Access ArEnAV dataset on Hugging Face
This repository is publicly accessible, but you have to accept the conditions to access its files and content.
To use this ArEnAV dataset, you should agree to the CC BY-NC 4.0 license sign the EULA form and email it to the organizers.
Log in or Sign Up to review the conditions and access this dataset content.
Tell me Habibi, is it Real or Fake?
Kartik Kuckreja, Parul Gupta, Injy Hamed, Thamar Solorio, Muhammad Haris Khan and Abhinav Dhall
Mohamed bin Zayed University of AI, Monash University
Abstract
Deepfake generation methods are evolving fast, making fake media harder to detect and raising serious societal concerns. Most deepfake detection and dataset creation research focuses on monolingual content, often overlooking the challenges of multilingual and code-switched speech, where multiple languages are mixed within the same discourse. Code-switching, especially between Arabic and English, is common in the Arab world and is widely used in digital communication. This linguistic mixing poses extra challenges for deepfake detection, as it can confuse models trained mostly on monolingual data. To address this, we introduce ArEnAV, the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-utterance code-switching, dialectal variation, and monolingual Arabic content. It contains 387k videos and over 765 hours of real and fake videos. Our dataset is generated using a novel pipeline integrating four Text-To-Speech and two lip-sync models, enabling comprehensive analysis of multilingual multimodal deepfake detection. We benchmark our dataset against existing monolingual and multilingual datasets, state-of-the-art deepfake detection models, and a human evaluation, highlighting its potential to advance deepfake research.
Cross-Dataset Comparison: Details for publicly available deep - fake datasets in chronologically ascending order.
Cla: Binary classification, SL: Spatial localization, TL: Temporal localization, FS: Face swapping, RE: Face reenactment, TTS: Text-to-speech, VC: Voice conversion.
Dataset | Year | Tasks | Modality | Method | #Clips | Multilingual | Code-Switch |
---|---|---|---|---|---|---|---|
Google DFD | 2019 | Cla | V | FS | 3 431 | β | β |
DFDC | 2020 | Cla | AV | FS | 128 154 | β | β |
DeeperForensics | 2020 | Cla | V | FS | 60 000 | β | β |
Celeb-DF | 2020 | Cla | V | FS | 6 229 | β | β |
KoDF | 2021 | Cla | V | FS/RE | 237 942 | β | β |
FakeAVCeleb | 2021 | Cla | AV | RE | 25 500+ | β | β |
ForgeryNet | 2021 | SL/TL/Cla | V | FS/RE | 221 247 | β | β |
ASVSpoof2021-DF | 2021 | Cla | A | TTS/VC | 593 253 | β | β |
LAV-DF | 2022 | TL/Cla | AV | RE/TTS | 136 304 | β | β |
DF-Platter | 2023 | Cla | V | FS | 265 756 | β | β |
AV-1M | 2023 | TL/Cla | AV | RE/TTS | 1 146 760 | β | β |
PolyGlotFake | 2024 | Cla | AV | RE/TTS/VC | 15 238 | β | β |
Illusion | 2025 | Cla | AV | FS/RE/TTS | 1 376 371 | β | β |
ArEnAV (ours) | 2025 | Cla/TL | AV | RE/TTS/VC | 387 072 | β | β |
Multilingual Datasets Comparison: Data distribution in ArEnAV and comparison with other multilingual datasets.
Subset | Unique Vids | Real | Fake | Non-Eng | CSW Vids | Arabic Vids | Arabic Variants |
---|---|---|---|---|---|---|---|
PolyGlotFake | 766 | 766 | 14 472 | 11 941 | 0 | 1 403 | β |
Illusion | β | 141 440 | 1 234 931 | 4 385 | 0 | β | β |
Train | 6 117 | 67 600 | 202 800 | 270 400 | 69 544 | 200 856 | Eg, MSA, Lev, Gulf |
Val | 876 | 9 560 | 28 680 | 38 240 | 10 416 | 27 824 | Eg, MSA, Lev, Gulf |
Test | 1 816 | 19 608 | 58 824 | 78 432 | 19 832 | 58 600 | Eg, MSA, Lev, Gulf |
Total | 8 809 | 96 768 | 290 304 | 387 072 | 99 792 | 287 280 | β |
Results
Temporal localization results on the test set of ArEnAV.
