EMAIL>
# Created Time: Tue Dec 7 14:58:24 2021
#########################################################################
# !/usr/bin/env python3
import time
import threading
import json
import requests
def sum(*numbers):
total = 0.0
for number in numbers:
total += number
return total
x = 200
def print_value():
global x
x = 100
print('函数中x = {0}'.format(x))
print_value()
print('全局变量x = {0}'.format(x))
# 输出结果:
# 函数中x=100
# 全局变量x=100
arr = [n for n in range(100)]
def biger50(n):
return True if n > 50 else False
print(list(filter(biger50, arr)))
r = requests.get('https://cn.bing.com/')
# print(r.status_code)
# print(r.content)
# print(r.content.decode())
# json.loads(r.content)
def thread_body():
# current
t = threading.current_thread()
for n in range(5):
# cur
print('{0} th excute thread {1}.'.format(n, t.name))
# thread sleep
time.sleep(2)
print('thread {0} Done.'.format(t.name))
# main thread
# create th obj 1
t1 = threading.Thread(target=thread_body)
# obj 2
t2 = threading.Thread(target=thread_body, name="MyThread")
# active thread t1
# t1.start()
# active thread t2
# t2.start()
class SmallThread(threading.Thread):
def __init__(self, name=None):
super().__init__(name=name)
#
def run(self):
# current
t = threading.current_thread()
for n in range(5):
# cur
print("{0} th excute {1}".format(n, t.name))
# sleep
time.sleep(2)
print(f'thread{t.name} done.')
# main
# crt t1
#t1 = SmallThread("t1")
# crt t2
#t2 = SmallThread("t2")
# launch
# t1.start()
# t2.start()
value = []
def thread_body():
print(f'{threading.current_thread().name} starting...')
for n in range(4):
print(f'{n}_th {threading.current_thread().name} running...')
value.append(n)
time.sleep(2)
print(f'{threading.current_thread().name} done.')
#print("main ....")
#t1 = threading.Thread(target=thread_body)
# t1.start()
# block
# t1.join()
#print('value = {0}'.format(value))
#print('main continue')
# thread stop
isrunning = True
# work thread body
def workthread_body():
while isrunning:
# thread beginning to work
print(f'{threading.current_thread().name} is working...')
# thread sleep
time.sleep(5)
print(f'{threading.current_thread().name} Finished its job.')
# control thread body
def controlthread_body():
global isrunning
while isrunning:
# input stop cmd from standard input(keyboard)
command = input('Input Stop Command: ')
if command == 'exit':
isrunning = False
print('control thread done.')
# main
# crt work thread obj workthread
workthread = threading.Thread(target=workthread_body)
#
workthread.start()
# crt ctrl thread obj controlthread
controlthread = threading.Thread(target=controlthread_body)
controlthread.start()
| 2.6875 | 3 |
cantata/elements/synapse.py | kernfel/cantata | 0 | 12799739 | <filename>cantata/elements/synapse.py
import torch
from cantata import init
import cantata.elements as ce
class Synapse(ce.Module):
'''
Synapse with optional current, short- and long-term plasticity submodules
Input: Delayed presynaptic spikes; postsynaptic spikes; postsyn voltage
Output: Synaptic currents
'''
def __init__(self, W, signs_pre, delaymap=None, wmin=None, wmax=None,
current=None, stp=None, ltp=None, STDP_frac=None):
super().__init__()
self.active = W is not None
if not self.active:
return
self.register_parabuf('W', W)
self.register_buffer('W_signed', torch.empty_like(W), persistent=False)
if delaymap is None:
delaymap = torch.ones(1, *W.shape[-2:])
self.register_buffer('delaymap', delaymap, persistent=False)
self.register_buffer('signs_pre', signs_pre, persistent=False)
self.register_buffer('wmin', wmin, persistent=False)
self.register_buffer('wmax', wmax, persistent=False)
if ltp is not None:
if not torch.any(STDP_frac > 0):
ltp = None
else:
self.register_buffer('STDP_frac', STDP_frac, persistent=False)
self.shortterm = stp
self.longterm = ltp
self.current = current
self.reset()
@classmethod
def configured(cls, projections, conf_pre, conf_post, batch_size, dt,
stp=None, ltp=None, current=None,
shared_weights=True,
train_weight=True, disable_training=False, **kwargs):
active = len(projections[0]) > 0
if not active:
ret = cls(None, None, None)
ret.projections = projections
return ret
nPre = init.get_N(conf_pre)
nPost = nPre if conf_post is None else init.get_N(conf_post)
delaymap = init.get_delaymap(projections, dt, conf_pre, conf_post)
wmax = init.expand_to_synapses(projections, nPre, nPost, 'wmax')
wmin = init.expand_to_synapses(projections, nPre, nPost, 'wmin')
# Weights
bw = 0 if shared_weights else batch_size
w = init.build_connectivity(projections, nPre, nPost, bw)
if train_weight and not disable_training:
w = torch.nn.Parameter(w)
signs_pre = init.expand_to_neurons(conf_pre, 'sign').to(torch.int8)
if ltp is not None:
STDP_frac = init.expand_to_synapses(
projections, nPre, nPost, 'STDP_frac')
else:
STDP_frac = None
ret = cls(w, signs_pre, delaymap=delaymap, wmin=wmin, wmax=wmax,
current=current, stp=stp, ltp=ltp, STDP_frac=STDP_frac)
ret.projections = projections
return ret
def reset(self, keep_values=False):
if self.active:
self.align_signs()
if self.shortterm is not None:
self.shortterm.reset(keep_values)
if self.longterm is not None:
self.longterm.reset(self, keep_values)
if self.current is not None:
self.current.reset(keep_values)
def forward(self, Xd, X=None, Vpost=None):
'''
Xd: (delay, batch, pre)
X: (batch, post)
Vpost: (batch, post)
Output: Current (batch, post)
'''
if not self.active:
return torch.zeros_like(Vpost)
# LTP
if self.longterm is not None:
Wlong = self.longterm(Xd, X, Vpost)
W = self.W_signed * (1-self.STDP_frac) + Wlong * self.STDP_frac
WD = 'beo'
else:
W = self.W_signed
WD = 'eo' if len(self.W.shape) == 2 else 'beo'
# STP
if self.shortterm is not None:
Xd = Xd * (self.shortterm(Xd)+1) # dbe
# Integrate
output = self.internal_forward(WD, W, Xd)
# Current filter
if self.current is not None:
output = self.current(output)
return output
def internal_forward(self, WD, W, Xd):
return torch.einsum(
f'{WD}, dbe, deo ->bo',
W, Xd, self.delaymap)
def load_state_dict(self, *args, **kwargs):
super(Synapse, self).load_state_dict(*args, **kwargs)
self.align_signs()
def align_signs(self):
if not self.active:
return
signs = self.signs_pre.unsqueeze(1).expand_as(self.W)
# with torch.no_grad():
self.W_signed = torch.empty_like(self.W)
self.W_signed[signs == -1] = -torch.abs(self.W)[signs == -1]
self.W_signed[signs == 0] = self.W[signs == 0]
self.W_signed[signs == 1] = torch.abs(self.W)[signs == 1]
def weight(self):
return torch.abs(self.W)
| 2.1875 | 2 |
runtests.py | jmoujaes/dpaste | 0 | 12799740 | #!/usr/bin/env python
import sys
import django
from django.conf import settings
from django.test.runner import DiscoverRunner as TestRunner
SETTINGS = {
'DATABASES': {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'dev.db',
},
# 'default': {
# 'ENGINE': 'django.db.backends.mysql',
# 'NAME': 'dpaste',
# 'USER': 'root',
# 'PASSWORD': '',
# }
},
'TEMPLATES': [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.template.context_processors.i18n',
'dpaste.context_processors.dpaste_globals',
],
},
},
],
'INSTALLED_APPS': [
'django.contrib.sessions',
'django.contrib.staticfiles',
'dpaste',
],
'MIDDLEWARE_CLASSES': (
'django.contrib.sessions.middleware.SessionMiddleware',
),
'STATIC_ROOT': '/tmp/dpaste_test_static/',
'STATIC_URL': '/static/',
'ROOT_URLCONF': 'dpaste.urls',
'LANGUAGE_CODE': 'en',
'LANGUAGES': (('en', 'English'),),
}
def runtests(*test_args):
# Setup settings
if not settings.configured:
settings.configure(**SETTINGS)
# app registry setup
django.setup()
# test runner
test_runner = TestRunner(verbosity=1)
failures = test_runner.run_tests(['dpaste'])
if failures:
sys.exit(failures)
if __name__ == '__main__':
runtests(*sys.argv[1:])
| 1.953125 | 2 |
raspi_components/light/light.py | builderdev212/raspi_components | 1 | 12799741 | import RPi.GPIO as GPIO
from .light_errors import LedError
class Led:
"""
This is a class used to control LED's directly connected to the GPIO via a pin given.
See the documentation for an example of how to wire the LED.
"""
def __init__(self, pin):
"""
This initates the LED on the given pin, setting it into the output mode,
making sure it is off, and setting the PWM up so that the LED can be dimmed.
"""
try:
self.pin = int(pin)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(self.pin, GPIO.OUT)
GPIO.output(self.pin, GPIO.LOW)
self.led_dim = GPIO.PWM(self.pin, 500)
except:
raise LedError("Error during the initiation of the LED class.")
def on(self, brightness=100):
"""
Turns the defined LED on, the brightness is set by default to 100%.
"""
try:
self.led_dim.start(brightness)
except:
raise LedError("Error while turning the LED on.")
def off(self):
"""
Turns the defined LED off.
