Add link to paper

#6
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -1,4 +1,13 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  viewer: true
3
  dataset_info:
4
  - config_name: Chinese
@@ -148,15 +157,6 @@ configs:
148
  path: Vietnamese/test-*
149
  - split: dev
150
  path: Vietnamese/dev-*
151
- language:
152
- - vi
153
- - en
154
- - de
155
- - fr
156
- - zh
157
- license: mit
158
- task_categories:
159
- - automatic-speech-recognition
160
  tags:
161
  - medical
162
  ---
@@ -169,8 +169,9 @@ This technology enhances patient care by enabling efficient communication across
169
  In this work, we introduce *MultiMed*, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset.
170
  To our best knowledge, *MultiMed* stands as **the largest and the first multilingual medical ASR dataset**, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes.
171
 
 
172
 
173
- Please cite this paper: [https://arxiv.org/abs/2409.14074](https://arxiv.org/abs/2409.14074)
174
 
175
  @inproceedings{le2024multimed,
176
  title={MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder},
 
1
  ---
2
+ language:
3
+ - vi
4
+ - en
5
+ - de
6
+ - fr
7
+ - zh
8
+ license: mit
9
+ task_categories:
10
+ - automatic-speech-recognition
11
  viewer: true
12
  dataset_info:
13
  - config_name: Chinese
 
157
  path: Vietnamese/test-*
158
  - split: dev
159
  path: Vietnamese/dev-*
 
 
 
 
 
 
 
 
 
160
  tags:
161
  - medical
162
  ---
 
169
  In this work, we introduce *MultiMed*, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset.
170
  To our best knowledge, *MultiMed* stands as **the largest and the first multilingual medical ASR dataset**, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes.
171
 
172
+ [Paper](https://huggingface.co/papers/2409.14074)
173
 
174
+ Please cite this paper:
175
 
176
  @inproceedings{le2024multimed,
177
  title={MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder},