Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError Exception: ArrowNotImplementedError Message: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field. Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 641, in write_table self._build_writer(inferred_schema=pa_table.schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 456, in _build_writer self.pa_writer = self._WRITER_CLASS(self.stream, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__ self.writer = _parquet.ParquetWriter( File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__ File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1887, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 660, in finalize self._build_writer(self.schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 456, in _build_writer self.pa_writer = self._WRITER_CLASS(self.stream, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__ self.writer = _parquet.ParquetWriter( File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__ File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1898, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
_data_files
list | _fingerprint
string | _format_columns
null | _format_kwargs
dict | _format_type
null | _output_all_columns
bool | _split
null |
---|---|---|---|---|---|---|
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 48dedce80ae1e935 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a9cb52f4da029faa | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 92ddf68d63c5e44f | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 5d388823a773da34 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a9a00dac2cf59de5 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d09369fd8be046cc | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 102cf813a09832a5 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c2128ed2b03a4659 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0bc51bb74ee6b031 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 78d9f07014a6c9d5 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a99bc65ddbc972f1 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 812d8519d5c74e4e | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 5a0ec145a71ae7c2 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 6490992d78a583d5 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 15f18b0e67520939 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c9bc62f31d32f6bc | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 4e0d0c07838bf636 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c56b48f7dd8dce98 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d0c805b2f9d6e2ed | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 27533a76bc4919cc | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | f01ddb4909c75fbd | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 74bed31c1f77f3d4 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a42eb8de5b2e1964 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a8e4f1554c1fa5d5 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | f2f513fa5e67a86c | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | dc6595b6a34a5867 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | cfd0972adc705867 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 78ceaf3ecea2933a | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d17a3c8404f4bca4 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 6a3a70931324106b | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 7aa659b7ee7d4c5d | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1219c13ee3c78c5d | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 269944b5828617b8 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 4a65b54f9c1c60bc | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0900a0d7b27b0a2a | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bbbc4a7834f9abb8 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 5303838b1d6dabcd | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c33b287644619a82 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 353d8ffa30c4a06c | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 8e7dda7d32e30c80 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 61aa43e5057d9c49 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | fb294a35eb73c276 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 42b4d1c4bdd918dd | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 5156f17401edaa7a | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | ddca02fcc3741188 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2561e8accfabd664 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 5b7935673b989c07 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 8afe35762dcd18da | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | cda1a48a45551dd0 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a41852a3663199fe | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 65d7d5e80b0f6816 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c866c1054a2ce056 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 865477e1c687ef42 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 7dc8350643626be8 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | e6c0054a26ae0891 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 02bc40df2d69237d | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b029a1af94882e59 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b8203fb2fbe0327e | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 8182dcfc56f0e4c9 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 36f7e780377a8a2f | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2471565ce887e1c7 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 98615c550aa5662e | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 94563154ae262b6e | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 9fbdac977403b89d | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 77e2cfc0e5165cea | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0d729f6e4dabfaaa | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2c4343b55d4bb690 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 78c30227cf50025a | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 913e669794e58718 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 3a7e5e035e4b6929 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bd620da4d63a9e2c | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 99d3827e3851d8b8 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | e43ef3040b390aed | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 3c1e56db55a06da4 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2f2d49a8e9a29d22 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 10d7cfd1d0d6b653 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | dcc82fbb6fb9f9a4 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0f8ed49eddbe9129 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 00db01de22d0003f | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | fd4124db7dbc6be8 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | db32ddc7ec6e48d7 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 8314c36b61c2b2f7 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 6e45bb6b2c4d4fb2 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a24a77bd4e0e0f8c | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b66039e611744c7d | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1de3583b3021f5ae | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 8b6ebf06ca0f211a | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1189e6d0e2201a59 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1e1507912bc8afbc | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 3f5bb21b6a562529 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0d19f5f2471e5bef | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0940c7001baac990 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | f9b5911f31a9828c | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 3c987467ed278e9f | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 64bf95aedcd8fba8 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b1d3fdf006a64556 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a1f34cc1546abaaa | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 86f75d2943a2b606 | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | ec377e4c1e1fbf6a | null | {} | null | false | null |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 11301fdb8b99e3af | null | {} | null | false | null |
US Institutional 13F Holdings Embeddings Dataset
Quarterly snapshots (1980 – 2024) of every U.S.-reported 13F equity holding, plus unsupervised embeddings for:
- Institutional managers (investors)
- Assets (PERMCO-level equities)
Dataset Description
13F filings are quarterly disclosures to the U.S. SEC by institutions managing ≥ $100 million.
