Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowNotImplementedError
Message:      Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 641, in write_table
                  self._build_writer(inferred_schema=pa_table.schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 456, in _build_writer
                  self.pa_writer = self._WRITER_CLASS(self.stream, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
                  self.writer = _parquet.ParquetWriter(
                File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 660, in finalize
                  self._build_writer(self.schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 456, in _build_writer
                  self.pa_writer = self._WRITER_CLASS(self.stream, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
                  self.writer = _parquet.ParquetWriter(
                File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field.
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1898, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

_data_files
list
_fingerprint
string
_format_columns
null
_format_kwargs
dict
_format_type
null
_output_all_columns
bool
_split
null
[ { "filename": "data-00000-of-00001.arrow" } ]
48dedce80ae1e935
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a9cb52f4da029faa
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
92ddf68d63c5e44f
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
5d388823a773da34
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a9a00dac2cf59de5
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
d09369fd8be046cc
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
102cf813a09832a5
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
c2128ed2b03a4659
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
0bc51bb74ee6b031
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
78d9f07014a6c9d5
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a99bc65ddbc972f1
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
812d8519d5c74e4e
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
5a0ec145a71ae7c2
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
6490992d78a583d5
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
15f18b0e67520939
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
c9bc62f31d32f6bc
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
4e0d0c07838bf636
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
c56b48f7dd8dce98
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
d0c805b2f9d6e2ed
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
27533a76bc4919cc
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
f01ddb4909c75fbd
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
74bed31c1f77f3d4
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a42eb8de5b2e1964
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a8e4f1554c1fa5d5
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
f2f513fa5e67a86c
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
dc6595b6a34a5867
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
cfd0972adc705867
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
78ceaf3ecea2933a
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
d17a3c8404f4bca4
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
6a3a70931324106b
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
7aa659b7ee7d4c5d
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
1219c13ee3c78c5d
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
269944b5828617b8
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
4a65b54f9c1c60bc
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
0900a0d7b27b0a2a
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
bbbc4a7834f9abb8
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
5303838b1d6dabcd
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
c33b287644619a82
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
353d8ffa30c4a06c
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
8e7dda7d32e30c80
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
61aa43e5057d9c49
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
fb294a35eb73c276
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
42b4d1c4bdd918dd
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
5156f17401edaa7a
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
ddca02fcc3741188
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
2561e8accfabd664
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
5b7935673b989c07
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
8afe35762dcd18da
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
cda1a48a45551dd0
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a41852a3663199fe
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
65d7d5e80b0f6816
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
c866c1054a2ce056
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
865477e1c687ef42
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
7dc8350643626be8
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
e6c0054a26ae0891
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
02bc40df2d69237d
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
b029a1af94882e59
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
b8203fb2fbe0327e
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
8182dcfc56f0e4c9
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
36f7e780377a8a2f
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
2471565ce887e1c7
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
98615c550aa5662e
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
94563154ae262b6e
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
9fbdac977403b89d
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
77e2cfc0e5165cea
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
0d729f6e4dabfaaa
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
2c4343b55d4bb690
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
78c30227cf50025a
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
913e669794e58718
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
3a7e5e035e4b6929
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
bd620da4d63a9e2c
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
99d3827e3851d8b8
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
e43ef3040b390aed
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
3c1e56db55a06da4
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
2f2d49a8e9a29d22
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
10d7cfd1d0d6b653
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
dcc82fbb6fb9f9a4
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
0f8ed49eddbe9129
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
00db01de22d0003f
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
fd4124db7dbc6be8
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
db32ddc7ec6e48d7
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
8314c36b61c2b2f7
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
6e45bb6b2c4d4fb2
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a24a77bd4e0e0f8c
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
b66039e611744c7d
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
1de3583b3021f5ae
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
8b6ebf06ca0f211a
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
1189e6d0e2201a59
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
1e1507912bc8afbc
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
3f5bb21b6a562529
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
0d19f5f2471e5bef
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
0940c7001baac990
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
f9b5911f31a9828c
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
3c987467ed278e9f
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
64bf95aedcd8fba8
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
b1d3fdf006a64556
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
a1f34cc1546abaaa
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
86f75d2943a2b606
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
ec377e4c1e1fbf6a
null
{}
null
false
null
[ { "filename": "data-00000-of-00001.arrow" } ]
11301fdb8b99e3af
null
{}
null
false
null
End of preview.

