Dataset Viewer
Auto-converted to Parquet
datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
ntnu-smil/unseen_1964_qa_keyBERT_normalized
ntnu-smil
2025-05-05T19:01:25Z
0
0
[ "region:us" ]
[]
2025-05-05T18:59:08Z
0
--- dataset_info: features: - name: speaker_id dtype: int64 - name: grade dtype: float64 - name: classification dtype: int64 - name: asr_transcription dtype: string - name: wav_path dtype: string - name: prompt dtype: string - name: example dtype: string - name: confidence_score dtype: float64 - name: acoustic_score dtype: float64 - name: lm_score dtype: float64 - name: pitch dtype: float64 - name: intensity dtype: float64 - name: pause(sec) dtype: float64 - name: silence(sec) dtype: float64 - name: duration(sec) dtype: float64 - name: wpm dtype: float64 - name: total_num_word dtype: int64 - name: level_1 dtype: int64 - name: level_2 dtype: float64 - name: level_3 dtype: float64 - name: seq_len dtype: int64 - name: key1 dtype: float64 - name: key2 dtype: float64 - name: key3 dtype: float64 - name: key4 dtype: float64 - name: avg dtype: float64 - name: all_avg_score dtype: float64 - name: Threshold_Count dtype: int64 - name: mean_pitch dtype: float64 - name: mean_intensity dtype: float64 - name: duration dtype: float64 - name: localJitter dtype: float64 - name: localShimmer dtype: float64 - name: rapJitter dtype: float64 - name: long_silence dtype: float64 - name: silence dtype: float64 - name: long_silence_num dtype: int64 - name: silence_num dtype: int64 - name: std_energy dtype: float64 - name: avg_spectral dtype: float64 - name: avg_energy_entropy dtype: float64 - name: zero_cross_num dtype: int64 - name: v_to_uv_ratio dtype: float64 - name: voice_count dtype: int64 - name: unvoice_count dtype: int64 - name: mean_long_silence dtype: float64 - name: mean_silence dtype: float64 - name: more3word dtype: int64 - name: num_word dtype: int64 - name: whisperX_transcription dtype: string - name: delivery_vec dtype: string - name: num_sentence dtype: int64 - name: uh_count dtype: int64 - name: num_silence dtype: int64 - name: num_long_silence dtype: int64 - name: serrant sequence: int64 - name: level_counts sequence: int64 - name: total_words dtype: int64 - name: example1 dtype: string - name: example2 dtype: string - name: example3 dtype: string - name: example4 dtype: string - name: example1_score dtype: float64 - name: example2_score dtype: float64 - name: example3_score dtype: float64 - name: example4_score dtype: float64 - name: form_id dtype: string - name: asr dtype: string - name: response1 dtype: string - name: response2 dtype: string - name: response3 dtype: string - name: response4 dtype: string - name: response1_score dtype: float64 - name: response2_score dtype: float64 - name: response3_score dtype: float64 - name: response4_score dtype: float64 - name: similarity1 dtype: float64 - name: similarity2 dtype: float64 - name: similarity3 dtype: float64 - name: similarity4 dtype: float64 splits: - name: train num_bytes: 24527711 num_examples: 719 - name: validation num_bytes: 3282551 num_examples: 90 - name: test num_bytes: 3109862 num_examples: 90 - name: fulltest num_bytes: 10473727 num_examples: 300 download_size: 24780892 dataset_size: 41393851 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - split: fulltest path: data/fulltest-* ---
thenewsupercell/fixed-fakeavceleb
thenewsupercell
2025-01-29T02:17:54Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-29T02:17:29Z
0
--- dataset_info: features: - name: video dtype: video - name: label dtype: class_label: names: '0': FakeVideo-FakeAudio '1': FakeVideo-RealAudio '2': RealVideo-FakeAudio '3': RealVideo-RealAudio - name: source dtype: string - name: target1 dtype: string - name: target2 dtype: string - name: method dtype: string - name: category dtype: string - name: type dtype: string - name: race dtype: string - name: gender dtype: string - name: 'Unnamed: 9' dtype: string - name: text dtype: string splits: - name: train num_bytes: 4821185360.872 num_examples: 15999 - name: validation num_bytes: 634302985.581 num_examples: 2111 - name: test num_bytes: 648856339.776 num_examples: 2124 download_size: 10934493 dataset_size: 6104344686.229 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
barma7/oai-t2maps-epgfit
barma7
2025-01-15T20:58:40Z
45
1
[ "language:en", "license:mit", "region:us", "medical", "biology", "cartilage", "t2mapping", "OAI" ]
[]
2024-10-04T05:16:18Z
0
--- license: mit language: - en tags: - medical - biology - cartilage - t2mapping - OAI pretty_name: OAI T2 maps with EPG fitting --- # Osteoarthritis Initiative (OAI) T2 Maps – EPG Fit Dataset This dataset repository contains T2 maps derived from the Multi-Echo Spin-Echo (MESE) MRI data in the Osteoarthritis Initiative (OAI). The maps were generated specifically for cartilage regions using the Extended Phase Graph (EPG) formalism, which improves the accuracy and reproducibility of cartilage T2 mapping, as detailed in the work of Marco Barbieri, Anthony A. Gatti, and Feliks Kogan (2024) [https://doi.org/10.1002/jmri.29646](https://doi.org/10.1002/jmri.29646). The graphical abstract of the work is reported below, showing that EPG modeling improved reproducibility in cartilage T2 in a cohort of healthy subjects from the OAI dataset. ![Dataset Structure](images/Graphical_abstract_rescaled.png) ## Dataset Structure ### Files and Folders The dataset is organized by acquisition timepoints. Each main folder represents a timepoint in the OAI dataset and contains subfolders for individual subjects. - **Timepoints**: `00m`, `12m`, `24m`, `36m`, `48m`, `72m`, `96m`. - **Subject folders**: Each folder name is the unique OAI subject ID (e.g., `9000099`). Within each subject folder: - **`t2.nii.gz`**: The T2 map computed using the EPG dictionary fitting method, specific to cartilage tissue. - **`r2.nii.gz`**: The r-squared value of the fit (goodness of fit). ### MESE Data Location Files For each acquisition timepoint (e.g., `00_month_mese_locations.csv`, `12_month_mese_locations.csv`, etc), a CSV file provides a mapping to the original MESE data within the OAI dataset. Each CSV file includes the following columns: - **subject_id**: The unique identifier for each OAI subject. - **visit**: The month corresponding to the acquisition timepoint (e.g., 36 for `36m`). - **laterality**: Indicates whether the MESE data is from the **RIGHT** or **LEFT** knee. - **dicom_mese_path**: The relative path to the original DICOM MESE data within the OAI dataset. - **t2map_nifti_path**: The relative path to the computed T2 map for that subject, located in this dataset. These CSV files will help locate the original MESE DICOM data within the OAI dataset. ### Features - **Subject ID** (str): Unique identifier for each subject in the OAI study. - **T2 Map (`t2.nii.gz`)**: Computed T2 map for cartilage using the EPG fitting method. - **R-Squared Map (`r2.nii.gz`)**: Fit accuracy metric for the T2 computation. ## Cartilage-Specific T2 Mapping The T2 map in this dataset is provided **only for cartilage regions**, as the EPG model used in the computation is specifically designed for cartilage MR properties. To speed up computation, we have exploited segmented cartilage regions from the femoral, tibial, and patellar regions. Here’s the complete mapping process: 1. **Cartilage Segmentation**: For each subject, the femoral, tibial, and patellar cartilage were segmented from the corresponding Double Echo Steady State (DESS) image using the [ShapeMedKneeModel](https://huggingface.co/aagatti/ShapeMedKnee). 2. **Registration to MESE Images**: The segmented cartilage masks were then registered to the MESE images using [Elastix](https://github.com/SuperElastix/elastix), ensuring anatomical alignment across sequences. 3. **Dilated Mask for T2 Mapping**: A dilated version of the cartilage mask was used during the T2 mapping process to allow researchers the flexibility to apply their segmentations if desired. This ensures that cartilage boundaries are fully captured while also accounting for anatomical variations. The cartilage segmentations used for the OAI dataset are available in the public repository [ShapeMedKnee](https://huggingface.co/aagatti/ShapeMedKnee) and will be regularly maintained and updated there. ## Dataset Creation The T2 maps in this dataset were generated from the MESE data in the OAI dataset using the Extended Phase Graph (EPG) fitting method as described in the work by [Barbieri, Gatti, and Kogan, published in *Journal of Magnetic Resonance Imaging* (2024)](https://doi.org/10.1002/jmri.29646). The code used to perform this fitting is open-source and accessible on GitHub at [EPGfit_for_cartilage_T2_mapping](https://github.com/barma7/EPGfit_for_cartilage_T2_mapping). ## Getting Started ### Installation You can install and access the dataset using the `datasets` library: ```bash pip install datasets ``` ### Usage Load and interact with the dataset in Python: ```python from datasets import load_dataset dataset = load_dataset("barma7/oai-t2maps-epgfit") # Accessing a specific timepoint and subject data print(dataset["00m"]["9000099"]["t2"]) print(dataset["00m"]["9000099"]["r2"]) ``` ## Dataset Details - **File Size**: Each T2 map file (`t2.nii.gz`) and r-squared file (`r2.nii.gz`) are stored in compressed `.nii.gz` format, with sizes varying per subject and time point. - **Number of Samples**: Covers subjects across seven OAI acquisition timepoints for which MESE was available. - **File Format**: `.nii.gz` files. ## License This dataset is licensed under the MIT License, which allows for free use, modification, and distribution with attribution. For full license details, please see the LICENSE file in this repository. --- ## Acknowledgments This dataset was created based on the Osteoarthritis Initiative (OAI) dataset. The authors of this repository acknowledge the original OAI study and the contributions of all OAI collaborators. ## Citation If you use this dataset in your research, please cite: Barbieri, M., Gatti, A.A. and Kogan, F. (2024), Improving Accuracy and Reproducibility of Cartilage T2 Mapping in the OAI Dataset Through Extended Phase Graph Modeling. J Magn Reson Imaging. https://doi.org/10.1002/jmri.29646
Aadharsh/ACD-Audios-text-tags-v1
Aadharsh
2024-12-04T09:44:05Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-04T09:21:49Z
0
--- dataset_info: features: - name: id dtype: string - name: text dtype: string - name: __index_level_0__ dtype: int64 - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: speaker_id dtype: int64 - name: gender dtype: string splits: - name: train num_bytes: 1312570 num_examples: 3324 download_size: 764817 dataset_size: 1312570 configs: - config_name: default data_files: - split: train path: data/train-* ---
google/cvss
google
2024-02-10T04:34:53Z
119
14
[ "language:en", "language:ar", "language:ca", "language:cy", "language:de", "language:es", "language:et", "language:fa", "language:fr", "language:id", "language:it", "language:ja", "language:lv", "language:mn", "language:nl", "language:pt", "language:ru", "language:sl", "language:sv", "language:ta", "language:tr", "language:zh", "license:cc-by-4.0", "arxiv:2201.03713", "region:us" ]