(Full table preserved for reproducibility)
Set | Method | Mod. | AP @0.5 | AP @0.75 | AP @0.9 | AP @0.95 | AR @50 | AR @30 | AR @20 | AR @10 | AR @5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Full | Meso4 | V | 0.02 | 0.01 | 0.00 | 0.00 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
MesoInception4 | V | 0.56 | 0.18 | 0.04 | 0.01 | 4.11 | 4.11 | 4.11 | 4.11 | 4.08 | |
Xception | V | 22.50 | 10.26 | 2.29 | 0.58 | 19.13 | 19.13 | 19.13 | 19.13 | 19.13 | |
BA-TFD (ZS) | AV | 0.17 | 0.01 | 0.00 | 0.00 | 9.72 | 5.20 | 3.07 | 1.46 | 0.73 | |
BA-TFD+ (ZS) | AV | 0.11 | 0.00 | 0.00 | 0.00 | 5.77 | 2.95 | 2.09 | 0.87 | 0.37 | |
BA-TFD | AV | 2.42 | 0.55 | 0.01 | 0.00 | 22.30 | 10.31 | 3.41 | 2.54 | 1.67 | |
BA-TFD+ | AV | 3.74 | 1.10 | 0.06 | 0.01 | 30.75 | 9.42 | 4.55 | 3.05 | 1.83 | |
Set V | Meso4 | V | 0.02 | 0.01 | 0.00 | 0.00 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
MesoInception4 | V | 0.83 | 0.27 | 0.05 | 0.01 | 5.56 | 5.56 | 5.56 | 5.56 | 5.53 | |
Xception | V | 32.76 | 14.48 | 3.30 | 0.81 | 27.78 | 27.78 | 27.78 | 27.78 | 27.78 | |
BA-TFD (ZS) | AV | 0.12 | 0.00 | 0.00 | 0.00 | 8.44 | 4.34 | 2.44 | 1.13 | 0.49 | |
BA-TFD+ (ZS) | AV | 0.07 | 0.00 | 0.00 | 0.00 | 4.69 | 2.39 | 1.65 | 0.69 | 0.29 | |
BA-TFD | AV | 3.65 | 0.25 | 0.01 | 0.00 | 25.31 | 9.03 | 3.64 | 2.34 | 1.64 | |
BA-TFD+ | AV | 5.65 | 1.89 | 0.08 | 0.02 | 31.09 | 13.21 | 5.91 | 3.05 | 2.05 | |
Set A | Meso4 | V | 0.02 | 0.01 | 0.00 | 0.00 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
MesoInception4 | V | 0.38 | 0.09 | 0.01 | 0.00 | 3.25 | 3.25 | 3.25 | 3.25 | 3.22 | |
Xception | V | 14.72 | 3.92 | 0.29 | 0.09 | 11.78 | 11.78 | 11.78 | 11.78 | 11.78 | |
BA-TFD (ZS) | AV | 0.23 | 0.01 | 0.00 | 0.00 | 12.14 | 6.46 | 3.85 | 1.83 | 0.95 | |
BA-TFD+ (ZS) | AV | 0.14 | 0.01 | 0.00 | 0.00 | 7.32 | 3.79 | 2.69 | 1.13 | 0.48 | |
BA-TFD | AV | 3.21 | 0.60 | 0.02 | 0.00 | 24.45 | 9.26 | 4.15 | 2.61 | 1.93 | |
BA-TFD+ | AV | 4.35 | 1.10 | 0.10 | 0.00 | 28.35 | 11.23 | 4.85 | 3.11 | 2.00 |
Deepfake detection results on the test set of ArEnAV.