For each quarter (1980 Q1 → 2024 Q3) the dataset provides:
- Holdings Table – exact positions with shares, price, and market value
- Investor Embeddings – 32-dim vectors from log-dollar-weighted Truncated SVD
- Asset Embeddings – companion vectors for the equity universe
- Metadata – manager IDs, asset IDs, timestamps, etc.
Directory layout (one folder per quarter):
quarter/
├── holdings/ # parquet/arrow; full table
├── investor_embeddings/ # numpy/arrow; one row per manager
├── asset_embeddings/ # numpy/arrow; one row per PERMCO
└── dataset_dict.json # Hugging Face DatasetDict metadata
Data Structure
Holdings table (core fields)
Field | Type | Description |
---|---|---|
mgrno |
string | Institutional manager ID (SEC) |
permco |
string | Permanent company identifier |
fdate |
date | Quarter-end report date |
shares |
float | Shares held |
price |
float | Price per share on fdate |
dollar_holding |
float | Shares × Price (market value of the position) |
Embeddings tables
Field | Type | Description |
---|---|---|
mgrno or permco |
string | Primary key |
embedding |
float32[n] sequence | 32-dimensional vector (size may vary) |
Coverage and Distribution
- Quarters: 1980 Q1 → 2024 Q3 (179 quarters)
- Universe: Every stock appearing in any 13F filing during the window
- Rows: Tens of millions of manager-asset-quarter tuples
- Embeddings: One vector per active manager and per PERMCO each quarter
Quick load
from datasets import DatasetDict
ds = DatasetDict.load_from_disk("institutional-holdings-13f-quarterly/2016Q3")
print(ds["holdings"][0])
print(ds["investor_embeddings"][0])
print(ds["asset_embeddings"][0])
Typical Usage
- Alpha/return prediction, manager similarity, clustering
- Long-run studies of institutional ownership dynamics
- Panel regressions (quarterly frequency)
# Load a single quarter
ds = DatasetDict.load_from_disk("institutional-holdings-13f-quarterly/2020Q4")
print(ds["investor_embeddings"][0]["embedding"][:8])
# Iterate over all quarters
import os
root = "institutional-holdings-13f-quarterly"
for q in sorted(p for p in os.listdir(root) if "Q" in p):
ds = DatasetDict.load_from_disk(f"{root}/{q}")
# process ds["holdings"], ds["investor_embeddings"], ds["asset_embeddings"]
Data Splits
Each quarterly folder is a Hugging Face DatasetDict
containing:
holdings
investor_embeddings
asset_embeddings
Identifier Definitions
- PERMCO – company-level identifier (stable through ticker/name changes)
- PERMNO – security-level identifier (stable through symbol/CUSIP changes)
Processing Pipeline
Parse raw 13F text filings.
Map CUSIPs → PERMCOs.
Aggregate shares and price to compute market value.
Compute log-dollar weight
w = log(1 + dollar_holding)
Build manager-by-asset matrix
M
with elementsw
.Apply Truncated SVD, keep top k = 32 factors (or ≤ rank).
M ≈ U Σ Vᵀ
- Rows of U → manager embeddings
- Rows of V → asset embeddings
Licensing & Limitations
- License: MIT
- Intended use: Research & education
- Note: Source 13F filings are public; mappings were derived from public data.
Citation
@dataset{kurry2025institutionalholdings13f,
author = {Kurry},
title = {US Institutional 13F Holdings Embeddings Dataset},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/kurry/institutional-holdings-13f}
}
Quick start
from datasets import DatasetDict
ds = DatasetDict.load_from_disk("institutional-holdings-13f-quarterly/2010Q2")
- Downloads last month
- 48