[]
2022-08-11T00:54:54Z
1
--- license: cc-by-4.0 language: - en - ar - ca - cy - de - es - et - fa - fr - id - it - ja - lv - mn - nl - pt - ru - sl - sv - ta - tr - zh --- # CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus *CVSS* is a massively multilingual-to-English speech-to-speech translation corpus, covering sentence-level parallel speech-to-speech translation pairs from 21 languages into English. CVSS is derived from the [Common Voice](https://commonvoice.mozilla.org/) speech corpus and the [CoVoST 2](https://github.com/facebookresearch/covost) speech-to-text translation corpus. The translation speech in CVSS is synthesized with two state-of-the-art TTS models trained on the [LibriTTS](http://www.openslr.org/60/) corpus. CVSS includes two versions of spoken translation for all the 21 x-en language pairs from CoVoST 2, with each version providing unique values: - *CVSS-C*: All the translation speeches are in a single canonical speaker's voice. Despite being synthetic, these speeches are of very high naturalness and cleanness, as well as having a consistent speaking style. These properties ease the modeling of the target speech and enable models to produce high quality translation speech suitable for user-facing applications. - *CVSS-T*: The translation speeches are in voices transferred from the corresponding source speeches. Each translation pair has similar voices on the two sides despite being in different languages, making this dataset suitable for building models that preserve speakers' voices when translating speech into different languages. Together with the source speeches originated from Common Voice, they make two multilingual speech-to-speech translation datasets each with about 1,900 hours of speech. In addition to translation speech, CVSS also provides normalized translation text matching the pronunciation in the translation speech (e.g. on numbers, currencies, acronyms, etc.), which can be used for both model training as well as standardizing evaluation. Please check out [our paper](https://arxiv.org/abs/2201.03713) for the detailed description of this corpus, as well as the baseline models we trained on both datasets. # Load the data The following example loads the translation speech (i.e. target speech) and the normalized translation text (i.e. target text) released in CVSS corpus. You'll need to load the source speech and optionally the source text from [Common Voice v4.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_4_0) separately, and join them by the file names. ```py from datasets import load_dataset # Load only ar-en and ja-en language pairs. Omitting the `languages` argument # would load all the language pairs. cvss_c = load_dataset('google/cvss', 'cvss_c', languages=['ar', 'ja']) # Print the structure of the dataset. print(cvss_c) ``` # License CVSS is released under the very permissive [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license. ## Citation Please cite this paper when referencing the CVSS corpus: ``` @inproceedings{jia2022cvss, title={{CVSS} Corpus and Massively Multilingual Speech-to-Speech Translation}, author={Jia, Ye and Tadmor Ramanovich, Michelle and Wang, Quan and Zen, Heiga}, booktitle={Proceedings of Language Resources and Evaluation Conference (LREC)}, pages={6691--6703}, year={2022} } ```
zcamz/ai-vs-human-meta-llama-Llama-3.2-1B-Instruct
zcamz
2024-12-08T10:53:54Z
120
0
[ "task_categories:text-classification", "task_categories:text-generation", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "text-generation" ]
2024-12-08T10:53:52Z
0
--- license: mit task_categories: - text-classification - text-generation language: - en pretty_name: AI vs Human CNN Daily News size_categories: - 1K<n<10K --- # AI vs Human dataset on the [CNN Daily mails](https://huggingface.co/datasets/abisee/cnn_dailymail) ## Dataset Description This dataset showcases pairs of truncated articles and their respective completions, crafted either by humans or an AI language model. Each article was randomly truncated between 25% and 50% of its length. The language model was then tasked with generating a completion that mirrored the characters count of the original human-written continuation. ## Data Fields - 'human': The original human-authored continuation of the truncated article, preserved in its entirety. - 'ai': The AI-generated continuation of the truncated article, designed to match the original in length and coherence. ## Model and Sampling Parameters The model used to generate the AI completions was meta-llama/Llama-3.2-1B-Instruct. The sampling parameters used were: {'frequency_penalty': 0.2, 'max_tokens': 1000, 'presence_penalty': 0.5, 'temperature': 0.5} ## License MIT License
saheedniyi/ccsmall
saheedniyi
2025-05-11T13:17:09Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T13:17:00Z
0
--- dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: index dtype: int64 - name: Type dtype: string - name: FileID dtype: string - name: Channel dtype: int64 - name: Start dtype: float64 - name: Duration dtype: float64 - name: Speaker dtype: string - name: audio dtype: audio - name: text dtype: string splits: - name: train num_bytes: 23918320.0 num_examples: 292 download_size: 23895011 dataset_size: 23918320.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_39f674da-ba84-4e66-a620-c3417d8f7d11
argilla-internal-testing
2024-10-03T08:27:12Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-03T08:27:11Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
bngomez/my-distiset-624b87dd
bngomez
2025-02-15T21:28:37Z
10
0
[ "task_categories:text-classification", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-classification" ]
2025-02-15T21:28:35Z
0
--- size_categories: n<1K task_categories: - text-classification dataset_info: features: - name: text dtype: string - name: labels sequence: class_label: names: '0': case-dismissal '1': tenant-protection '2': court-decision '3': landlord-protection '4': statute-violation splits: - name: train num_bytes: 4788 num_examples: 10 download_size: 5979 dataset_size: 4788 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-624b87dd This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/bngomez/my-distiset-624b87dd/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/bngomez/my-distiset-624b87dd/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "labels": [ 3, 2, 4 ], "text": "A Kansas landlord is required to provide a written notice to a tenant before entering the rental property. The notice must be given at least 24 hours prior to the intended entry date and time. Failure to comply with this requirement may result in a tenant\u0027s right to withhold rent or seek damages." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("bngomez/my-distiset-624b87dd", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("bngomez/my-distiset-624b87dd") ``` </details>
AJNG/w2v-bert-2.0-nepali-transliterator
AJNG
2025-02-19T15:55:12Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-19T15:54:14Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string splits: - name: train num_bytes: 618159450.9302325 num_examples: 1320 - name: validation num_bytes: 155008165.3468992 num_examples: 331 - name: test num_bytes: 193408979.7228682 num_examples: 413 download_size: 935860990 dataset_size: 966576596.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
valcarese/RAGtry
valcarese
2025-02-04T19:23:37Z
23
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:sentence-similarity", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "text-retrieval", "question-answering", "sentence-similarity" ]
2025-02-04T19:23:36Z
0
--- size_categories: n<1K task_categories: - text-generation - text2text-generation - text-retrieval - question-answering - sentence-similarity dataset_info: features: - name: context dtype: string - name: question dtype: string - name: response dtype: string - name: positive_retrieval dtype: string - name: negative_retrieval dtype: string splits: - name: train num_bytes: 39052 num_examples: 12 download_size: 33970 dataset_size: 39052 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for RAGtry This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/valcarese/RAGtry/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/valcarese/RAGtry/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "context": "**Demographic Information**\n\n1. Family Structure: \n - Number of parents/guardians\n - Ages and relationships of all household members\n - Information on any foster care or previous placements\n\n2. Family Dynamics:\n - History of domestic violence or substance abuse\n - Quality of parent-child relationships and interactions\n - Presence of conflict between family members\n\n**Risk Indicators**\n\n1. Environmental Risks\n - Living conditions: overcrowding, cleanliness, and access to basic necessities\n - Neighborhood safety and community resources\n - Availability of stable food and housing arrangements\n\n2. Child Developmental Risks\n - Academic performance and attendance\n - Behavioral issues and emotional distress\n - Physical health and immunization status\n\n**Assessment of Parental Capabilities**\n\n1. Parental Supervision and Support\n - Frequency and quality of parent-child interactions\n - Parental involvement in child\u0027s education and activities\n\n2. Parental Well-being\n - History of mental health issues or substance abuse\n - Parental education level and employment status\n\n**Intervention Strategies**\n\n1. Home visits and family counseling to address relationship dynamics and parenting skills\n2. Referral to community resources for food, housing, and job training\n3. Psychological evaluations and therapy for children and parents\n4. Regular check-ins with social workers and healthcare professionals to monitor progress and adjust interventions as needed\n\n**Child Safety Plan**\n\n1. Immediate safety plan for removing child from home if necessary\n2. Placement options: foster care, kinship care, or adoption\n3. Development of a long-term plan for reunification or alternative care arrangement\n\n**Prevention and Support Services**\n\n1. Case management and coordination with community agencies\n2. Parenting education and resource connection\n3. Monthly home visits and regular check-ins with family\n\n**Behavioral and Psychological Assessments**\n\n1. Conduct regular home visits to assess family dynamics and environment\n2. Use standardized tools to evaluate child and parent functioning and well-being\n3. Psychological evaluations for children and parents to identify areas for support and intervention", "negative_retrieval": "What demographic information should be collected for this family to determine their eligibility for a government assistance program?", "positive_retrieval": "What demographic information should be collected for this family to develop an effective intervention plan?", "question": "What demographic information should be collected for this family to develop an effective intervention plan?", "response": "Based on the provided document, the following demographic information should be collected to develop an effective intervention plan:\n\n1. Number of parents/guardians\n2. Ages and relationships of all household members\n3. Information on any foster care or previous placements\n4. Family structure (i.e., whether the family is a single-parent household or multi-parent household)" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("valcarese/RAGtry", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("valcarese/RAGtry") ``` </details>