"""
try:
self.led_dim.stop()
except:
raise LedError("Error while turning the LED off.")
def dim(self, brightness):
"""
Dims the definied LED. Keep in mind, that if you don't first turn the
LED on this will error out.
"""
if brightness < 0:
brightness = 0
elif brightness > 100:
brightness = 100
else:
pass
try:
self.led_dim.ChangeDutyCycle(brightness)
except:
raise LedError("Error while dimming the LED. Make sure you have turned the LED on.")
| 4.1875 | 4 |
kimura/run.py | prprhyt/pacman | 0 | 12799742 | <reponame>prprhyt/pacman
# -*- coding: utf-8 -*-
# ! /usr/bin/python
#NLPでやってみた
#参考: https://spjai.com/category-classification/#i-5
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.externals import joblib
import os.path
import kimura.nlp_tasks as nlp_tasks
from sklearn.neural_network import MLPClassifier # アルゴリズムとしてmlpを使用
from sklearn.metrics import accuracy_score, confusion_matrix
XSS_TRAIN_FILE = 'dataset/train_level_1.csv'
XSS_TEST_FILE = 'dataset/test_level_1.csv'
NORMAL_TRAIN_FILE = 'dataset/normal.csv'
NORMAL_TEST_FILE = 'dataset/normal.csv'
def train():
classifier = MyMLPClassifier()
classifier.train()
def predict():
xss_test_data, xss_test_label = data_loader(XSS_TEST_FILE, 'xss')
normal_test_data, normal_test_label = data_loader(NORMAL_TEST_FILE, 'normal')
X_test = xss_test_data + normal_test_data
y_test = xss_test_label + normal_test_label
classifier = MyMLPClassifier()
classifier.load_model()
pred = classifier.predict(X_test)
acc_score = accuracy_score(y_test, pred)
conf_mat = confusion_matrix(
pred, y_test, labels=['xss', 'normal']
)
print("acc: \n", acc_score)
print("confusion matrix: \n", conf_mat)
class MyMLPClassifier():
model = None
model_name = "mlp"
def load_model(self):
if os.path.exists(self.get_model_path())==False:
raise Exception('no model file found!')
self.model = joblib.load(self.get_model_path())
self.classes = joblib.load(self.get_model_path('class')).tolist()
self.vectorizer = joblib.load(self.get_model_path('vect'))
self.le = joblib.load(self.get_model_path('le'))
def get_model_path(self,type='model'):
return 'kimura/models/'+self.model_name+"_"+type+'.pkl'
def get_vector(self,text):
return self.vectorizer.transform([text])
def train(self):
xss_train_data, xss_train_label = data_loader(XSS_TRAIN_FILE, 'xss')
normal_train_data, normal_train_label = data_loader(NORMAL_TRAIN_FILE, 'normal')
X_train = xss_train_data + normal_train_data
X, vectorizer = nlp_tasks.get_vector_by_text_list(X_train)
y_train = xss_train_label + normal_train_label
# loading labels
le = LabelEncoder()
le.fit(y_train)
Y = le.transform(y_train)
model = MLPClassifier(max_iter=300, hidden_layer_sizes=(100,),verbose=10,)
model.fit(X, Y)
# save models
joblib.dump(model, self.get_model_path())
joblib.dump(le.classes_, self.get_model_path("class"))
joblib.dump(vectorizer, self.get_model_path("vect"))
joblib.dump(le, self.get_model_path("le"))
self.model = model
self.classes = le.classes_.tolist()
self.vectorizer = vectorizer
def predict(self,query):
X = self.vectorizer.transform([query])
key = self.model.predict(X)
return self.classes[key[0]]
def data_loader(f_name, l_name):
with open(f_name, mode='r', encoding='utf-8') as f:
data = list(set(f.readlines()))
label = [l_name for i in range(len(data))]
return data, label
def run():
train()
predict()
if __name__ == '__main__':
run() | 3.1875 | 3 |
src/pynn/bin/average_state.py | enesyugan/yapay-nn | 0 | 12799743 | <reponame>enesyugan/yapay-nn<gh_stars>0
#!/usr/bin/env python3
# encoding: utf-8
# Copyright 2019 <NAME>
# Licensed under the Apache License, Version 2.0 (the "License")
import os, glob
import copy
import argparse
import torch
from pynn.util import load_object_param
parser = argparse.ArgumentParser(description='pynn')
parser.add_argument('--model-path', help='model saving path', default='model')
parser.add_argument('--config', help='model config', default='model.cfg')
parser.add_argument('--states', help='model states', default='ALL')
parser.add_argument('--save-all', help='save configuration as well', action='store_true')
if __name__ == '__main__':
args = parser.parse_args()
