kusses commited on
Commit
557b8ec
·
verified ·
1 Parent(s): 6791173

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -5
README.md CHANGED
@@ -40,9 +40,12 @@ The dataset is built through a structured four-stage pipeline:
40
 
41
  ### 📈 Class Distribution
42
 
43
- ![Class Frequency](figures/fashion_class_distribution.png)
 
44
 
45
- The most frequently appearing classes include **pants**, **sweatshirts**, and **jeans**.
 
 
46
 
47
  ### 👚 Combination Metadata
48
 
@@ -125,10 +128,28 @@ Each mata contains this detailed information:
125
 
126
  ---
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- - 3D data rendering from 2D video
130
- - 3D semantic segmentation
131
- - 3D data reconstruction
 
132
 
133
 
134
  ## 📃 License
 
40
 
41
  ### 📈 Class Distribution
42
 
43
+ ![Used Fasion Item Count for 3D Dataset](figures/fashion_class_distribution.png)
44
+ **Pants** and **sweatshirts** are used more than other fashion items.
45
 
46
+
47
+ ![Fashion Item Count in Mannequin-wear Combinations](figures/Count appears in Combination.png)
48
+ **Sneakers** and **Pants** are the most frequent fashion items in Mannequin-wear combinations.
49
 
50
  ### 👚 Combination Metadata
51
 
 
128
 
129
  ---
130
 
131
+ ## 🧪 Benchmarks
132
+
133
+ ### 3D object segmentation
134
+ The Baseline model using [**SAMPart3D**](https://yhyang-myron.github.io/SAMPart3D-website/) demonstrates high segmentation quality (mIoU: 0.9930) but shows varying average precision (AP) across classes.
135
+
136
+ ![3D object segmentation with SAMPart3D](figures/seg_tuning.png)
137
+
138
+
139
+ ### 3D data reconstruction
140
+ The baseline models are [**DDPM-A**](https://github.com/lucidrains/denoising-diffusion-pytorch) diffusion-based probabilistic model for the generation task, and [**SVD-SVDFormer**](https://github.com/czvvd/SVDFormer_PointSea) for the completion task.
141
+ Performance is measured using Chamfer Distance (CD), Density-aware Chamfer Distance (DCD), and F1-Score (F1). For DDPM, sampled point clouds are shuffled without considering the sampling ratio 𝑛, and the performance of DDPM is measured with CD. DDPM shows 0.628±0.887 of the average CD.
142
+
143
+ ![3D data re onstruction example](figures/sampledPC.png)
144
+
145
+ ---
146
+
147
+ ## 💻 Use Cases
148
 
149
+ - **Virtual try-on**
150
+ - **Metaverse asset creation**
151
+ - **Pose-aware segmentation**
152
+ - **Avatar rigging & deformation simulation**
153
 
154
 
155
  ## 📃 License