Datasets:
				
			
			
	
			
			
	
		
		| id
				 string | source
				 string | text
				 string | audio
				 audio | nature
				 string | language
				 string | domain
				 string | 
|---|---|---|---|---|---|---|
| 
	9195564e-737a-4a71-8562-92b89a0fb652 | 
	Jean | 
	¿Cómo te has sentido últimamente con todo lo que está pasando? | 
	human | 
	spanish | 
	healthcare | 
Multi-Domain Spanish Speech Dataset
This dataset contains 1 audio recordings with corresponding text transcriptions across multiple languages and domains.
Dataset Description
A comprehensive collection of audio files paired with text transcriptions, featuring both synthetic and natural speech across various domains. Suitable for automatic speech recognition (ASR), text-to-speech (TTS), and domain-specific speech processing tasks.
Dataset Structure
Each entry contains:
- id: Unique identifier (UUID)
- text: Transcription text in the specified language
- audio: URL to the audio file (with AWS S3 signed URLs)
- nature: Type of audio (e.g., "synthetic", "natural")
- language: Language of the audio/text
- domain: Domain/topic category (e.g., "agriculture", "healthcare", "education")
Languages
This dataset includes the following languages:
- Spanish (es): spanish
Domains
Content spans across multiple domains:
- Healthcare: Domain-specific terminology and context
Audio Nature
The dataset includes different types of audio:
- Human: Natural human speech
Usage
from datasets import load_dataset
import json
import requests
from io import BytesIO
import pandas as pd
# Load using datasets library
dataset = load_dataset("jsbeaudry/test-esp")
# Or load JSON directly
with open("dataset.json", "r", encoding="utf-8") as f:
    data = json.load(f)
print(f"Dataset contains {len(data)} audio-text pairs")
# Create DataFrame for analysis
df = pd.DataFrame(data)
print("\nDataset breakdown:")
print(f"Languages: {df['language'].value_counts().to_dict()}")
print(f"Domains: {df['domain'].value_counts().to_dict()}")
print(f"Nature: {df['nature'].value_counts().to_dict()}")
# Filter by criteria
swahili_agriculture = [item for item in data 
                      if item['language'] == 'swahili' and item['domain'] == 'agriculture']
print(f"\nSwahili agriculture samples: {len(swahili_agriculture)}")
# Example: Download and process audio
def download_audio(url):
    response = requests.get(url)
    return BytesIO(response.content)
# Get first audio file
audio_data = download_audio(data[0]['audio'])
print(f"Audio downloaded for: {data[0]['text'][:50]}...")
Sample Data
{
  "id": "9195564e-737a-4a71-8562-92b89a0fb652",
  "source": "Jean",
  "text": "¿Cómo te has sentido últimamente con todo lo que está pasando?",
  "audio": "https://voiceovers-haiti.s3.us-east-2.amazonaws.com/0f775ec4-f100-4bab-9477-2ee3cde613f2_d28cfdee-75e0-489a-a790-49db5343dd8a_human.wav?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIAXF2BWYGA2CKJX4LH%2F20251013%2Fus-east-2%2Fs3%2Faws4_request&X-Amz-Date=20251013T202720Z&X-Amz-Expires=3600&X-Amz-Signature=5e4308d2a90ed913e3e234745730f1ba9df3fba4ea092cbd8800e7b0939f5ad6&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject",
  "nature": "human",
  "language": "spanish",
  "domain": "healthcare"
}
Sample Transcriptions by Domain
Healthcare Domain
- Spanish (human):
 "¿Cómo te has sentido últimamente con todo lo que está pasando?"
 ID:9195564e...
Dataset Statistics
- Total audio files: 1
- Languages: 1 (Spanish)
- Domains: 1 (healthcare)
- Audio types: human
- Average text length: 62 characters
- Audio hosting: voiceovers-haiti.s3.us-east-2.amazonaws.com
Distribution by Category
| Category | Values | 
|---|---|
| Spanish | 1 samples | 
| Healthcare | 1 samples | 
| Human | 1 samples | 
Audio Format
Audio files are stored locally in the dataset as WAV files. When loaded with the datasets library, audio is automatically converted to the standard format:
- Format: WAV
- Sampling Rate: Preserved from original (typically 16kHz or 22kHz)
- Channels: Mono
- Bit Depth: 16-bit or 32-bit float
- Access: Direct array access via dataset['train'][index]['audio']['array']
Use Cases
This dataset can be used for:
Speech Recognition (ASR)
- Multi-language speech recognition systems
- Domain-specific ASR models (agriculture, healthcare, etc.)
- Synthetic vs. natural speech detection
Text-to-Speech (TTS)
- Multi-language TTS systems
- Domain-adaptive speech synthesis
- Voice quality evaluation (synthetic vs. natural)
Research Applications
- Cross-domain speech analysis
- Language-specific phonetic studies
- Synthetic speech quality assessment
- Multi-modal AI training
Commercial Applications
- Voice assistants for specific domains
- Educational pronunciation tools
- Accessibility applications
- Multilingual customer service systems
Data Quality
- All audio files are accessible via HTTPS URLs with AWS authentication
- Text transcriptions are domain-verified and language-specific
- Unique identifiers ensure data integrity and traceability
- Consistent schema across all entries
- Balanced representation across domains and languages
License
This dataset is released under the MIT License.
Citation
@dataset{multi_domain_speech_2025,
  title={Multi-Domain Spanish Speech Dataset},
  author={Dataset Creator},
  year={2025},
  languages={es},
  domains={healthcare},
  url={https://huggingface.co/datasets/jsbeaudry/test-esp}
}
Acknowledgments
Special thanks to contributors who provided audio recordings and transcriptions across multiple languages and domains to make this comprehensive dataset possible.
- Downloads last month
- 21