model, cls, module, m_params = load_object_param(args.model_path + '/' + args.config)
ext = copy.deepcopy(model)
if args.states == 'ALL':
states = [s for s in glob.glob("%s/epoch-*.pt" % args.model_path)]
else:
states = args.states.split(',')
states = ["%s/epoch-%s.pt" % (args.model_path, s) for s in states]
state = states[0]
model.load_state_dict(torch.load(state, map_location='cpu'))
params = list(model.parameters())
for state in states[1:]:
ext.load_state_dict(torch.load(state, map_location='cpu'))
eparams = list(ext.parameters())
for i in range(len(params)):
params[i].data.add_(eparams[i].data)
scale = 1.0 / len(states)
for p in params: p.data.mul_(scale)
state = model.state_dict()
if not args.save_all:
model_file = '%s/epoch-avg.pt' % args.model_path
torch.save(state, model_file)
else:
dic = {'params': m_params, 'class': cls, 'module': module, 'state': state}
torch.save(dic, '%s/epoch-avg.dic' % args.model_path)
| 1.796875 | 2 |
integrators.py | marghetis/npde | 37 | 12799744 | <reponame>marghetis/npde
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import array_ops
from tensorflow.python.framework import ops
from abc import ABC, abstractmethod
float_type = tf.float64
class Integrator(ABC):
""" Base class for integrators
"""
def __init__(self,model):
self.model= model
@abstractmethod
def forward(self):
pass
@abstractmethod
def _step_func(self):
pass
@abstractmethod
def _make_scan_func(self):
pass
class ODERK4(Integrator):
""" Runge-Kutta implementation for solving ODEs
"""
def __init__(self,model):
super().__init__(model)
def forward(self,x0,ts):
Nt = x0.shape[0]
Xs = np.zeros(Nt,dtype=np.object)
for i in range(Nt):
time_grid = ops.convert_to_tensor(ts[i], preferred_dtype=float_type, name='t')
y0 = ops.convert_to_tensor(x0[i,:].reshape((1,-1)), name='y0')
time_delta_grid = time_grid[1:] - time_grid[:-1]
scan_func = self._make_scan_func(self.model.f)
y_grid = functional_ops.scan(scan_func, (time_grid[:-1],time_delta_grid), y0)
y_s = array_ops.concat([[y0], y_grid], axis=0)
Xs[i] = tf.reshape(tf.squeeze(y_s),[len(ts[i]),self.model.D])
return Xs
def _step_func(self,f,dt,t,y):
dt = math_ops.cast(dt, y.dtype)
k1 = f(y, t)
k2 = f(y + dt*k1/2, t+dt/2)
k3 = f(y + dt*k2/2, t+dt/2)
k4 = f(y + dt*k3, t+dt)
return math_ops.add_n([k1, 2*k2, 2*k3, k4]) * (dt / 6)
def _make_scan_func(self,f):
def scan_func(y, t_dt):
t, dt = t_dt
dy = self._step_func(f, dt, t, y)
dy = math_ops.cast(dy, dtype=y.dtype)
return y + dy
return scan_func
class SDEEM(Integrator):
""" Euler-Maruyama implementation for solving SDEs
dx = f(x)*dt + g*sqrt(dt)
"""
def __init__(self,model,s=1):
super().__init__(model)
self.s = s
def forward(self,x0,ts,Nw=1):
Xs = np.zeros(len(ts),dtype=np.object)
for i in range(len(ts)):
t = np.linspace(0,np.max(ts[i]),(len(ts[i])-1)*self.s+1)
t = np.unique(np.sort(np.hstack((t,ts[i]))))
idx = np.where( np.isin(t,ts[i]) )[0]
t = np.reshape(t,[-1,1])
time_grid = ops.convert_to_tensor(t, preferred_dtype=float_type, name='t')
time_delta_grid = time_grid[1:] - time_grid[:-1]
y0 = np.repeat(x0[i,:].reshape((1,-1)),Nw,axis=0)
y0 = ops.convert_to_tensor(y0, name='y0')
scan_func = self._make_scan_func(self.model.f,self.model.diffus.g)
y_grid = functional_ops.scan(scan_func, (time_grid[:-1],time_delta_grid), y0)
ys = array_ops.concat([[y0], y_grid], axis=0)
Xs[i] = tf.transpose(tf.gather(ys,idx,axis=0),[1,0,2])
return Xs
def _step_func(self,f,g,t,dt,x):
dt = math_ops.cast(dt, x.dtype)
return f(x,t)*dt + g(x,t)*tf.sqrt(dt)
def _make_scan_func(self,f,g):
def scan_func(y, t_dt):
t,dt = t_dt
dy = self._step_func(f,g,t,dt,y)
dy = math_ops.cast(dy, dtype=y.dtype)
return y + dy
return scan_func | 2.515625 | 3 |
teamcomp/Window.py | khanfluence/team-comp | 0 | 12799745 | import os
import pickle
import re
import requests
import tkinter
from tkinter import ttk
from Hero import Hero
from SearchListbox import SearchListbox
from Team import Team
class Window(ttk.Frame):
def __init__(self, root=None):
super().__init__(root)
self.root = root
self.root.title("teamcomp")
self.grid()
self.root.unbind_class("Listbox", "<space>") # how to rebind action to Enter?