tranthanhnguyenai1/NvdiaOpenInstructCode_8
tranthanhnguyenai1
2025-06-19T02:47:04Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-19T02:20:44Z
0
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: llm_judgement dtype: string - name: unit_tests dtype: string - name: tests_execution_status dtype: string - name: average_test_score dtype: string splits: - name: train num_bytes: 410999212.875504 num_examples: 109716 download_size: 131846473 dataset_size: 410999212.875504 configs: - config_name: default data_files: - split: train path: data/train-* ---
HHS-Official/weekly-united-states-covid-19-hospitalization-metr
HHS-Official
2025-05-07T20:44:47Z
0
0
[ "language:en", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "hhs", "cdc", "admissions", "coronavirus", "covid-19", "hospitalizations" ]
[]
2025-05-07T20:44:45Z
0
--- language: - en pretty_name: Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED tags: - hhs - cdc - admissions - coronavirus - covid-19 - hospitalizations --- # Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED ## Description <b>Note:</b> After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023. This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy. <b>Reporting information:</b><ul><li>As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).</li><li>While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.</li><li>Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.</li><li>Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.</li><li>Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf</li></ul> <b>Metric details:</b><ul><li><b>Time Period:</b> timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.</li><li><b>New COVID-19 Hospital Admissions (count):</b> Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.</li><li><b>New COVID-19 Hospital Admissions (7-Day Average):</b> 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.</li><li><b>Cumulative COVID-19 Hospital Admissions:</b> Cumulative total number of admissions of patients with labo ## Dataset Details - **Publisher**: Centers for Disease Control and Prevention - **Temporal Coverage**: 8/1/2020 - 5/3/2024 - **Geographic Coverage**: US - **Last Modified**: 2025-02-23 - **Contact**: CDC-INFO ([email protected]) ## Source Original data can be found at: https://data.cdc.gov/d/7dk4-g6vg ## Usage You can load this dataset using: ```python from datasets import load_dataset dataset = load_dataset('HHS-Official/weekly-united-states-covid-19-hospitalization-metr') ``` ## License This dataset is licensed under https://www.usa.gov/government-works
malaysia-ai/DBP-Dialect
malaysia-ai
2025-05-23T04:16:06Z
0
0
[ "language:ms", "region:us" ]
[]
2025-05-23T03:44:51Z
0
--- language: - ms --- # DBP Dialect Manually extract from https://prpm.dbp.gov.my/CarianBestari?mode=ext&keyword= ## Source code Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/dictionary/dialect-dbp
mlfoundations-dev/nemo_nano_science_30k
mlfoundations-dev
2025-05-06T05:31:52Z
0
0
[ "region:us" ]
[]
2025-05-06T05:31:03Z
0
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: category dtype: string - name: license dtype: string - name: reasoning dtype: string - name: generator dtype: string - name: used_in_training dtype: string - name: version dtype: string - name: system_prompt dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 518805882.7546126 num_examples: 31600 download_size: 248396987 dataset_size: 518805882.7546126 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_3_dataset_1_for_gen_9_v2
HungVu2003
2025-05-06T14:29:44Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T14:29:42Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 7255012 num_examples: 14998 download_size: 3337042 dataset_size: 7255012 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tippawan/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
Tippawan
2025-03-18T10:07:29Z
29
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-18T10:07:27Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: text dtype: string splits: - name: train num_bytes: 2153419 num_examples: 19 download_size: 395842 dataset_size: 2153419 configs: - config_name: default data_files: - split: train path: data/train-* ---
rubenroy/WikiMed-200k
rubenroy
2025-04-12T00:43:27Z
15
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-12T00:42:35Z
0
--- license: apache-2.0 ---
WangBiao/R1-Track-5k
WangBiao
2025-04-03T08:48:04Z
20
1
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T13:50:00Z
0
--- license: mit language: - en ---
evageon/IADD
evageon
2022-01-29T11:16:17Z
57
0
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2022-03-02T23:29:22Z
0
--- license: cc-by-4.0 --- # IADD IADD is an Integrated Dataset for Arabic Dialect iDentification Dataset. It contains 136,317 texts representing 5 regions (Maghrebi (MGH) , Levantine (LEV), Egypt (EGY) , Iraq (IRQ) and Gulf (GLF)) and 9 countries (Algeria, Morocco, Tunisia, Palestine, Jordan, Syria, Lebanon, Egypt and Iraq). IADD is created from the combination of subsets of five corpora: DART, SHAMI, TSAC, PADIC and AOC. The Dialectal ARabic Tweets dataset (DART) [1] has about 25,000 tweets that are annotated via crowdsourcing while the SHAMI dataset [2] consists of 117,805 sentences and covers levantine dialects spoken in Palestine, Jordan, Lebanon and Syria. TSAC [3] is a Tunisian dialect corpus of 17,000 comments collected mainly from Tunisian Facebook pages. Parallel Arabic Dialect Corpus (PADIC) [4] is made of sentences transcribed from recordings or translated from MSA. Finally, the Arabic Online Commentary (AOC) dataset [5] is based on reader commentary from the online versions of three Arabic newspapers, and it consists of 1.4M comments. IADD is stored in a JSON-like format with the following keys: - Sentence: contains the sentence/ text; - Region: stores the corresponding dialectal region (MGH, LEV, EGY, IRQ, GLF or general); - Country: specifies the corresponding country, if available (MAR, TUN, DZ, EGY, IRQ, SYR, JOR, PSE, LBN); - DataSource: indicates the source of the data (PADIC, DART, AOC, SHAMI or TSAC). [1] Alsarsour, I., Mohamed, E., Suwaileh, R., & Elsayed, T. (2018, May). Dart: A large dataset of dialectal arabic tweets. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). [2] Abu Kwaik, K., Saad, M. K., Chatzikyriakidis, S., & Dobnik, S. (2018). Shami: A corpus of levantine arabic dialects. In Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018). [3] Mdhaffar, S., Bougares, F., Esteve, Y., & Hadrich-Belguith, L. (2017, April). Sentiment analysis of tunisian dialects: Linguistic ressources and experiments. In Third Arabic Natural Language Processing Workshop (WANLP) (pp. 55-61). [4] Meftouh, K., Harrat, S., Jamoussi, S., Abbas, M., & Smaili, K. (2015, October). Machine translation experiments on PADIC: A parallel Arabic dialect corpus. In The 29th Pacific Asia conference on language, information and computation. [5] Zaidan, O., & Callison-Burch, C. (2011, June). The arabic online commentary dataset: an annotated dataset of informal arabic with high dialectal content. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (pp. 37-41).
huggingartists/joji
huggingartists
2022-10-25T09:32:26Z
28
0
[ "language:en", "size_categories:n<1K", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "huggingartists", "lyrics" ]
[]
2022-03-02T23:29:22Z
0
--- language: - en tags: - huggingartists - lyrics --- # Dataset Card for "huggingartists/joji" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.211227 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d20ee1f900287060716f7594ccba7ea3.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/joji"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Joji</div> <a href="https://genius.com/artists/joji"> <div style="text-align: center; font-size: 14px;">@joji</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/joji). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/joji") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |159| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/joji") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Rajarshi-Roy-research/all-temp-fpo-train-data
Rajarshi-Roy-research
2025-01-06T05:34:51Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-05T18:36:32Z
0
--- dataset_info: features: - name: abstract dtype: string - name: web_url dtype: string - name: lead_paragraph dtype: string - name: Human_story_fetched dtype: string - name: web_retrival dtype: string - name: rag_context dtype: string - name: accepted dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 527308380 num_examples: 32172 download_size: 185192040 dataset_size: 527308380 configs: - config_name: default data_files: - split: train path: data/train-* ---
ssktora/nfcorpus-train-bm25-pyserini-20-train
ssktora
2025-04-08T07:58:17Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T07:58:11Z
0
--- dataset_info: features: - name: query_id dtype: string - name: query dtype: string - name: positive_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: negative_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 46832136 num_examples: 415 download_size: 24244994 dataset_size: 46832136 configs: - config_name: default data_files: - split: train path: data/train-* ---
jpata/so100_pushcube_sim
jpata
2025-01-05T16:19:50Z
93
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "simulation" ]
[ "robotics" ]
2024-12-31T18:54:38Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - simulation configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": null, "total_episodes": 20, "total_frames": 4216, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 25, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.success": { "dtype": "bool", "shape": [ 1 ], "names": null }, "seed": { "dtype": "int64", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "observation.state": { "dtype": "float32", "names": null, "shape": [ 6 ] }, "observation.environment_state": { "dtype": "float32", "names": null, "shape": [ 6 ] }, "action": { "dtype": "float32", "shape": [ 6 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mthandazo/bnil_code_gen_instruct
mthandazo
2024-10-25T11:43:12Z
22
1