US Institutional 13F Holdings Embeddings Dataset

Quarterly snapshots (1980 – 2024) of every U.S.-reported 13F equity holding, plus unsupervised embeddings for:

  • Institutional managers (investors)
  • Assets (PERMCO-level equities)

Dataset Description

13F filings are quarterly disclosures to the U.S. SEC by institutions managing ≥ $100 million.
For each quarter (1980 Q1 → 2024 Q3) the dataset provides:

  • Holdings Table – exact positions with shares, price, and market value
  • Investor Embeddings – 32-dim vectors from log-dollar-weighted Truncated SVD
  • Asset Embeddings – companion vectors for the equity universe
  • Metadata – manager IDs, asset IDs, timestamps, etc.

Directory layout (one folder per quarter):

quarter/
├── holdings/             # parquet/arrow; full table
├── investor_embeddings/  # numpy/arrow; one row per manager
├── asset_embeddings/     # numpy/arrow; one row per PERMCO
└── dataset_dict.json     # Hugging Face DatasetDict metadata

Data Structure

Holdings table (core fields)

Field Type Description
mgrno string Institutional manager ID (SEC)
permco string Permanent company identifier
fdate date Quarter-end report date
shares float Shares held
price float Price per share on fdate
dollar_holding float Shares × Price (market value of the position)

Embeddings tables

Field Type Description
mgrno or permco string Primary key
embedding float32[n] sequence 32-dimensional vector (size may vary)

Coverage and Distribution

  • Quarters: 1980 Q1 → 2024 Q3 (179 quarters)
  • Universe: Every stock appearing in any 13F filing during the window
  • Rows: Tens of millions of manager-asset-quarter tuples
  • Embeddings: One vector per active manager and per PERMCO each quarter

Quick load

from datasets import DatasetDict

ds = DatasetDict.load_from_disk("institutional-holdings-13f-quarterly/2016Q3")
print(ds["holdings"][0])
print(ds["investor_embeddings"][0])
print(ds["asset_embeddings"][0])

Typical Usage

  • Alpha/return prediction, manager similarity, clustering
  • Long-run studies of institutional ownership dynamics
  • Panel regressions (quarterly frequency)
# Load a single quarter
ds = DatasetDict.load_from_disk("institutional-holdings-13f-quarterly/2020Q4")
print(ds["investor_embeddings"][0]["embedding"][:8])
# Iterate over all quarters
import os
root = "institutional-holdings-13f-quarterly"
for q in sorted(p for p in os.listdir(root) if "Q" in p):
    ds = DatasetDict.load_from_disk(f"{root}/{q}")
    # process ds["holdings"], ds["investor_embeddings"], ds["asset_embeddings"]

Data Splits

Each quarterly folder is a Hugging Face DatasetDict containing:

  • holdings
  • investor_embeddings
  • asset_embeddings

Identifier Definitions

  • PERMCO – company-level identifier (stable through ticker/name changes)
  • PERMNO – security-level identifier (stable through symbol/CUSIP changes)

Processing Pipeline

  1. Parse raw 13F text filings.

  2. Map CUSIPs → PERMCOs.

  3. Aggregate shares and price to compute market value.

  4. Compute log-dollar weight

    w = log(1 + dollar_holding)
    
  5. Build manager-by-asset matrix M with elements w.

  6. Apply Truncated SVD, keep top k = 32 factors (or ≤ rank).

    M  ≈  U  Σ  Vᵀ
    
    • Rows of U → manager embeddings
    • Rows of V → asset embeddings

Licensing & Limitations

  • License: MIT
  • Intended use: Research & education
  • Note: Source 13F filings are public; mappings were derived from public data.

Citation

@dataset{kurry2025institutionalholdings13f,
  author    = {Kurry},
  title     = {US Institutional 13F Holdings Embeddings Dataset},
  year      = {2025},
  publisher = {Hugging Face},
  url       = {https://huggingface.co/datasets/kurry/institutional-holdings-13f}
}

Quick start

from datasets import DatasetDict
ds = DatasetDict.load_from_disk("institutional-holdings-13f-quarterly/2010Q2")
Downloads last month
48