self.root.bind("<Key>", lambda event: self.search(event))
# hero list
self.heroes = dict()
self.hero_frm = ttk.Frame(self, borderwidth=0)
self.hero_lst = SearchListbox(self.hero_frm, height=20)
self.hero_scl = ttk.Scrollbar(self.hero_frm)
self.init_hero_list()
# team lists
self.team1 = Team()
self.team2 = Team()
self.team_frm = ttk.Frame(self, borderwidth=0)
self.team1_lst = SearchListbox(self.team_frm, height=5)
self.team2_lst = SearchListbox(self.team_frm, height=5)
self.init_team_lists()
# add/remove buttons
self.add_rem_frm = ttk.Frame(self, borderwidth=0)
self.team1_add_btn = ttk.Button(
self.add_rem_frm,
text="-->",
command=lambda: self.add_hero(self.team1, self.team1_lst),
)
self.team1_rem_btn = ttk.Button(
self.add_rem_frm,
text="<--",
command=lambda: self.remove_hero(self.team1, self.team1_lst),
)
self.team2_add_btn = ttk.Button(
self.add_rem_frm,
text="-->",
command=lambda: self.add_hero(self.team2, self.team2_lst),
)
self.team2_rem_btn = ttk.Button(
self.add_rem_frm,
text="<--",
command=lambda: self.remove_hero(self.team2, self.team2_lst),
)
self.init_add_rem_buttons()
# stats list
self.stats_frm = ttk.Frame(self, borderwidth=0)
self.stats_lbl = ttk.Label(self.stats_frm, text="Counters")
self.stats_lst = SearchListbox(
self.stats_frm,
height=20,
width=26,
font=("Courier", "10"),
)
self.stats_scl = ttk.Scrollbar(self.stats_frm)
self.init_stats_list()
# controls
self.controls_lfrm = ttk.LabelFrame(self, text="Controls")
self.show_rb_var = tkinter.StringVar()
self.show_team1_rb = ttk.Radiobutton(
self.controls_lfrm,
text="Radiant",
variable=self.show_rb_var, value="team1",
)
self.show_team2_rb = ttk.Radiobutton(
self.controls_lfrm,
text="Dire",
variable=self.show_rb_var,
value="team2",
)
self.show_hero_rb = ttk.Radiobutton(
self.controls_lfrm,
text="Hero",
variable=self.show_rb_var,
value="hero",
)
self.show_stats_btn = ttk.Button(
self.controls_lfrm,
text="Show",
command=self.show_stats,
)
self.reset_teams_btn = ttk.Button(
self.controls_lfrm,
text="Clear",
command=self.clear_teams,
)
self.clear_stats_btn = ttk.Button(
self.controls_lfrm,
text="Wipe",
command=self.wipe_stats,
)
self.init_controls()
def init_hero_list(self):
if os.path.isfile("heroes.dat"):
with open("heroes.dat", "rb") as f:
self.heroes = pickle.load(f)
else:
self.init_heroes()
for name in self.heroes.keys():
self.hero_lst.append(name)
self.hero_lst.config(yscrollcommand=self.hero_scl.set)
self.hero_scl.config(command=self.hero_lst.yview)
hero_lbl = ttk.Label(self.hero_frm, text="Heroes")
self.hero_frm.grid(row=0, column=0, rowspan=2, sticky=tkinter.NS)
self.hero_lst.grid(row=1, column=0)
self.hero_scl.grid(row=1, column=1, sticky=tkinter.NS)
hero_lbl.grid(row=0, column=0)
def init_team_lists(self):
team1_lbl = ttk.Label(self.team_frm, text="Radiant")
team2_lbl = ttk.Label(self.team_frm, text="Dire")
self.team_frm.grid(row=0, column=2, sticky=tkinter.N)
team1_lbl.grid(row=0, column=3)
self.team1_lst.grid(row=1, column=3, rowspan=5)
self.team_frm.grid_rowconfigure(6, minsize=20)
team2_lbl.grid(row=7, column=3)
self.team2_lst.grid(row=8, column=3, rowspan=5)
def init_add_rem_buttons(self):
self.add_rem_frm.grid(row=0, column=1, sticky=tkinter.N)
