Dataset Viewer
Auto-converted to Parquet
symbol
stringclasses
685 values
company_id
int64
-1
1.87B
year
int64
2.01k
2.03k
quarter
int64
1
4
date
stringdate
2005-10-13 14:45:00
2025-05-15 16:30:00
tone_dispersion
float64
0
0.67
call_key
stringlengths
40
40
A
154,924
2,020
4
2020-11-23 16:30:00
0.142124
0f2114b0d792267df42c05ee8e04a5770c4e2c40
A
154,924
2,020
3
2020-08-18 16:30:00
0.145996
3d7f3883ffec68c344d68a885871dfbb20a1bae8
A
154,924
2,020
2
2020-05-21 16:30:00
0.126936
bb16372c61cb4b254542cf0ccdfad68cdbe546ac
A
154,924
2,020
1
2020-02-18 16:30:00
0.162097
883c7cf274d06f979a8d7b84316b1555f5ee5838
A
154,924
2,021
4
2021-11-22 16:30:00
0.13626
7a6a5b154c11f165226ba5747d69c2a69b4b7a54
A
154,924
2,021
3
2021-08-17 16:30:00
0.113081
ee2db362ec369bab0c46fc01b66e1f63da968596
A
154,924
2,021
2
2021-05-25 16:30:00
0.111055
00968ef2c6f729a2c2e4243c998364c95ff0f7ca
A
154,924
2,021
1
2021-02-16 16:30:00
0.14904
331bec9d44ee40c58591441288890f00c1da95d6
A
154,924
2,022
4
2022-11-21 16:30:00
0.162647
40e7ab9dbdd9fefaa4ebd99299e892cd82b3917f
A
154,924
2,022
3
2022-08-16 16:30:00
0.116856
eb3e5a0261c725ceb832097223e33aa27cc02f03
A
154,924
2,022
2
2022-05-24 16:30:00
0.164949
707563d7b7f169a5c77e11a4cf6548139c2f5356
A
154,924
2,022
1
2022-02-22 16:30:00
0.123686
b428d2b9f7c1aedb7f31c3cdff442e476d14ec9c
A
154,924
2,023
4
2023-11-20 16:30:00
0.169911
b4f12cebd186a743ee6304873ca7fcc0172887db
A
154,924
2,023
3
2023-08-15 16:30:00
0.119468
9cb8a0f448a6eea580ca204e2b553eb8c6f12dcd
A
154,924
2,023
2
2023-05-23 16:30:00
0.113058
7a72122db548c661171da66988b2fbbb9188cad1
A
154,924
2,023
1
2023-02-28 08:30:00
0.136489
5b59629ca166f309181d4d6bfd37eda2f7c151d7
A
154,924
2,024
4
2024-11-25 16:30:00
0.15334
cd868355aa116e54aed3895ebae82876eeb07ced
A
154,924
2,024
3
2024-08-21 16:30:00
0.113182
783b2ecee99115c9a706f95fcb46fff5a6491f65
A
154,924
2,024
2
2024-05-29 16:30:00
0.113324
d87d3f3af606e1a7a739b315111483153f3ed3ae
A
154,924
2,024
1
2024-02-27 16:30:00
0.168226
fac3c79ef4231378a8a1694c248e868881912bdc
A
154,924
2,025
1
2025-02-26 16:30:00
0.07762
6056ad88cd0bbd10515c9aa55b587b9a1dd31ad3
AAPL
24,937
2,020
4
2020-10-29 17:00:00
0.232575
628afc8bfa429330c63f0d80ba242aafb1b05fdc
AAPL
24,937
2,020
3
2020-07-30 17:00:00
0.129863
d71afdef4bcc6fb39535ecf84566dc5d833a3cc9
AAPL
24,937
2,020
2
2020-04-30 17:00:00
0.101778
f977cea1dd9eb1712092d33be905c52d70509cd7
AAPL
24,937
2,020
1
2020-01-28 17:00:00
0.160041
8d21f7883d63a020d7bdb2cb2790139b5661f8cf
AAPL
24,937
2,021
4
2021-10-28 17:00:00
0.211035
e312c87e6933b59b12c98e28b6502264ade6f80d
AAPL
24,937
2,021
3
2021-07-27 17:00:00
0.082566
8cfb1f5d836c09a0daef0ef3c046bb986fcc28c1
AAPL
24,937
2,021
2
2021-04-28 17:00:00
0.179033
5a870c9c7bd9e11fd03286259951616f795138fc
AAPL
24,937
2,021
1
2021-01-27 17:00:00
0.142594
1a69aef9746f4122d9564923e0186cf87753feaa
AAPL
24,937
2,022
4
2022-10-27 17:00:00
0.105626
ebb89d1481c6c0eb557abaab34c8dd74d5547dfa
AAPL
24,937
2,022
3
2022-07-28 17:00:00
0.2702
1580fd5d6533ccb1a2f8a219b4865a4130e955d5
AAPL
24,937
2,022
2
2022-04-28 17:00:00
0.151189
c779f860671a10b0702d63a25b6773bb33522084
AAPL
24,937
2,022
1
2022-01-27 17:00:00
0.17995