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-25T11:42:45Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 745712423.2 num_examples: 108024 - name: test num_bytes: 186428105.8 num_examples: 27006 download_size: 330152511 dataset_size: 932140529.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
tturing/so100_02_00
tturing
2025-02-13T04:29:40Z
33
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-02-13T04:29:25Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 2, "total_frames": 1192, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.rgb": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
deokoon/fine-tuning-tutorial
deokoon
2025-06-17T05:52:12Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T05:46:18Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: input dtype: string splits: - name: train num_bytes: 7274 num_examples: 32 download_size: 4138 dataset_size: 7274 configs: - config_name: default data_files: - split: train path: data/train-* ---
gswamy/pythia-1.4B-tldr-two-words-gpt-4o-reference-val
gswamy
2025-02-24T22:48:19Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-24T22:44:22Z
0
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_token sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_token sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_token sequence: int64 - name: query_reference_response_token_len dtype: int64 splits: - name: train num_bytes: 87589169 num_examples: 6447 download_size: 26908174 dataset_size: 87589169 configs: - config_name: default data_files: - split: train path: data/train-* ---
qihoo360/fgclip-grit-12m
qihoo360
2025-05-12T11:25:53Z
0
0
[ "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "modality:image", "arxiv:2505.05071", "region:us", "clip" ]
[]
2025-05-12T03:31:18Z
0
--- tags: - clip license: apache-2.0 language: - en library_name: transformers pipeline_tag: zero-shot-image-classification size_categories: - 10M<n<100M --- # FG-CLIP: Fine-Grained Visual and Textual Alignment **[FG-CLIP: Fine-Grained Visual and Textual Alignment](https://arxiv.org/abs/2505.05071)** </br> Chunyu Xie*, Bin Wang*, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng†, Yuhui Yin(*Equal Contribution, ✝Corresponding Author) </br> [![arXiv](https://img.shields.io/badge/arXiv-2505.05071-b31b1b.svg)](https://arxiv.org/abs/2505.05071) [![ICML](https://img.shields.io/badge/ICML-2025-blue.svg)](https://icml.cc/Conferences/2025) <p align="center"> <img src="https://huggingface.co/qihoo360/fg-clip-large/resolve/main/radar_chart_methods.png" width="500" height="440"/> </p> ## Model Framework FG-CLIP’s training proceeds in two stages: the first stage leverages global-level caption-image pairs to achieve initial fine-grained alignment, while the second stage supplements these with additional region-level captions, including detailed region captions and positive/negative region descriptions to further refine the alignment. <p align="center"> <img src="https://huggingface.co/qihoo360/fg-clip-large/resolve/main/fgclip_strc.png" width=80%/> </p> # Data Preparation To run the training code for FG-CLIP, please follow the following step. ### Step 1: Download the model Download the FG-CLIP model from this link. [🤗Vit-L@336px](https://huggingface.co/qihoo360/fg-clip-large) or Download the OpenAI CLIP model from this link. [🤗Vit-L@336px](https://huggingface.co/openai/clip-vit-large-patch14-336) ### Step 2: Prepare fgclip-grit-12m Dataset First, pull the dataset from the following link. [🤗fgclip-grit-12m](https://huggingface.co/datasets/qihoo360/fgclip-grit-12m),After downloading, you will obtain the following file structure: ```none fgclip-grit-12m ├── url2key.json ├── jsonfiles | ├── 2024-12-06_18-32-53_results_10_218_126_44_1025.json │ ├── 2024-12-06_18-33-17_results_llama70b-shcdt-h100-4gpus-no-2.json │ ├──... ├── coyo_image_0 | ├── 00000.parquet │ ├── 00001.parquet │ ├── ... │ ├── 00099.parquet ├── coyo_image_1 | ├── 00000.parquet │ ├── 00001.parquet │ ├── ... │ ├── 00099.parquet ├── ... ├── coyo_image_19 | ├── 00000.parquet │ ├── 00001.parquet │ ├── ... │ ├── 00099.parquet ├── ... ``` Subsequently, you need to install the `img2dataset` package. You can do this by running the following command: ```bash pip install img2dataset ``` Set the `file_in` parameter in the script (`data/get_data.sh`) according to the download path of the data, and also set the directory where you expect to save the files (`pre_dir`, `dir_save`). Subsequently, execute the following commands. ```bash bash data/get_data.sh ``` Due to the randomness in downloading, the image names corresponding to the URLs do not match the names of the images we are using. Therefore, a conversion is needed. This step requires using the `url2key.json` file included in the fgclip-grit-12m dataset. ```bash python -m data.convert_image_name \ --url2key_json fgclip-grit-12m/url2key.json \ --down_file_root data/down-grit-12m/ \ --num_parent_folders 20 \ --num_subfolders_per_parent 100 \ --resave_file_root data/grit-12m/ \ rm -r data/down-grit-12m/ ``` ```none FG-CLIP ├── ... ├── fgclip-grit-12m | ├── jsonfiles | | ├── 2024-12-06_18-32-53_results_10_218_126_44_1025.json | | ├── 2024-12-06_18-33-17_results_llama70b-shcdt-h100-4gpus-no-2.json | | ├──... | ├── url2key.json | ├── ... ├── data | ├── grit-12m | | ├── coyo_image_0 | | | ├──00000 | | | ├──00001 | | | ├──... | | | ├──00099 | | ├── coyo_image_1 | | | ├──00000 | | | ├──00001 | | | ├──... | | | ├──00099 ├── ... | | ├── coyo_image_19 | | | ├──00000 | | | ├──00001 | | | ├──... | | | ├──00099 ├── ... ```
jbourcier/fgsc23
jbourcier
2025-01-24T11:33:28Z
73
0
[ "license:unknown", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-01-23T17:01:20Z
0
--- license: unknown --- # FGSC-23 The FGSC-23 dataset was proposed in Zhang, Xiaohan, et al. "A new benchmark and an attribute-guided multilevel feature representation network for fine-grained ship classification in optical remote sensing images." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13 (2020): 1271-1285. https://doi.org/10.1109/JSTARS.2020.2981686 No modifications have been made to this dataset, except the archive format (from 7z to zip). It is rehosted from the original [Baidu Netdisk](https://pan.baidu.com/share/init?surl=h_F7c-btLqhOxLT20XHWBg) location. | | | |---|---| |__Type__| Compressed archive (Zip) | | __Size (zipped)__ | 95 MiB | | __Size (unzipped)__ | 103 MiB |
supergoose/flan_combined_task905_hate_speech_offensive_classification
supergoose
2025-03-10T14:30:38Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T14:30:37Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 12670275 num_examples: 19452 download_size: 3187453 dataset_size: 12670275 configs: - config_name: default data_files: - split: train path: data/train-* ---
ShikharLLM/0
ShikharLLM
2025-06-11T12:33:44Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-11T12:32:43Z
0
--- dataset_info: features: - name: text dtype: string - name: url dtype: string - name: embedding sequence: float64 splits: - name: train num_bytes: 1798701036 num_examples: 457894 download_size: 1428536275 dataset_size: 1798701036 configs: - config_name: default data_files: - split: train path: data/train-* ---
Zaynoid/HB_alpaca
Zaynoid
2025-06-09T13:56:08Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-09T13:56:05Z
0
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: instruction dtype: string splits: - name: train num_bytes: 31366740 num_examples: 5709 download_size: 15360963 dataset_size: 31366740 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "HB_alpaca" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nafisN/my-distiset-poridhi
nafisN
2025-04-23T22:45:32Z
25
0
[ "task_categories:text-classification", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-classification" ]
2025-04-23T22:43:17Z
0
--- size_categories: n<1K task_categories: - text-classification dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': very-relevant '1': irrelevant '2': somewhat-relevant splits: - name: train num_bytes: 2353 num_examples: 10 download_size: 3838 dataset_size: 2353 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-poridhi This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/nafisN/my-distiset-poridhi/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/nafisN/my-distiset-poridhi/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 0, "text": "The Sony A7R IV Mirrorless Camera features a 61.4 megapixel full-frame Exmor R CMOS sensor, allowing for high-resolution images with excellent dynamic range and low noise." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("nafisN/my-distiset-poridhi", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("nafisN/my-distiset-poridhi") ``` </details>
neelabh17/new_news_exploded_prompt_n_20_d_perc_0_num_gen_10_Qwen2.5-14B-Instruct_no_mcq
neelabh17
2025-05-17T15:39:13Z
0
0
[ "region:us" ]
[]
2025-05-17T15:39:12Z
0
--- dataset_info: features: - name: id dtype: string - name: name dtype: string - name: topic dtype: string - name: news dtype: string - name: category dtype: string - name: question dtype: string - name: option sequence: string - name: prompt dtype: string - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 - name: response_1 dtype: string - name: answer_1 dtype: string - name: correct_1 dtype: int64 - name: response_2 dtype: string - name: answer_2 dtype: string - name: correct_2 dtype: int64 - name: response_3 dtype: string - name: answer_3 dtype: string - name: correct_3 dtype: int64 - name: response_4 dtype: string - name: answer_4 dtype: string - name: correct_4 dtype: int64 - name: response_5 dtype: string - name: answer_5 dtype: string - name: correct_5 dtype: int64 - name: response_6 dtype: string - name: answer_6 dtype: string - name: correct_6 dtype: int64 - name: response_7 dtype: string - name: answer_7 dtype: string - name: correct_7 dtype: int64 - name: response_8 dtype: string - name: answer_8 dtype: string - name: correct_8 dtype: int64 - name: response_9 dtype: string - name: answer_9 dtype: string - name: correct_9 dtype: int64 splits: - name: train num_bytes: 4492184 num_examples: 375 download_size: 1531678 dataset_size: 4492184 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jarbas/yes_no_answers
Jarbas
2024-11-07T12:47:19Z
39
0
[ "task_categories:text-classification", "language:en", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2024-11-07T12:24:36Z
0
--- task_categories: - text-classification language: - en size_categories: - n<1K --- This dataset contains a collection of user utterances designed to evaluate models that classify responses to yes/no questions. The dataset includes utterances with clear "yes" or "no" answers, as well as ambiguous, neutral, and conditional responses that may not fit neatly into the binary classification of yes/no. Dataset Overview Total Samples: 400+ samples Categories: Yes: Clear affirmative responses (e.g., "yes", "that's right", "I agree"). No: Clear negative responses (e.g., "no", "I disagree", "not at all"). None: Ambiguous or neutral responses that cannot be classified as clear "yes" or "no" (e.g., "I’m not sure", "It’s complicated", "Let’s wait and see").