self.add_rem_frm.grid_rowconfigure(0, minsize=40)
self.team1_add_btn.grid(row=1)
self.team1_rem_btn.grid(row=2)
self.team2_add_btn.grid(row=3)
self.team2_rem_btn.grid(row=4)
def init_stats_list(self):
self.stats_lst.config(yscrollcommand=self.stats_scl.set)
self.stats_scl.config(command=self.stats_lst.yview)
self.stats_frm.grid(row=0, column=3, rowspan=2, sticky=tkinter.NS)
self.stats_lst.grid(row=1, column=0)
self.stats_scl.grid(row=1, column=1, sticky=tkinter.NS)
self.stats_lbl.grid(row=0, column=0)
def init_controls(self):
self.controls_lfrm.grid_columnconfigure(0, weight=1)
self.controls_lfrm.grid_columnconfigure(1, weight=1)
self.controls_lfrm.grid_columnconfigure(2, weight=1)
self.controls_lfrm.grid(row=1, column=1, columnspan=2, sticky=tkinter.NSEW)
self.show_team1_rb.grid(row=0, column=0)
self.show_team2_rb.grid(row=0, column=1)
self.show_hero_rb.grid(row=0, column=2)
self.show_stats_btn.grid(row=1, column=0)
self.reset_teams_btn.grid(row=1, column=1)
self.clear_stats_btn.grid(row=1, column=2)
# team 1 selected by default
self.show_team1_rb.invoke()
def clear_teams(self):
self.team1.reset()
self.team2.reset()
self.team1_lst.delete(0, tkinter.END)
self.team2_lst.delete(0, tkinter.END)
# wipe cached stats and fetch fresh stats for heroes on teams
def wipe_stats(self):
for hero in self.heroes.values():
hero.stats = dict()
for hero in self.team1.heroes + self.team2.heroes:
self.heroes[hero.name].fetch_stats()
self.stats_lst.delete(0, tkinter.END)
# initialize hero dict and SearchListbox
def init_heroes(self):
page = requests.get(
"https://www.dotabuff.com/heroes", headers={"user-agent": "Mozilla/5.0"}
)
self.hero_lst.delete(0, tkinter.END)
self.heroes = dict()
for hero_info in re.findall(
r'<a href="/heroes/(.+?)">.+?<div class="name">(.+?)</div>',
re.search(
r'<div class="hero-grid">[\s\S]+</div></footer></section>', page.text
).group(),
):
self.heroes[hero_info[1]] = Hero(hero_info[1], hero_info[0])
self.hero_lst.append(hero_info[1])
# unused, has no button; doable by deleting heroes.dat before run
def refresh_heroes(self):
self.init_heroes()
self.wipe_stats()
# button action
def add_hero(self, team: Team, team_lst):
hero: Hero = self.get_selected_hero(self.hero_lst)
if hero is not None and team.add_hero(hero):
team_lst.append(hero.name)
# button action
def remove_hero(self, team, team_lst):
idx = team_lst.curselection()
if not idx:
return
team.remove_hero(self.heroes[team_lst.get(idx[0])])
team_lst.delete(idx[0])
# get currently selected hero in hero list, fetching stats if necessary
def get_selected_hero(self, lst: SearchListbox) -> Hero:
idx = lst.curselection()
hero: Hero = None # use Optional? do something different?
if idx:
hero = self.heroes[lst.get(idx[0])]
if not hero.stats:
hero.fetch_stats()
return hero
# button action
def show_stats(self):
if self.show_rb_var.get() == "hero":
# can select a hero from full list or teams
for lst in [self.hero_lst, self.team1_lst, self.team2_lst]:
hero: Hero = self.get_selected_hero(lst)
if hero is not None:
self.update_stats_listbox(hero)
break
else:
self.update_stats_listbox(eval(f"self.{self.show_rb_var.get()}"))
def update_stats_listbox(self, hero_or_team): # better way to handle hero or team?