Access | Pre-train | Method | Mod. | Full AUC | Full Acc | V AUC | V Acc | A AUC | A Acc |
---|---|---|---|---|---|---|---|---|---|
Zero-shot | ASVSpoof-19 | XLSR-Mamba | A | 39.19 | 52.77 | 52.73 | 40.68 | 52.50 | 42.59 |
Zero-shot | Internet | Video-LLaMA-7B | V | 51.48 | 26.29 | 51.47 | 34.21 | 51.43 | 34.18 |
Zero-shot | Internet | Video-LLaMA-7B | AV | 48.79 | 59.29 | 48.71 | 55.37 | 48.86 | 55.26 |
Zero-shot | AV-1M | BA-TFD | AV | 61.73 | 26.00 | 66.42 | 34.07 | 59.36 | 33.97 |
Zero-shot | AV-1M | BA-TFD+ | AV | 60.96 | 25.84 | 64.49 | 34.28 | 59.44 | 33.80 |
Video-level | ArEnAV | XLSR-Mamba | A | 73.00 | 61.00 | 57.47 | 66.16 | 86.33 | 78.00 |
Video-level | ArEnAV | Meso4 | V | 49.30 | 75.00 | 49.15 | 66.67 | 49.30 | 66.67 |
Video-level | ArEnAV | MesoInception4 | V | 50.34 | 46.23 | 50.28 | 47.48 | 50.35 | 47.67 |
Video-level | ArEnAV | Xception | V | 50.05 | 75.00 | 49.90 | 66.67 | 50.32 | 66.67 |
Frame-level | ArEnAV | Meso4 | V | 49.55 | 26.60 | 49.60 | 34.40 | 49.53 | 34.36 |
Frame-level | ArEnAV | MesoInception4 | V | 51.14 | 41.25 | 50.77 | 51.84 | 45.28 | 44.09 |
Frame-level | ArEnAV | Xception | V | 74.21 | 52.09 | 85.36 | 67.22 | 68.59 | 51.70 |
Frame-level | AV-1M + ArEnAV | BA-TFD | AV | 75.91 | 44.31 | 77.64 | 58.29 | 72.21 | 45.21 |
Frame-level | AV-1M + ArEnAV | BA-TFD+ | AV | 79.97 | 27.44 | 84.20 | 36.47 | 72.89 | 34.56 |
Temporal localization:
Results on ArEnAv, AV-1M and LAV-DF. The low performance on ArEnAV demonstrates the data complexity in CSW settings.
Method | Dataset | [email protected] | [email protected] | [email protected] | AR@50 | AR@20 | AR@10 |
---|---|---|---|---|---|---|---|
BA-TFD | LAV-DF | 79.15 | 38.57 | 0.24 | 64.18 | 60.89 | 58.51 |
AV-1M | 37.37 | 6.34 | 0.02 | 45.55 | 35.95 | 30.66 | |
ArEnAV | 2.42 | 0.55 | 0.01 | 22.30 | 3.41 | 2.54 | |
BA-TFD+ | LAV-DF | 96.30 | 84.96 | 4.44 | 80.48 | 79.40 | 78.75 |
AV-1M | 44.42 | 13.64 | 0.03 | 48.86 | 40.37 | 34.67 | |
ArEnAV | 3.74 | 1.10 | 0.04 | 30.75 | 4.55 | 3.05 |
Human Evaluation:
User study results show that the deepfake detection and localization in multilingual CSW videos is non-trivial for human observers.
Metric | Value |
---|---|
Accuracy | 60 % |
AP @ 0.1 | 8.35 |
AP @ 0.5 | 0.79 |
AR @ 1 | 1.38 |
Citation
@misc{kuckreja2025tellhabibirealfake,
title={Tell me Habibi, is it Real or Fake?},
author={Kartik Kuckreja and Parul Gupta and Injy Hamed and Thamar Solorio and Muhammad Haris Khan and Abhinav Dhall},
year={2025},
eprint={2505.22581},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.22581},
}
- Downloads last month
- 72