a7cfd711cb9fdb9ab580a7f922efa5d1e96a71e0
AAPL
24,937
2,023
4
2023-11-02 17:00:00
0.149569
7e90e5055dac258e25a9e370cbb23fc1652539d8
AAPL
24,937
2,023
3
2023-08-03 17:00:00
0.193667
09b66bcab97f5640547872cb9c60f848d9a1107e
AAPL
24,937
2,023
2
2023-05-04 17:00:00
0.22003
928f4dc4dd5f27693cf3b3098eb9e69bc8b23869
AAPL
24,937
2,023
1
2023-02-02 08:00:00
0.26703
e7e242327fa43943b7d71a84ef827a1bb085de49
AAPL
24,937
2,024
4
2024-10-31 17:00:00
0.079527
a4d9e318e375fc8e216fb8afb5f82476e30f657e
AAPL
24,937
2,024
3
2024-08-01 17:00:00
0.086576
5c1da8bf4119a3db0dc5fd0cd2dcbd32848b2806
AAPL
24,937
2,024
2
2024-05-02 17:00:00
0.080858
f00ac980ef719d88982e422d01e3accbaf09afca
AAPL
24,937
2,024
1
2024-02-01 17:00:00
0.087278
dba6a44dd672043ab0c45a3351a756aa2aa34387
AAPL
24,937
2,025
2
2025-05-01 19:13:00
0.10897
8b83c96d160c3e4fb8339017db2755d928aa7e17
AAPL
24,937
2,025
1
2025-01-30 17:00:00
0.066414
2f5ea497df5f319c3acb8deedad48bb7c17db201
ABBV
141,885,706
2,020
4
2021-02-03 09:00:00
0.146374
3beaee5c46747dc29fb2fa2bce818921239a2710
ABBV
141,885,706
2,020
3
2020-10-30 09:00:00
0.145916
77c5d4de1086a962bc0cb360a4aed8d738c623c5
ABBV
141,885,706
2,020
2
2020-07-31 09:00:00
0.102221
b636763bc21ae871910c8d41a8c332235dc9acd5
ABBV
141,885,706
2,020
1
2020-05-01 09:00:00
0.102415
703780b4b7760329d70cfcfa939d4bb514bd31b6
ABBV
141,885,706
2,021
4
2022-02-02 09:00:00
0.188611
fc5f956c6e4f49b4788dfb41a6c30b1244b69e5b
ABBV
141,885,706
2,021
3
2021-10-29 09:00:00
0.134353
74cac241679db68f7c4c5f94b9c58d6ad69800ca
ABBV
141,885,706
2,021
2
2021-07-30 09:00:00
0.090828
fb019932c26ed3da58e239f06269feb61b747449
ABBV
141,885,706
2,021
1
2021-04-30 09:00:00
0.116078
c65ca273d00e0158600ba5daa99a71402898b905
ABBV
141,885,706
2,022
4
2023-02-09 09:00:00
0.25942
0150bf2268eb204fc1afb8e50ee6c9ced0167b23
ABBV
141,885,706
2,022
3
2022-10-28 09:00:00
0.18731
bbcf0962016eb5e238e6efe2e10c61e6172a9687
ABBV
141,885,706
2,022
2
2022-07-29 09:00:00
0.196022
fa4731cae251fc341d953b7d5eacaed7f7cec82d
ABBV
141,885,706
2,022
1
2022-04-29 09:00:00
0.096778
dd84994aad57b64fa32d23962e18a232b55656e8
ABBV
141,885,706
2,023
4
2024-02-02 09:00:00
0.126791
5b9761e2a1385dd16ae9431025a16c5f451b5052
ABBV
141,885,706
2,023
3
2023-10-27 09:00:00
0.222203
cca981c5f3f5c940cbe5de2305c87b049e85898d
ABBV
141,885,706
2,023
2
2023-07-27 09:00:00
0.19412
f703d45204991a31cc8026e8c63d0091201a1ccf
ABBV
141,885,706
2,023
1
2023-04-27 09:00:00
0.165984
e3ae00ead5892ac185194046f0fee6cb62151da7
ABBV
141,885,706
2,024
4
2025-01-31 03:00:00
0.168133
0b826da63db225fe80c41efd2f31f51fc697dac9
ABBV
141,885,706
2,024
3
2024-10-30 09:00:00
0.119988
b1e5fa38af8475e0fb980515610f454d774a6fcf
ABBV
141,885,706
2,024
2
2024-07-25 09:00:00
0.100455
c27cac046f998c735335ee1c4019e8efd8268c8d
ABBV
141,885,706
2,024
1
2024-04-26 09:00:00
0.176264
e5e235fa38918d498d42c5fbfad3625ba91f550d
ABBV
141,885,706
2,025
1
2025-04-25 21:00:00
0.171118
883a7987d5d8c07fec93f1d9ac8e67d0c2f9f117
ABNB
115,705,393
2,020
4
2021-02-25 17:00:00
0.141822
d3e7e224393f2599587ccc07440bc05a0ffee32d
ABNB
115,705,393
2,021
4
2022-02-15 17:30:00
0.144929
1487d2f5d000cd26d668bb40592659c0accdb465
ABNB
115,705,393
2,021
3