self.stats_lst.delete(0, tkinter.END)
for hero, stat in sorted(
hero_or_team.stats.items(),
key=lambda item: item[1],
reverse=True,
):
if isinstance(hero_or_team, Hero) or hero not in hero_or_team.heroes:
self.stats_lst.append_stat(f"{hero:20} {stat:+.2f}")
self.stats_lst.grid(row=1, column=0)
# performed on window close
def write_stats(self):
with open("heroes.dat", "wb") as f:
pickle.dump(self.heroes, f, protocol=pickle.HIGHEST_PROTOCOL)
@staticmethod
def search(event):
if (
event.widget.winfo_class() == "Listbox"
and (event.char.isalpha() or event.char == " ")
):
event.widget.search(event.char)
| 2.953125 | 3 |
examples/surveillance_edge_constrained.py | agmangas/wotemu | 2 | 12799746 | <gh_stars>1-10
import json
from docker.types import RestartPolicy
from wotemu.enums import NetworkConditions
from wotemu.topology.models import (Broker, BuiltinApps, Network, Node,
NodeApp, NodeResources, Service, Topology)
_ID_1 = "loc1"
_ID_2 = "loc2"
_THING_ID_DETECTOR = "urn:org:fundacionctic:thing:wotemu:detector"
_THING_ID_HISTORIAN = "urn:org:fundacionctic:thing:historian"
def _build_detector_cluster(
cluster_id, network_edge, num_cameras, broker,
camera_resources=None, detector_resources=None):
network = Network(
name=f"field_{cluster_id}",
conditions=NetworkConditions.WIFI)
nodes_camera = [
Node(
name=f"camera_{cluster_id}_{idx}",
app=NodeApp(path=BuiltinApps.CAMERA, http=True),
networks=[network],
resources=camera_resources)
for idx in range(num_cameras)
]
camera_hostnames = [
f"{item.name}.{network.name}"
for item in nodes_camera
]
param_cameras = json.dumps([
{"servient_host": cam_name}
for cam_name in camera_hostnames
])
app_detector = NodeApp(
path=BuiltinApps.DETECTOR,
params={"cameras": param_cameras},
mqtt=True)
node_detector = Node(
name=f"detector_{cluster_id}",
app=app_detector,
networks=[network, network_edge],
resources=detector_resources,
broker=broker,
broker_network=network_edge)
return nodes_camera, node_detector
def topology():
network_edge_1 = Network(
name=f"edge_2g_{_ID_1}",
conditions=NetworkConditions.GPRS)
network_edge_2 = Network(
name=f"edge_3g_{_ID_2}",
conditions=NetworkConditions.REGULAR_3G)
network_cloud_user = Network(
name="cloud_user",
conditions=NetworkConditions.CABLE)
broker = Broker(
name=f"broker",
networks=[network_edge_1, network_edge_2])
camera_resources = NodeResources(
target_cpu_speed=200,
mem_limit="256M")
detector_resources = NodeResources(
target_cpu_speed=600,
mem_limit="1G")
nodes_camera_1, node_detector_1 = _build_detector_cluster(
cluster_id=_ID_1,
network_edge=network_edge_1,
num_cameras=2,
camera_resources=camera_resources,
detector_resources=detector_resources,
broker=broker)
nodes_camera_2, node_detector_2 = _build_detector_cluster(
cluster_id=_ID_2,
network_edge=network_edge_2,
num_cameras=6,
camera_resources=camera_resources,
detector_resources=detector_resources,
broker=broker)
mongo = Service(
name="mongo",
image="mongo:4",
restart_policy=RestartPolicy(condition="on-failure"))
historian_observed_things = [
{
"servient_host": f"{node_detector_1.name}.{network_edge_1.name}",
"thing_id": _THING_ID_DETECTOR
},
{
"servient_host": f"{node_detector_2.name}.{network_edge_2.name}",
"thing_id": _THING_ID_DETECTOR
}
]
historian_app = NodeApp(
path=BuiltinApps.MONGO_HISTORIAN,
http=True,
params={
"mongo_uri": "mongodb://mongo",
"observed_things": json.dumps(historian_observed_things)
})
node_historian = Node(
name="cloud",
app=historian_app,
networks=[network_edge_1, network_edge_2, network_cloud_user])
node_historian.link_service(mongo)
user_app = NodeApp(
path=BuiltinApps.CALLER,
params={
"servient_host": f"{node_historian.name}.{network_cloud_user.name}",
"thing_id": _THING_ID_HISTORIAN,
"params": json.dumps({"write": None, "list": None}),
"lambd": 5
})
node_user = Node(
name="user",
app=user_app,
networks=[network_cloud_user],
scale=5)
topology = Topology(nodes=[
*nodes_camera_1,
node_detector_1,
*nodes_camera_2,
node_detector_2,
node_historian,
node_user
])
return topology
| 2.015625 | 2 |
bulletin/tools/plugins/api/job/views.py | rerb/django-bulletin | 5 | 12799747 | <gh_stars>1-10
from bulletin.api import permissions
from bulletin.api.views import PostList, PostDetail
import serializers
from bulletin.tools.plugins.models import Job
class JobList(PostList):
queryset = Job.objects.all()
serializer_class = serializers.JobSerializer
permission_classes = (permissions.IsAdminUserOrReadOnly,)
class JobDetail(PostDetail):
serializer_class = serializers.JobSerializer
permission_classes = (permissions.IsAdminUserOrReadOnly,)
| 1.984375 | 2 |
learn_python/hexlet/lists/lessons/multiply_matrix.py | PavliukKonstantin/learn-python | 0 | 12799748 | <reponame>PavliukKonstantin/learn-python