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_3facf2e1-a7ea-4bf7-a4c5-92ac401214b3
argilla-internal-testing
2024-10-30T11:47:12Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-30T11:47:11Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/open-web-math-backtrack-processed-v2
Asap7772
2025-02-12T04:53:16Z
7
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-12T04:52:44Z
0
--- dataset_info: features: - name: url dtype: string - name: text dtype: string - name: date dtype: string - name: metadata dtype: string - name: backtracking_raw dtype: string - name: is_solution_raw dtype: string - name: verification_raw dtype: string - name: subgoal_setting_raw dtype: string - name: backward_chaining_raw dtype: string - name: is_backtrack dtype: string - name: backtrack_count dtype: string - name: backtrack_rationale dtype: string - name: is_backchain dtype: string - name: backchain_count dtype: string - name: backchain_rationale dtype: string - name: is_verification dtype: string - name: verification_count dtype: string - name: verification_rationale dtype: string - name: contain_problem dtype: string - name: contain_solution dtype: string - name: domain_broad dtype: string - name: domain_specific dtype: string - name: solution_rationale dtype: string splits: - name: train num_bytes: 625179123.1020231 num_examples: 46467 download_size: 265151641 dataset_size: 625179123.1020231 configs: - config_name: default data_files: - split: train path: data/train-* ---
openbmb/RLPR-Evaluation
openbmb
2025-06-24T06:24:41Z
31
2
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.18254", "arxiv:2110.14168", "arxiv:2206.14858", "arxiv:2406.01574", "arxiv:2311.12022", "arxiv:2305.12524", "arxiv:2505.14652", "region:us" ]
[ "question-answering", "text-generation" ]
2025-06-22T11:03:59Z
0
--- license: apache-2.0 task_categories: - question-answering - text-generation language: - en pretty_name: RLPR-Evaluation size_categories: - Varies by component benchmark --- # Dataset Card for RLPR-Evaluation [GitHub](https://github.com/openbmb/RLPR) | [Paper](https://arxiv.org/abs/2506.18254) ## News: * **[2025.06.23]** 📃 Our paper detailing the RLPR framework and its comprehensive evaluation using this suite is accessible at [here](https://github.com/OpenBMB/RLPR/blob/main/RLPR_paper.pdf)! ## Dataset Summary We include the following seven benchmarks for evaluation of RLPR: **Mathematical Reasoning Benchmarks:** * **MATH-500 ([Cobbe et al., 2021](https://arxiv.org/abs/2110.14168))** * **Minerva ([Lewkowycz et al., 2022](https://arxiv.org/abs/2206.14858))** * **AIME24** **General Domain Reasoning Benchmarks:** * **MMLU-Pro ([Wang et al., 2024](https://arxiv.org/abs/2406.01574)):** A multitask language understanding benchmark with reasoning-intensive questions. We randomly sample 1000 prompts for a balance of efficiency and variance. * **GPQA ([Rein et al., 2023](https://arxiv.org/abs/2311.12022)):** Graduate-level questions across disciplines. We use the highest-quality **GPQA-diamond** subset. * **TheoremQA ([Chen et al., 2023](https://arxiv.org/abs/2305.12524)):** Assesses the ability to apply theorems to solve complex science problems (Math, Physics, etc.). We use 800 high-quality questions, removing 53 multimodal instructions. * **WebInstruct (Validation Split) ([Ma et al., 2025](https://arxiv.org/abs/2505.14652)):** A held-out validation split from WebInstruct, designed as an accessible benchmark for medium-sized models. We uniformly sample 1k prompts and apply 10-gram deduplication, resulting in **638 distinct questions**. This multi-faceted suite allows for a thorough evaluation of reasoning capabilities across diverse domains and difficulty levels. ## Usage ```python from datasets import load_dataset data = load_dataset("openbmb/RLPR-Evaluation") ``` ## Data Fields The dataset contains the following fields for each sample: | | Key | Description | | --- | -------------- | ----------------------------------------------------------------------------------------------- | | 0 | `data_source` | Identifier for the specific benchmark or split. | | 1 | `prompt` | The input question or problem statement, potentially with context or instructions. | | 2 | `ability` | The domain or category of the task. | | 3 | `reward_model` | Dictionary containing the `ground_truth` answer, essential for scoring. | | 4 | `extra_info` | Benchmark-specific metadata, such as `answer_type`, `category`, `difficulty`, `id`, or `split`. | | 5 | `uid` | The uid for item in the dataset | ## Citation If you use the RLPR framework or refer to our evaluation methodology using this suite, please cite our paper. Additionally, please cite the original papers for any component benchmarks you use: ```bibtex @misc{yu2025rlprextrapolatingrlvrgeneral, title={RLPR: Extrapolating RLVR to General Domains without Verifiers}, author={Tianyu Yu and Bo Ji and Shouli Wang and Shu Yao and Zefan Wang and Ganqu Cui and Lifan Yuan and Ning Ding and Yuan Yao and Zhiyuan Liu and Maosong Sun and Tat-Seng Chua}, year={2025}, eprint={2506.18254}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2506.18254}, } ```
mlfoundations-dev/b2_train_fasttext_science
mlfoundations-dev
2025-04-21T23:50:57Z
67
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-21T23:33:25Z
0
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 169 num_examples: 1 download_size: 5767 dataset_size: 169 configs: - config_name: default data_files: - split: train path: data/train-* ---
lschoen/germeval21_detox
lschoen
2024-11-23T08:42:20Z
14
0
[ "task_categories:text-classification", "language:de", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2024-11-23T07:54:33Z
0
--- dataset_info: features: - name: comment_id dtype: int64 - name: comment_text dtype: string - name: Sub1_Toxic dtype: int64 - name: Sub2_Engaging dtype: int64 - name: Sub3_FactClaiming dtype: int64 splits: - name: train num_bytes: 733617 num_examples: 3244 - name: test num_bytes: 229587 num_examples: 944 download_size: 564666 dataset_size: 963204 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: mit task_categories: - text-classification language: - de pretty_name: 'DeTox GermEval 2021: Fine grained Comment Classification' size_categories: - 100K<n<1M --- # Dataset for DeTox at GermEval 2021: Fine grained Comment Classification Has a train test split and 3 labels for each comment: Sub1_Toxic, Sub2_Engaging, and Sub3_Factclaiming. ``` DatasetDict({ train: Dataset({ features: ['comment_id', 'comment_text', 'Sub1_Toxic', 'Sub2_Engaging', 'Sub3_FactClaiming'], num_rows: 3244 }) test: Dataset({ features: ['comment_id', 'comment_text', 'Sub1_Toxic', 'Sub2_Engaging', 'Sub3_FactClaiming'], num_rows: 944 }) }) ``` # Citation information Based on the work by Schütz et al. ```biblatex {schutz-etal-2021-detox, title = {{{DeTox}} at {{GermEval}} 2021: {{Toxic}} Comment Classification}, booktitle = {Proceedings of the {{GermEval}} 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments}, author = {Schütz, Mina and Demus, Christoph and Pitz, Jonas and Probol, Nadine and Siegel, Melanie and Labudde, Dirk}, editor = {Risch, Julian and Stoll, Anke and Wilms, Lena and Wiegand, Michael}, date = {2021-09}, pages = {54--61}, publisher = {Association for Computational Linguistics}, location = {Duesseldorf, Germany}, url = {https://aclanthology.org/2021.germeval-1.8}, abstract = {In this work, we present our approaches on the toxic comment classification task (subtask 1) of the GermEval 2021 Shared Task. For this binary task, we propose three models: a German BERT transformer model; a multilayer perceptron, which was first trained in parallel on textual input and 14 additional linguistic features and then concatenated in an additional layer; and a multilayer perceptron with both feature types as input. We enhanced our pre-trained transformer model by re-training it with over 1 million tweets and fine-tuned it on two additional German datasets of similar tasks. The embeddings of the final fine-tuned German BERT were taken as the textual input features for our neural networks. Our best models on the validation data were both neural networks, however our enhanced German BERT gained with a F1-score = 0.5895 a higher prediction on the test data.}, } ```
yan-wang88/github-issues
yan-wang88
2025-03-03T04:14:41Z
9
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T04:14:40Z
0
--- dataset_info: features: - name: url dtype: string - name: repository_url dtype: string - name: labels_url dtype: string - name: comments_url dtype: string - name: events_url dtype: string - name: html_url dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: number dtype: int64 - name: title dtype: string - name: user struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: labels list: - name: id dtype: int64 - name: node_id dtype: string - name: url dtype: string - name: name dtype: string - name: color dtype: string - name: default dtype: bool - name: description dtype: string - name: state dtype: string - name: locked dtype: bool - name: assignee struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: assignees list: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: milestone dtype: 'null' - name: comments sequence: string - name: created_at dtype: timestamp[s] - name: updated_at dtype: timestamp[s] - name: closed_at dtype: timestamp[s] - name: author_association dtype: string - name: sub_issues_summary struct: - name: total dtype: int64 - name: completed dtype: int64 - name: percent_completed dtype: int64 - name: active_lock_reason dtype: 'null' - name: draft dtype: bool - name: pull_request struct: - name: url dtype: string - name: html_url dtype: string - name: diff_url dtype: string - name: patch_url dtype: string - name: merged_at dtype: timestamp[s] - name: body dtype: string - name: closed_by struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: reactions struct: - name: url dtype: string - name: total_count dtype: int64 - name: '+1' dtype: int64 - name: '-1' dtype: int64 - name: laugh dtype: int64 - name: hooray dtype: int64 - name: confused dtype: int64 - name: heart dtype: int64 - name: rocket dtype: int64 - name: eyes dtype: int64 - name: timeline_url dtype: string - name: performed_via_github_app dtype: 'null' - name: state_reason dtype: string - name: is_pull_request dtype: bool splits: - name: train num_bytes: 263157 num_examples: 59 download_size: 156091 dataset_size: 263157 configs: - config_name: default data_files: - split: train path: data/train-* ---
russwang/MMK12
russwang
2025-06-17T18:25:12Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T18:07:15Z
0
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: answer dtype: string - name: subject dtype: string - name: image list: - name: path dtype: string splits: - name: train num_bytes: 6222610 num_examples: 15616 download_size: 3253166 dataset_size: 6222610 configs: - config_name: default data_files: - split: train path: data/train-* ---
triton7777/eval_so100_test_pi0_mix2
triton7777
2025-02-26T14:12:16Z
64
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-02-26T13:59:51Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 1, "total_frames": 7056, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.s_left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.s_right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.gripper": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 360, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.top": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 360, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
jkazdan/pku-safe-llama-3.1-8B-Instruct-Completions
jkazdan
2024-10-30T23:56:06Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-30T23:43:43Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 14352 num_examples: 32 download_size: 11154 dataset_size: 14352 configs: - config_name: default data_files: - split: train path: data/train-* ---
RylanSchaeffer/collapse_gemma-2-27b_hs2_replace_iter3_sftsd2_temp1_max_seq_len512
RylanSchaeffer
2025-01-18T10:37:02Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-18T10:37:00Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 18465208 num_examples: 12531 download_size: 11262758 dataset_size: 18465208 configs: - config_name: default data_files: - split: train path: data/train-* ---
kfkas/service-tipping-reddit-data-filtered
kfkas
2025-05-10T13:15:47Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-10T13:15:43Z
0
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: text_content dtype: string - name: url dtype: string - name: score dtype: int64 - name: num_comments dtype: int64 - name: created_utc dtype: float64 - name: relevance_score dtype: int64 - name: search_keyword dtype: string - name: sort_method dtype: string - name: tip_percentage dtype: float64 - name: tip_amount dtype: float64 - name: situation_caption dtype: string - name: outlier_detection dtype: string splits: - name: train num_bytes: 1324200 num_examples: 533 download_size: 803071 dataset_size: 1324200 configs: - config_name: default data_files: - split: train path: data/train-* ---
ivanleomk/timescale-ecommerce
ivanleomk
2024-12-23T01:37:33Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-18T13:15:48Z
0
--- dataset_info: features: - name: id dtype: int64 - name: title dtype: string - name: image dtype: image - name: description dtype: string - name: brand dtype: string - name: category dtype: string - name: subcategory dtype: string - name: price dtype: float64 - name: quantity dtype: int64 splits: - name: train num_bytes: 10943509.0 num_examples: 191 download_size: 8492456 dataset_size: 10943509.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-XRP-batch-18
ChavyvAkvar
2025-06-03T18:28:24Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:27:23Z
0
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923448051 num_examples: 1000 download_size: 924486740 dataset_size: 923448051 configs: - config_name: default data_files: - split: train path: data/train-* ---
MaulikMadhavi/lapel-mic-speech-asr-dataset
MaulikMadhavi
2025-05-21T17:58:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T17:55:52Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 36056875.0 num_examples: 100 download_size: 36058956 dataset_size: 36056875.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
CianKim/kor_eng_tiny_ED_OB
CianKim
2025-05-14T06:06:32Z
99
0
[ "size_categories:n<1K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T01:39:19Z
0
--- dataset_info: features: - name: input_features sequence: sequence: float32 - name: labels sequence: int64 splits: - name: train num_bytes: 58589008 num_examples: 61 - name: test num_bytes: 6723192 num_examples: 7 - name: valid num_bytes: 12486456 num_examples: 13 download_size: 16056737 dataset_size: 77798656 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: valid path: data/valid-* ---
SayantanJoker/Shrutilipi_Hindi_resampled_44100_chunk_12
SayantanJoker
2025-04-17T03:56:44Z
19
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-17T03:53:15Z
0
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 5973439094.0 num_examples: 10000 download_size: 5952648180 dataset_size: 5973439094.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
gydou/mssbench_sft
gydou
2025-04-18T06:21:42Z
23
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-18T05:49:18Z
0
--- dataset_info: features: - name: images dtype: image - name: messages dtype: string splits: - name: train num_bytes: 127578241.0 num_examples: 420 - name: test num_bytes: 53651667.0 num_examples: 180 download_size: 178114455 dataset_size: 181229908.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
thenewsupercell/masked-mouth-df-image-dataset
thenewsupercell
2025-04-14T01:50:39Z
21
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T01:47:31Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: string - name: original_file_name dtype: string splits: - name: train num_bytes: 4587699186.25 num_examples: 86030 - name: validation num_bytes: 604447838.75 num_examples: 10970 - name: test num_bytes: 563759745.0 num_examples: 10720 download_size: 5749775478 dataset_size: 5755906770.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
kornwtp/hatespeech-fil-classification
kornwtp
2024-12-23T05:14:47Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-17T15:39:27Z
0
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* dataset_info: features: - name: texts dtype: string - name: labels dtype: class_label: names: '0': '0' '1': '1' splits: - name: train num_bytes: 995915 num_examples: 10000 - name: test num_bytes: 422427 num_examples: 4232 - name: validation num_bytes: 424361 num_examples: 4232 download_size: 1253625 dataset_size: 1842703 --- # Dataset Card for "hatespeech-filipino" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ref: https://huggingface.co/datasets/legacy-datasets/hate_speech_filipino
mappingUniverse/geospatial_data_coordinates
mappingUniverse
2024-11-03T08:43:13Z
24
0
[ "license:mit", "region:us" ]
[]
2024-11-03T06:46:41Z
0
--- configs: - config_name: geojson data_files: - split: IT path: "IT/GeoJSON/*.GeoJSON" - split: US path: "US/GeoJSON/*.GeoJSON" license: mit ---
lookas/astra_grab_floor_toys
lookas
2025-03-03T11:22:19Z
43
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "astra" ]
[ "robotics" ]
2025-03-03T11:19:44Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - astra configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": null, "total_episodes": 50, "total_frames": 73694, "total_tasks": 1, "total_videos": 150, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 18 ], "names": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ] }, "observation.state": { "dtype": "float32", "shape": [ 18 ], "names": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ] }, "action.arm_l": { "dtype": "float32", "shape": [ 6 ], "names": [ 0, 1, 2, 3, 4, 5 ] }, "action.gripper_l": { "dtype": "float32", "shape": [ 1 ], "names": [ 0 ] }, "action.arm_r": { "dtype": "float32", "shape": [ 6 ], "names": [ 0, 1, 2, 3, 4, 5 ] }, "action.gripper_r": { "dtype": "float32", "shape": [ 1 ], "names": [ 0 ] }, "action.base": { "dtype": "float32", "shape": [ 2 ], "names": [ 0, 1, 2, 3, 4, 5 ] }, "action.eef_l": { "dtype": "float32", "shape": [ 7 ], "names": [ 0, 1, 2, 3, 4, 5, 6 ] }, "action.eef_r": { "dtype": "float32", "shape": [ 7 ], "names": [ 0, 1, 2, 3, 4, 5, 6 ] }, "action.head": { "dtype": "float32", "shape": [ 2 ], "names": [ 0, 1 ] }, "observation.state.arm_l": { "dtype": "float32", "shape": [ 6 ], "names": [ 0, 1, 2, 3, 4, 5 ] }, "observation.state.gripper_l": { "dtype": "float32", "shape": [ 1 ], "names": [ 0 ] }, "observation.state.arm_r": { "dtype": "float32", "shape": [ 6 ], "names": [ 0, 1, 2, 3, 4, 5 ] }, "observation.state.gripper_r": { "dtype": "float32", "shape": [ 1 ], "names": [ 0 ] }, "observation.state.base": { "dtype": "float32", "shape": [ 2 ], "names": [ 0, 1, 2, 3, 4, 5 ] }, "observation.state.eef_l": { "dtype": "float32", "shape": [ 7 ], "names": [ 0, 1, 2, 3, 4, 5, 6 ] }, "observation.state.eef_r": { "dtype": "float32", "shape": [ 7 ], "names": [ 0, 1, 2, 3, 4, 5, 6 ] }, "observation.state.odom": { "dtype": "float32", "shape": [ 7 ], "names": [ 0, 1, 2, 3, 4, 5, 6 ] }, "observation.state.head": { "dtype": "float32", "shape": [ 2 ], "names": [ 0, 1 ] }, "observation.images.head": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 360, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist_left": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 360, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist_right": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 360, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
juliadollis/trad_ai_medical_chatbot_16200
juliadollis
2025-02-21T19:47:00Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-21T13:56:08Z
0
--- dataset_info: features: - name: Description dtype: string - name: Patient dtype: string - name: Doctor dtype: string - name: Translated_Description dtype: string - name: Translated_Patient dtype: string - name: Translated_Doctor dtype: string splits: - name: train num_bytes: 6920107 num_examples: 2700 download_size: 2884750 dataset_size: 6920107 configs: - config_name: default data_files: - split: train path: data/train-* ---
harpreetsahota/medium-blogs-example
harpreetsahota
2025-01-25T18:41:45Z
28
1
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-25T18:41:44Z
0
--- dataset_info: features: - name: title dtype: string - name: subtitle dtype: string - name: content dtype: string - name: claps dtype: int64 - name: voters dtype: int64 - name: wordcount dtype: int64 - name: topics sequence: string - name: responses dtype: int64 - name: URL dtype: string - name: published_at dtype: timestamp[us] - name: author_name dtype: string splits: - name: train num_bytes: 124247 num_examples: 13 download_size: 69529 dataset_size: 124247 configs: - config_name: default data_files: - split: train path: data/train-* ---
tayyibsupercool/resource_allocation_telecom_energy_efficiency_rician_k_2_instruct_10k
tayyibsupercool
2024-10-24T16:43:19Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-13T20:48:04Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: sample_index dtype: string splits: - name: train num_bytes: 2639296 num_examples: 10000 - name: validation num_bytes: 659764 num_examples: 2500 download_size: 315985 dataset_size: 3299060 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
Francis2003/fake_news_data
Francis2003
2025-06-24T14:42:40Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-24T14:11:29Z
0
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* - split: test path: data/test-* dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 20149126 num_examples: 8000 - name: dev num_bytes: 2470435 num_examples: 1000 - name: test num_bytes: 2428893 num_examples: 1000 download_size: 0 dataset_size: 25048454 --- # Dataset Card for "fake_news_data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
DS4H-ICTU/english-FULFULDE-ADAMAOUA
DS4H-ICTU
2025-05-11T02:59:58Z
126
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T20:04:51Z
0
--- dataset_info: features: - name: source dtype: string - name: target dtype: string splits: - name: train num_bytes: 18496040 num_examples: 104448 download_size: 10025313 dataset_size: 18496040 configs: - config_name: default data_files: - split: train path: data/train-* ---
thenewsupercell/new_emotion_avg_pooling_DF_Audio_Embeddings
thenewsupercell
2025-03-07T03:00:44Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-07T02:58:26Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: label dtype: string - name: original_file_name dtype: string - name: audio_embeddings sequence: float32 splits: - name: train num_bytes: 3023882524.25 num_examples: 17206 - name: validation num_bytes: 373249770.75 num_examples: 2194 - name: test num_bytes: 369753644.0 num_examples: 2144 download_size: 2808039729 dataset_size: 3766885939.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
lwrf42/financial-sentiment-dataset
lwrf42
2025-04-18T13:06:09Z
28
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-18T13:05:45Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: source dtype: string splits: - name: train num_bytes: 21769783 num_examples: 85698 - name: validation num_bytes: 2415791 num_examples: 9522 download_size: 8057476 dataset_size: 24185574 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
mimir-project/mimir-core
mimir-project
2025-03-13T15:56:13Z
106
1
[ "language:no", "language:nb", "language:nn", "language:da", "language:sv", "language:is", "language:en", "size_categories:10M<n<100M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
[]
2024-12-13T14:36:16Z
0
--- language: - 'no' - nb - nn - da - sv - is - en size_categories: - 10B<n<100B configs: - config_name: default data_files: - split: train path: "data/train-*.json" - split: validation path: "data/validation-*.json" - config_name: bad data_files: - split: train path: "data/train-bad-*.json" - split: validation path: "data/validation-bad-*.json" - config_name: medium data_files: - split: train path: "data/train-medium-*.json" - split: validation path: "data/validation-medium-*.json" - config_name: good data_files: - split: train path: "data/train-good-*.json" - split: validation path: "data/validation-good-*.json" ---
mlfoundations-dev/d1_science_load_in_qwq_together
mlfoundations-dev
2025-05-05T00:03:32Z
0
0
[ "region:us" ]
[]
2025-05-05T00:01:03Z
0
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: qwq_thinking_trajectory dtype: string - name: qwq_attempt dtype: string - name: qwq_response dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 6382195675 num_examples: 63022 download_size: 2778892392 dataset_size: 6382195675 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhinav302019/olympiad_data_10101
abhinav302019
2025-03-05T22:28:47Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T22:28:45Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 33842 num_examples: 6 download_size: 39892 dataset_size: 33842 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/flan_source_wiki_qa_found_on_google_133
supergoose
2025-02-25T19:30:09Z
19
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T19:30:06Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 73264465 num_examples: 85478 download_size: 32643786 dataset_size: 73264465 configs: - config_name: default data_files: - split: train path: data/train-* ---
alea-institute/kl3m-filter-data-dotgov-stats.bls.gov
alea-institute
2025-02-03T21:00:27Z
49
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-03T20:58:24Z
0
--- dataset_info: features: - name: identifier dtype: string - name: dataset dtype: string - name: mime_type dtype: string - name: score dtype: float64 - name: tokens sequence: int64 splits: - name: train num_bytes: 3774782380 num_examples: 26806 download_size: 526809127 dataset_size: 3774782380 configs: - config_name: default data_files: - split: train path: data/train-* ---
selfcorrexp2/llama3_openmath_1m_ep1_math_scaling_temp07
selfcorrexp2
2025-01-09T02:31:00Z
20
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-09T02:17:13Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: preds sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 1089062156 num_examples: 395000 download_size: 386449913 dataset_size: 1089062156 configs: - config_name: default data_files: - split: train path: data/train-* ---
Vikhrmodels/musiccaps_quantized-wav-unify
Vikhrmodels
2024-12-24T02:24:48Z
36
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-23T01:07:21Z
0
--- dataset_info: features: - name: ytid dtype: string - name: start_s dtype: int64 - name: end_s dtype: int64 - name: audioset_positive_labels dtype: string - name: aspect_list dtype: string - name: text dtype: string - name: author_id dtype: int64 - name: is_balanced_subset dtype: bool - name: is_audioset_eval dtype: bool - name: download_status dtype: bool - name: audio_tokens sequence: sequence: int64 splits: - name: train num_bytes: 18135979 num_examples: 4829 - name: validation num_bytes: 2019429 num_examples: 537 download_size: 4640117 dataset_size: 20155408 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
answerdotai/triviaqa_entailment
answerdotai
2024-11-21T02:13:51Z
30
1
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-15T16:51:27Z
0
--- dataset_info: features: - name: question_id dtype: string - name: context dtype: string - name: hypothesis dtype: string - name: labels dtype: bool - name: difficulty dtype: string - name: v1 dtype: string - name: critique dtype: string - name: original_question dtype: string - name: original_answer dtype: string splits: - name: train num_bytes: 383332428 num_examples: 23874 - name: validation num_bytes: 95814663 num_examples: 5952 download_size: 53293582 dataset_size: 479147091 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
Biamterdex/LeRobot-worldwide-hackathon
Biamterdex
2025-06-14T13:39:23Z
52
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-14T13:36:30Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 65, "total_frames": 94807, "total_tasks": 1, "total_videos": 195, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:65" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.gripper_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
datasaur-dev/PubMedQA-fine-tuned-llama-3-1-8B-labels
datasaur-dev
2024-10-18T10:14:01Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-18T10:13:40Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: input dtype: string - name: final_decision dtype: string - name: long_answer dtype: string splits: - name: train num_bytes: 2703339 num_examples: 1000 download_size: 1071939 dataset_size: 2703339 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_8059fabe-414c-4c0b-8830-29ed7a8c231f
argilla-internal-testing
2024-10-08T07:19:32Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-08T07:19:31Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
liuhaotian/LLaVA-Instruct-150K
liuhaotian
2024-01-03T01:59:20Z
3,486
503
[ "task_categories:visual-question-answering", "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "region:us" ]
[ "visual-question-answering", "question-answering" ]
2023-04-17T23:47:27Z
0
--- license: cc-by-4.0 task_categories: - visual-question-answering - question-answering language: - en pretty_name: LLaVA Visual Instruct 150K size_categories: - 100K<n<1M --- # LLaVA Visual Instruct 150K Dataset Card ## Dataset details **Dataset type:** LLaVA Visual Instruct 150K is a set of GPT-generated multimodal instruction-following data. It is constructed for visual instruction tuning and for building large multimodal towards GPT-4 vision/language capability. **Dataset date:** LLaVA Visual Instruct 150K was collected in April 2023, by prompting GPT-4-0314 API. **Paper or resources for more information:** https://llava-vl.github.io/ **License:** Creative Commons Attribution 4.0 International; and it should abide by the policy of OpenAI: https://openai.com/policies/terms-of-use **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_61a9519c-c935-485e-aa05-0bb290aa61bd
argilla-internal-testing
2024-11-21T08:28:40Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-21T08:28:39Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
umiyuki/Ani-Bench-JP
umiyuki
2025-04-02T06:37:14Z
47
3
[ "language:ja", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-28T05:19:50Z
0
--- dataset_info: features: - name: 問題 dtype: string - name: 答え dtype: string - name: 番組名 dtype: string splits: - name: test num_bytes: 14789 num_examples: 100 download_size: 9376 dataset_size: 14789 configs: - config_name: default data_files: - split: test path: data/test-* license: mit language: - ja --- # Ani-Bench-JP ## データセット概要 `Ani-Bench-JP` は、日本の人気アニメに関する知識を測定するためのベンチマーク用データセットです。このデータセットは、5つのアニメ作品(『魔法少女まどか☆マギカ』、『ぼっち・ざ・ろっく!』、『機動戦士ガンダム』、『HUNTER×HUNTER』、『新世紀エヴァンゲリオン』)からそれぞれ20問ずつ、合計100問のクイズ形式の問題で構成されています。 LLMのアニメに関する理解度を日本語で評価する用途を想定してます。 ## データ構造 データはCSV形式で提供されており、`test` スプリットとしてアップロードされています。ファイルには以下の3つの列が含まれます: - **問題**: アニメに関するクイズ形式の質問 - **答え**: その質問に対する正解 - **番組名**: 質問が関連するアニメ作品の名前 ### 列の詳細 | 列名 | 説明 | 例 | |--------|----------------------------|-----------------------------------------| | 問題 | クイズの質問文 | 主人公の名前は何ですか? | | 答え | 質問に対する正解 | 鹿目まどか | | 番組名 | 関連するアニメのタイトル | 魔法少女まどか☆マギカ | ## 使用方法 このデータセットは、Hugging Faceの `datasets` ライブラリを使用して簡単にロードできます。以下はPythonでの例です: ```python from datasets import load_dataset dataset = load_dataset("umiyuki/Ani-Bench-JP", split="test") print(dataset[0]) ``` ## 収録アニメ - **魔法少女まどか☆マギカ** - **ぼっち・ざ・ろっく!** - **機動戦士ガンダム** - **HUNTER×HUNTER** - **新世紀エヴァンゲリオン** 各アニメから20問ずつ、合計100問が含まれています。 ## 目的 - LLM(特に日本語)の理解力や知識の評価 ## クレジット このデータセットは、`umiyuki` によって作成されました。
im-wali/korea_wild_animal_mix
im-wali
2025-01-25T03:45:36Z
17
0
[ "license:apache-2.0", "region:us" ]
[]
2025-01-25T03:45:36Z
0
--- license: apache-2.0 ---
Yotofu/so100_sweeper_shoes
Yotofu
2025-03-28T04:21:15Z
101
1
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100" ]
[ "robotics" ]
2025-03-27T13:22:11Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 774, "total_frames": 2145169, "total_tasks": 1, "total_videos": 3096, "total_chunks": 1, "chunks_size": 1000, "fps": 29, "splits": { "train": "0:774" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/{video_key}_episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper" ] } }, "observation.images.front_rgb": { "dtype": "video", "shape": [ 512, 1024, 3 ], "names": [ "height", "width", "channels" ], "video_info": { "video.fps": 29.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.front_depth": { "dtype": "video", "shape": [ 512, 1024, 1 ], "names": [ "height", "width", "channels" ], "video_info": { "video.fps": 29.0, "video.codec": "hevc", "video.pix_fmt": "gray", "video.is_depth_map": false, "has_audio": false } }, "observation.images.end_rgb": { "dtype": "video", "shape": [ 512, 1024, 3 ], "names": [ "height", "width", "channels" ], "video_info": { "video.fps": 29.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.end_depth": { "dtype": "video", "shape": [ 512, 1024, 1 ], "names": [ "height", "width", "channels" ], "video_info": { "video.fps": 29.0, "video.codec": "hevc", "video.pix_fmt": "gray", "video.is_depth_map": false, "has_audio": false } }, "action": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper" ] } }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
zwang2/mgv_virus_host_pair
zwang2
2024-11-12T21:05:16Z
14
0
[ "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-12T20:56:07Z
0
--- dataset_info: features: - name: virus_id dtype: 'null' - name: host_id dtype: 'null' - name: virus_sequence dtype: 'null' - name: host_sequence dtype: 'null' - name: label dtype: 'null' splits: - name: train num_bytes: 0 num_examples: 0 download_size: 1376 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
catslashbin/scp-foundation-items-with-summaries
catslashbin
2024-12-17T01:57:34Z
21
0
[ "task_categories:text-generation", "task_categories:summarization", "language:en", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "summarization" ]
2024-12-17T01:46:34Z
0
--- language: - en task_categories: - text-generation - summarization size_categories: - 1K<n<10K --- This dataset contains 2,000 randomly selected items from the [scp1to7](https://www.kaggle.com/datasets/czzzzzzz/scp1to7) dataset. Each SCP item is summarized using the following prompt with OpenAI `gpt-4o-mini-2024-07-18`: ``` <text> {{text}} </text> Summarize the SCP item in the provided text with in 30 words. Always start the summary with 'SCP-xxx is ...'. Use simple, basic words that a 10-year-old child can easily understand. Avoid jargon and keep the focus on the story of the SCP item. ``` This dataset can be leveraged to train models for: - Generating SCP articles from short descriptions. - Condensing SCP articles into concise, easy-to-understand summaries.