2021-11-04 17:30:00
0.125451
4dd5c861c3fa227528fc11914b728c7cef212ca0
ABNB
115,705,393
2,021
2
2021-08-12 17:00:00
0.179843
c97726b4a782c68d1c727ea9a0c1a453baacf66b
ABNB
115,705,393
2,021
1
2021-05-13 17:00:00
0.146684
045a82b3f6ea8bf11da0df47708c51529c68ac45
ABNB
115,705,393
2,022
4
2023-02-14 16:30:00
0.16107
ff649b0e9a7a0523f958cb67d90eae168a2e5cc7
ABNB
115,705,393
2,022
3
2022-11-01 16:30:00
0.146846
7c7acbfe1337328620cae26f40c86c0fcbc6786b
ABNB
115,705,393
2,022
2
2022-08-02 16:30:00
0.172624
8c8a9aa792d04ad3dacd4199b6de131b21f6d7db
ABNB
115,705,393
2,022
1
2022-05-03 14:20:00
0.144069
fe9e9e804820a621d90df999e8a12c7a93753f4a
ABNB
115,705,393
2,023
4
2024-02-13 16:30:00
0.174848
6e3a9573585d817706534c5e0c0d64a016734251
ABNB
115,705,393
2,023
3
2023-11-01 16:30:00
0.175053
30c6ba03781781ef8577e0989e0270508919c555
ABNB
115,705,393
2,023
2
2023-08-03 16:30:00
0.113269
d177ecc1e2109421f809b849b7b4140292324026
ABNB
115,705,393
2,023
1
2023-05-09 12:30:00
0.166818
a7d3e17aad593b232868842b484ba16c84b544e6
ABNB
115,705,393
2,024
4
2025-02-13 16:30:00
0.139741
b0761ffe4703d609d7daa377b5ff9155c5e2309e
ABNB
115,705,393
2,024
3
2024-11-07 16:30:00
0.1837
089a2918283822449080b83ca3ecc5779abef07a
ABNB
115,705,393
2,024
2
2024-08-06 16:30:00
0.190394
f9660d3d1d7da7bc4a68464c9827d0c863ef2585
ABNB
115,705,393
2,024
1
2024-05-08 16:30:00
0.115544
e6c8563480497bc8e01509c438166aaff7806f6c
ABNB
115,705,393
2,025
1
2025-05-01 17:00:00
0.177788
c6145aea30c6f779b463172eebfe5fe1ed934665
ABT
247,483
2,020
4
2021-01-26 22:45:00
0.108328
caa9d2affb985872ecbf1123e540f982aa160ba8
ABT
247,483
2,020
3
2020-10-20 23:00:00
0.125018
7195cc6a8e4a882ae53926463534bde791dd4036
ABT
247,483
2,020
2
2020-07-15 22:45:00
0.105594
c36761133e60f5bef18d2a78c1119aeb125c03c4
ABT
247,483
2,020
1
2020-04-15 22:45:00
0.136349
f98c6331cd9bac0e94aff5221b8b99201904a0f8
ABT
247,483
2,021
4
2022-01-25 23:00:00
0.157624
19dc5c14444450c60493b9a7ae72483bab426f21
ABT
247,483
2,021
3
2021-10-19 23:00:00
0.114147
ae386def5608ba9ec526a951879178b044dc90d1
ABT
247,483
2,021
2
2021-07-21 23:15:00
0.14755
e71bc49d9153618c0f413c35b63a755b0fa14e37
ABT
247,483
2,021
1
2021-04-19 23:00:00
0.126838
7bc20e94fbee1c09318e651c33162840e13ac4b3
ABT
247,483
2,022
4
2023-01-24 22:45:00
0.181475
aabc3dd13be3d0ecf45aabdc8abdcf04428da9ab
ABT
247,483
2,022
3
2022-10-18 23:00:00
0.130274
14d5d7d6f75f7fa68c5bf1c8a6ed98ca3f9e86a8
ABT
247,483
2,022
2
2022-07-19 23:00:00
0.101418
e6e209a24a1a499ddfd374647726b4c5f0623147
ABT
247,483
2,022
1
2022-04-19 23:00:00
0.151642
db3a94dcea8d269f1d0f2effafa04b5f06ecdf46
ABT
247,483
2,023
4
2024-01-23 23:15:00
0.145203
f92656a22f6bd518cfc885663d06199eaebb5d4d
ABT
247,483
2,023
3
2023-10-17 23:00:00
0.204739
acf83be88b9c0a834d6352a8e769dd83bd3480f6
ABT
247,483
2,023
2
2023-07-19 23:00:00
0.190338
359169352d2cfeaf428ab3c539bf0911aa0477ae
ABT
247,483
2,023
1
2023-04-18 23:00:00
0.151616
81d782141a158c502f40270ccd5b894c8fca567a
ABT
247,483
2,024
4
2025-01-22 09:30:00
0.138001
a99d95a704000289dd1fd54291a24302390778b3
ABT
247,483
2,024
3
2024-10-16 09:00:00
0.159872
d332f23417ca23f6f6458bad3be7dccea70e07a6
End of preview. Expand in Data Studio

SP500 Tone Dataset

Dataset summary

The SP500 Tone Dataset contains tone dispersion metrics extracted from earnings calls of S&P 500 companies. Each record represents a quarterly earnings call, capturing the variability in tone and sentiment expressed during the call. This dataset is useful for financial sentiment analysis, market prediction models, and studies on executive communication strategies.

Supported tasks

  • Regression (predicting tone dispersion)

Languages

  • English

Dataset structure

Field Type Description
symbol string Stock ticker symbol for the company
company_id int64 Unique identifier for the company
year int64 Year of the earnings call
quarter int64 Quarter of the earnings call (1-4)
date string Date of the earnings call
tone_dispersion float64 Measure of variability in tone during the call
call_key string Unique identifier for the specific earnings call

Splits

This dataset has a single split:

  • train: All records of tone dispersion metrics

Usage

from datasets import load_dataset

dataset = load_dataset("kurrytran/sp500_tone_dataset")

data = dataset["train"]

# Example: Compute average tone dispersion by year
from collections import defaultdict
avg_tone_by_year = defaultdict(lambda: {"total": 0, "count": 0})
for item in data:
    year = item["year"]
    avg_tone_by_year[year]["total"] += item["tone_dispersion"]
    avg_tone_by_year[year]["count"] += 1

for year, values in sorted(avg_tone_by_year.items()):
    print(f"Year {year}: Average tone dispersion = {values['total'] / values['count']:.4f}")

Citation

If you use this dataset in your research, please cite it as follows:

@dataset{sp500_tone_dataset,
  author    = {kurrytran},
  title     = {SP500 Tone Dataset},
  year      = {2025},
  publisher = {Hugging Face},
  url       = {https://huggingface.co/datasets/kurrytran/sp500_tone_dataset}
}

License

This dataset is licensed under CC BY 4.0. For more details, see https://creativecommons.org/licenses/by/4.0/.

Downloads last month
37