# Операция умножения двух матриц А и В представляет собой вычисление
# результирующей матрицы С, где каждый элемент C(ij) равен сумме произведений
# элементов в соответствующей строке первой матрицы A(ik) и элементов
# в столбце второй матрицы B(kj).
#
# Две матрицы можно перемножать только в том случае, если количество столбцов
# в первой матрице совпадает с количеством строк во второй матрице.
# Это значит, что первая матрица обязательно должна быть согласованной
# со второй матрицей. В результате операции умножения матрицы размера M×N
# на матрицу размером N×K является матрица размером M×K.
#
# src/solution.py
# Реализуйте функцию multiply, которая принимает две матрицы и
# возвращает новую матрицу — результат их произведения.
#
# Примеры
# >>> from solution import multiply
# >>> A = [[1, 2], [3, 2]]
# >>> B = [[3, 2], [1, 1]]
# >>> multiply(A, B)
# [[5, 4], [11, 8]]
# >>>
# >>> C = [
# ... [2, 5],
# ... [6, 7],
# ... [1, 8],
# ... ]
# >>> D = [
# ... [1, 2, 1],
# ... [0, 1, 0],
# ... ]
# >>> multiply(C, D)
# [[2, 9, 2], [6, 19, 6], [1, 10, 1]]
def multiply(matrix1, matrix2):
t_matrix2 = list(map(list, zip(*matrix2)))
result = [[0 for _ in range(len(t_matrix2))] for _ in range(len(matrix1))]
for i in range(len(matrix1)):
for j in range(len(t_matrix2)):
for k in range(len(matrix1[0])):
result[i][j] += matrix1[i][k] * t_matrix2[j][k]
return result
C = [
[2, 5],
[6, 7],
[1, 8],
]
D = [
[1, 2, 1],
[0, 1, 0],
]
print(multiply(C, D))
def test_multiply():
assert multiply(
[[2]],
[[3]],
) == [[6]]
a = [
[1],
[2],
]
b = [
[10, 20],
]
assert multiply(a, b) == [
[10, 20],
[20, 40],
]
a = [
[1, 2, 1],
[0, 1, 0],
[2, 3, 4],
]
b = [
[2, 5],
[6, 7],
[1, 8],
]
assert multiply(a, b) == [
[15, 27],
[6, 7],
[26, 63],
]
test_multiply()
| 2.9375 | 3 |
generative/pix2sketch.py | judithfan/pix2svg | 3 | 12799749 | from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
if __name__ == '__main__':
import os
import argparse
from PIL import Image
import torch
import torchvision.transforms as transforms
from torch.autograd import Variable
from beamsearch import SemanticBeamSearch
parser = argparse.ArgumentParser(description="generate sketches")
parser.add_argument('--image_path', type=str, help='path to image file')
parser.add_argument('--distract_dir', type=str, help='directory to distractor image files')
parser.add_argument('--sketch_dir', type=str, help='directory to store sketches')
parser.add_argument('--n_samples', type=int, default=5,
help='number of samples per iteration')
parser.add_argument('--n_iters', type=int, default=20,
help='number of iterations')
parser.add_argument('--stdev', type=float, default=15.0,
help='standard deviation for Gaussian when sampling')
parser.add_argument('--patience', type=int, default=5,
help='once the informativity measure stops improving, wait N epochs before quitting')
parser.add_argument('--beam_width', type=int, default=2,
help='number of particles to preserve at each timestep')
parser.add_argument('--embedding_layer', type=int, default=-1,
help='-1|0|1|...|7|8')
parser.add_argument('--embedding_net', type=str, default='vgg19', help='vgg19|resnet152')
parser.add_argument('--distance_fn', type=str, default='cosine',
help='cosine|l1|l2')
parser.add_argument('--fuzz', type=float, default=1.0,
help='hyperparameter for line rendering')
args = parser.parse_args()
# prep images
natural = Image.open(args.image_path)
distractors = []
for i in os.listdir(args.distract_dir):
distractor_path = os.path.join(args.distract_dir, i)
distractor = Image.open(distractor_path)
distractors.append(distractor)
preprocessing = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
# grab embeddings for the natural & distractor images
natural = Variable(preprocessing(natural).unsqueeze(0))
distractors = Variable(torch.cat([preprocessing(image).unsqueeze(0)
for image in distractors]))
explorer = SemanticBeamSearch(112, 112, 224, beam_width=args.beam_width,
n_samples=args.n_samples, n_iters=args.n_iters,
stdev=args.stdev, fuzz=1.0,
embedding_net=args.embedding_net,
embedding_layer=args.embedding_layer)
natural_emb = explorer.vgg19(natural)
distractor_embs = explorer.vgg19(distractors)
for i in range(args.n_iters):
sketch = explorer.train(i, natural_emb, distractor_items=distractor_embs)
im = Image.fromarray(sketch)
im.save(os.path.join(args.sketch_dir, 'sketch.png'))
| 2.296875 | 2 |
codes/2/4.py | BigShuang/python-introductory-exercises | 0 | 12799750 | def get_lcm(a, b):
multiple = a * b
max_v = a
if b > a:
max_v = b
for i in range(max_v, multiple):
if i % a == 0 and i % b == 0:
return i
return multiple
print(get_lcm(6, 8))
print(get_lcm(12, 15))
| 3.765625 | 4 |