Dataset Viewer
The dataset viewer is not available for this split.
The size of the content of the first rows (282685 B) exceeds the maximum supported size (200000 B) even after truncation. Please report the issue.
Error code:   TooBigContentError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

๐Ÿงต 3DFDReal: Real-World 3D Fashion Dataset

Empowering Virtual Try-On Applications with High-Quality 3D Fashion Data

License: CC BY 4.0 Dataset Size Resolution

Electronics and Telecommunications Research Institute (ETRI)
Media Intellectualization Research Section


๐ŸŒŸ Highlights

Teaser

๐Ÿ“Š 1,000+

3D Point Clouds
High-quality captures

๐ŸŽฅ 4K@60fps

Multi-View Videos
Professional recording

๐Ÿท๏ธ Rich Metadata

Detailed Annotations
Semantic labels & attributes

๐ŸŽฎ Metaverse Ready

ZEPETO Compatible
Direct deployment support


๐ŸŽฏ What is 3DFDReal?

3DFDReal is a groundbreaking real-world fashion dataset designed for cutting-edge 3D vision research. Bridging the gap between high-quality 3D fashion modeling and practical virtual environment deployment, our dataset provides researchers and developers with:

  • โœจ Individual fashion items and complete outfit combinations
  • ๐ŸŽญ Gender-balanced mannequin representations
  • ๐Ÿ”ง Rigging-ready T-pose and upright pose variations
  • ๐Ÿ“ Comprehensive metadata including semantic attributes and structured segmentations

Perfect for applications in:

  • ๐Ÿ›๏ธ Virtual Try-On Systems
  • ๐Ÿ‘ค Avatar Modeling & Customization
  • ๐ŸŽจ Digital Fashion Design
  • ๐ŸŒ Metaverse Asset Creation
  • ๐Ÿค– Pose-Aware 3D Understanding

๐Ÿ”ฌ Data Collection Pipeline

Data Collection Pipleline

Pipeline Stages:

  1. ๐Ÿ“ฆ Asset Selection
    Curated selection of fashion items with detailed tagging (individual items & complete sets)

  2. ๐Ÿ“น Recording Setup
    Professional capture using iPhone 13 Pro with controlled lighting and multi-angle coverage

  3. โ˜๏ธ 3D Ground Truth Generation
    High-fidelity point cloud generation with manual segmentation using professional 3D tools

  4. ๐ŸŽฎ Application & Validation
    Rigging and deployment testing in real metaverse environments (ZEPETO)


๐Ÿ“ˆ Dataset Statistics

๐Ÿ‘” Fashion Class Distribution

Fashion Class Distribution

Distribution of fashion items across the dataset, with pants and sweatshirts being the most represented categories

๐ŸŽญ Combination Analysis

![Combination Frequency](figures/Count appears in Combination.png)

Sneakers and pants appear most frequently in mannequin outfit combinations

๐Ÿ“Š Dataset Composition

Combination Overview

Key Insights:

  • ๐Ÿ“ฆ Average items per outfit: 4 distinct fashion pieces
  • โš–๏ธ Gender balance: Equal representation across combinations
  • ๐Ÿ•ด๏ธ Pose distribution: Upright poses (standard) + T-poses (rigging-optimized)

๐Ÿ“‚ Dataset Organization

3DFDReal/
โ”‚
โ”œโ”€โ”€ ๐ŸŽจ Assets (Individual Items)
โ”‚   โ”œโ”€โ”€ PointCloud_Asset/     # Raw .ply point clouds
โ”‚   โ”œโ”€โ”€ Video_Asset/          # 3D rotation videos
โ”‚   โ””โ”€โ”€ Label_Asset/          # Category & class labels
โ”‚
โ”œโ”€โ”€ ๐Ÿ‘• Combinations (Full Outfits)
โ”‚   โ”œโ”€โ”€ PointCloud_Combine/   # Mannequin point clouds
โ”‚   โ”‚   โ”œโ”€โ”€ train/
โ”‚   โ”‚   โ”œโ”€โ”€ val/
โ”‚   โ”‚   โ””โ”€โ”€ test/
โ”‚   โ”œโ”€โ”€ Video_Combine/        # Mannequin videos
โ”‚   โ””โ”€โ”€ Label_Combine/        # Combination labels
โ”‚
โ””โ”€โ”€ ๐Ÿ“‹ Metadata
    โ”œโ”€โ”€ asset_meta.json               # Individual item metadata
    โ”œโ”€โ”€ combination_meta.json         # All combinations
    โ”œโ”€โ”€ {train,val,test}_combination_meta.json
    โ””โ”€โ”€ label_map.csv                # Label mapping reference

๐Ÿ”‘ Metadata Schema

Each metadata entry contains:

  • label_str: Human-readable class name
  • gender: Male/Female/Unisex
  • pose: T-pose/Upright
  • type: Asset/Combination
  • wnlemmas: Fine-grained semantic tags

๐Ÿ† Benchmark Results

๐ŸŽฏ 3D Object Segmentation

Using SAMPart3D as baseline:

Metric Score
mIoU 0.9930
Average Precision Class-dependent

Segmentation Results

๐Ÿ”จ 3D Reconstruction

Baseline models evaluated:

Model CD DCD F1-Score
DDPM-A 0.628ยฑ0.887 - -

Reconstruction Example


๐Ÿš€ Getting Started

Quick Start

# Load the dataset from Hugging Face
from datasets import load_dataset

dataset = load_dataset("kusses/3DFDReal")

# Access different splits
train_data = dataset['train']
val_data = dataset['validation']
test_data = dataset['test']

Example Use Cases

  • ๐Ÿ›๏ธ Virtual Try-On Applications
  • ๐ŸŒ Metaverse Asset Generation
  • ๐Ÿค– Pose-Aware Segmentation Research
  • ๐Ÿ‘ค Avatar Rigging & Deformation
  • ๐ŸŽจ Digital Fashion Design Tools

๐Ÿ“ Citation

If you use 3DFDReal in your research, please cite:

@misc{3DFDReal2025,
  title={3DFDReal: Real-World 3D Fashion Dataset for Virtual Try-On Applications},
  author={Jiyoun Lim, Jungwoo Son, Alex Lee, Sun-Joong Kim, Nam Kyung Lee, Won-Joo Park},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/kusses/3DFDReal}},
  note={Electronics and Telecommunications Research Institute (ETRI)}
}

๐Ÿค Contributing

We welcome contributions to improve and expand 3DFDReal! Please feel free to:

  • ๐Ÿ› Report issues or bugs
  • ๐Ÿ’ก Suggest new features or improvements
  • ๐Ÿ”ง Submit pull requests
  • ๐Ÿ’ฌ Join discussions on our Hugging Face page

๐Ÿ“ฌ Contact

Jiyoun Lim
Electronics and Telecommunications Research Institute (ETRI)
๐Ÿ“ง [email protected]

Hugging Face GitHub


๐Ÿ“„ License

This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

CC BY 4.0

Made with โค๏ธ by Media Intellectualization Research Team, ETRI
Downloads last month
516