yzembodied/libero_10_image_task_1_2_3
yzembodied
2025-04-02T10:53:54Z
21
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-04-02T10:53:01Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 150, "total_frames": 38753, "total_tasks": 3, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:150" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": null, "features": { "observation.images.image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "observation.images.wrist_image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "observation.state": { "dtype": "float32", "shape": [ 8 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper", "gripper" ] } }, "observation.state.joint": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6", "joint_7" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
afraamn/deepscaler_filtered_8238
afraamn
2025-05-14T19:20:19Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T19:20:16Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: dataset sequence: string - name: ground_truth sequence: string - name: quality dtype: int64 - name: pass_at_k dtype: float64 splits: - name: train num_bytes: 3213659 num_examples: 8238 download_size: 1397381 dataset_size: 3213659 configs: - config_name: default data_files: - split: train path: data/train-* ---
aoutir/hackai
aoutir
2025-05-23T17:28:40Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-23T17:12:06Z
0
--- dataset_info: features: - name: comments dtype: string splits: - name: train num_bytes: 10246 num_examples: 24 download_size: 7558 dataset_size: 10246 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "hackai" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
DataoceanAI/137712_hours_Multilingual_Corpus_for_Dolphin_ASR_Model
DataoceanAI
2025-04-03T06:28:40Z
10
3
[ "language:zh", "language:ja", "language:th", "language:ru", "language:ko", "language:id", "language:vi", "language:hi", "language:ur", "language:ms", "language:uz", "language:ar", "language:fa", "language:bn", "language:ta", "language:te", "language:ug", "language:gu", "language:my", "language:tl", "language:kk", "language:or", "language:ne", "language:mn", "language:km", "language:jv", "language:lo", "language:si", "language:pa", "language:ba", "language:ks", "language:tg", "language:su", "language:mr", "language:az", "region:us" ]
[]
2025-04-03T06:03:37Z
0
--- language: - zh - ja - th - ru - ko - id - vi - hi - ur - ms - uz - ar - fa - bn - ta - te - ug - gu - my - tl - kk - or - ne - mn - km - jv - lo - si - pa - ba - ks - tg - su - mr - az --- ## Duration 137,712 hours ## Languages 38 Eastern Languages + 22 Chinese ## Description This dataset is an integration of our vast, high-quality commercial dataset collections, encompassing a total of 137,712 hours of audio across 38 Eastern languages. Additionally, it includes 22 Chinese dialects. The dataset is carefully annotated and covers a wide variety of languages, scenarios, and contexts, ensuring diversity and richness in the data. This broad coverage allows for comprehensive model training, with a focus on Eastern languages. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d0b93f9cff7382039b57c9/ORSlMGlFtWnOVTamMIlFV.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d0b93f9cff7382039b57c9/bA9ndAsGZbF_lvo-lm1u-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d0b93f9cff7382039b57c9/Zi3sndmIzmrixY-N3UT15.png)
arjunashok/climate-1day-zeroshot-without_context
arjunashok
2025-01-07T17:00:11Z
9
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-07T17:00:09Z
0
--- dataset_info: features: - name: input_text dtype: string - name: output_text dtype: string - name: input_text_time dtype: string - name: output_text_time dtype: string - name: output_time dtype: string - name: input_num sequence: sequence: float64 - name: output_num sequence: sequence: float64 - name: instruction-1 dtype: string - name: instruction-2 dtype: string - name: instruction-3 dtype: string - name: instruction-4 dtype: string - name: pred_output_case1 dtype: string - name: pred_output_case2 dtype: string - name: pred_output_case3 dtype: string - name: pred_output_case4 dtype: string splits: - name: train num_bytes: 16134298 num_examples: 2896 - name: valid num_bytes: 2181810 num_examples: 362 - name: test num_bytes: 2722663 num_examples: 363 download_size: 6761146 dataset_size: 21038771 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test path: data/test-* ---
anirudhb11/R1-1.5b-Par-Temp-0.7-Ans-40-16384-s-42-deg-64-path-3-n-16000-s-1200-e-1300
anirudhb11
2025-06-08T03:36:25Z
0
0
[ "region:us" ]
[]
2025-06-08T03:36:23Z
0
--- dataset_info: features: - name: prompt dtype: string - name: gold_answer dtype: string - name: raw_answer_0 dtype: string - name: extracted_answer_0 dtype: string - name: num_boxed_0 dtype: int64 - name: grade_0 dtype: bool - name: ans_token_len_0 dtype: int64 - name: finished_0 dtype: bool - name: raw_answer_1 dtype: string - name: extracted_answer_1 dtype: string - name: num_boxed_1 dtype: int64 - name: grade_1 dtype: bool - name: ans_token_len_1 dtype: int64 - name: finished_1 dtype: bool - name: raw_answer_2 dtype: string - name: extracted_answer_2 dtype: string - name: num_boxed_2 dtype: int64 - name: grade_2 dtype: bool - name: ans_token_len_2 dtype: int64 - name: finished_2 dtype: bool - name: raw_answer_3 dtype: string - name: extracted_answer_3 dtype: string - name: num_boxed_3 dtype: int64 - name: grade_3 dtype: bool - name: ans_token_len_3 dtype: int64 - name: finished_3 dtype: bool - name: raw_answer_4 dtype: string - name: extracted_answer_4 dtype: string - name: num_boxed_4 dtype: int64 - name: grade_4 dtype: bool - name: ans_token_len_4 dtype: int64 - name: finished_4 dtype: bool - name: raw_answer_5 dtype: string - name: extracted_answer_5 dtype: string - name: num_boxed_5 dtype: int64 - name: grade_5 dtype: bool - name: ans_token_len_5 dtype: int64 - name: finished_5 dtype: bool - name: raw_answer_6 dtype: string - name: extracted_answer_6 dtype: string - name: num_boxed_6 dtype: int64 - name: grade_6 dtype: bool - name: ans_token_len_6 dtype: int64 - name: finished_6 dtype: bool - name: raw_answer_7 dtype: string - name: extracted_answer_7 dtype: string - name: num_boxed_7 dtype: int64 - name: grade_7 dtype: bool - name: ans_token_len_7 dtype: int64 - name: finished_7 dtype: bool - name: raw_answer_8 dtype: string - name: extracted_answer_8 dtype: string - name: num_boxed_8 dtype: int64 - name: grade_8 dtype: bool - name: ans_token_len_8 dtype: int64 - name: finished_8 dtype: bool - name: raw_answer_9 dtype: string - name: extracted_answer_9 dtype: string - name: num_boxed_9 dtype: int64 - name: grade_9 dtype: bool - name: ans_token_len_9 dtype: int64 - name: finished_9 dtype: bool - name: raw_answer_10 dtype: string - name: extracted_answer_10 dtype: string - name: num_boxed_10 dtype: int64 - name: grade_10 dtype: bool - name: ans_token_len_10 dtype: int64 - name: finished_10 dtype: bool - name: raw_answer_11 dtype: string - name: extracted_answer_11 dtype: string - name: num_boxed_11 dtype: int64 - name: grade_11 dtype: bool - name: ans_token_len_11 dtype: int64 - name: finished_11 dtype: bool - name: raw_answer_12 dtype: string - name: extracted_answer_12 dtype: string - name: num_boxed_12 dtype: int64 - name: grade_12 dtype: bool - name: ans_token_len_12 dtype: int64 - name: finished_12 dtype: bool - name: raw_answer_13 dtype: string - name: extracted_answer_13 dtype: string - name: num_boxed_13 dtype: int64 - name: grade_13 dtype: bool - name: ans_token_len_13 dtype: int64 - name: finished_13 dtype: bool - name: raw_answer_14 dtype: string - name: extracted_answer_14 dtype: string - name: num_boxed_14 dtype: int64 - name: grade_14 dtype: bool - name: ans_token_len_14 dtype: int64 - name: finished_14 dtype: bool - name: raw_answer_15 dtype: string - name: extracted_answer_15 dtype: string - name: num_boxed_15 dtype: int64 - name: grade_15 dtype: bool - name: ans_token_len_15 dtype: int64 - name: finished_15 dtype: bool - name: raw_answer_16 dtype: string - name: extracted_answer_16 dtype: string - name: num_boxed_16 dtype: int64 - name: grade_16 dtype: bool - name: ans_token_len_16 dtype: int64 - name: finished_16 dtype: bool - name: raw_answer_17 dtype: string - name: extracted_answer_17 dtype: string - name: num_boxed_17 dtype: int64 - name: grade_17 dtype: bool - name: ans_token_len_17 dtype: int64 - name: finished_17 dtype: bool - name: raw_answer_18 dtype: string - name: extracted_answer_18 dtype: string - name: num_boxed_18 dtype: int64 - name: grade_18 dtype: bool - name: ans_token_len_18 dtype: int64 - name: finished_18 dtype: bool - name: raw_answer_19 dtype: string - name: extracted_answer_19 dtype: string - name: num_boxed_19 dtype: int64 - name: grade_19 dtype: bool - name: ans_token_len_19 dtype: int64 - name: finished_19 dtype: bool - name: raw_answer_20 dtype: string - name: extracted_answer_20 dtype: string - name: num_boxed_20 dtype: int64 - name: grade_20 dtype: bool - name: ans_token_len_20 dtype: int64 - name: finished_20 dtype: bool - name: raw_answer_21 dtype: string - name: extracted_answer_21 dtype: string - name: num_boxed_21 dtype: int64 - name: grade_21 dtype: bool - name: ans_token_len_21 dtype: int64 - name: finished_21 dtype: bool - name: raw_answer_22 dtype: string - name: extracted_answer_22 dtype: string - name: num_boxed_22 dtype: int64 - name: grade_22 dtype: bool - name: ans_token_len_22 dtype: int64 - name: finished_22 dtype: bool - name: raw_answer_23 dtype: string - name: extracted_answer_23 dtype: string - name: num_boxed_23 dtype: int64 - name: grade_23 dtype: bool - name: ans_token_len_23 dtype: int64 - name: finished_23 dtype: bool - name: raw_answer_24 dtype: string - name: extracted_answer_24 dtype: string - name: num_boxed_24 dtype: int64 - name: grade_24 dtype: bool - name: ans_token_len_24 dtype: int64 - name: finished_24 dtype: bool - name: raw_answer_25 dtype: string - name: extracted_answer_25 dtype: string - name: num_boxed_25 dtype: int64 - name: grade_25 dtype: bool - name: ans_token_len_25 dtype: int64 - name: finished_25 dtype: bool - name: raw_answer_26 dtype: string - name: extracted_answer_26 dtype: string - name: num_boxed_26 dtype: int64 - name: grade_26 dtype: bool - name: ans_token_len_26 dtype: int64 - name: finished_26 dtype: bool - name: raw_answer_27 dtype: string - name: extracted_answer_27 dtype: string - name: num_boxed_27 dtype: int64 - name: grade_27 dtype: bool - name: ans_token_len_27 dtype: int64 - name: finished_27 dtype: bool - name: raw_answer_28 dtype: string - name: extracted_answer_28 dtype: string - name: num_boxed_28 dtype: int64 - name: grade_28 dtype: bool - name: ans_token_len_28 dtype: int64 - name: finished_28 dtype: bool - name: raw_answer_29 dtype: string - name: extracted_answer_29 dtype: string - name: num_boxed_29 dtype: int64 - name: grade_29 dtype: bool - name: ans_token_len_29 dtype: int64 - name: finished_29 dtype: bool - name: raw_answer_30 dtype: string - name: extracted_answer_30 dtype: string - name: num_boxed_30 dtype: int64 - name: grade_30 dtype: bool - name: ans_token_len_30 dtype: int64 - name: finished_30 dtype: bool - name: raw_answer_31 dtype: string - name: extracted_answer_31 dtype: string - name: num_boxed_31 dtype: int64 - name: grade_31 dtype: bool - name: ans_token_len_31 dtype: int64 - name: finished_31 dtype: bool - name: raw_answer_32 dtype: string - name: extracted_answer_32 dtype: string - name: num_boxed_32 dtype: int64 - name: grade_32 dtype: bool - name: ans_token_len_32 dtype: int64 - name: finished_32 dtype: bool - name: raw_answer_33 dtype: string - name: extracted_answer_33 dtype: string - name: num_boxed_33 dtype: int64 - name: grade_33 dtype: bool - name: ans_token_len_33 dtype: int64 - name: finished_33 dtype: bool - name: raw_answer_34 dtype: string - name: extracted_answer_34 dtype: string - name: num_boxed_34 dtype: int64 - name: grade_34 dtype: bool - name: ans_token_len_34 dtype: int64 - name: finished_34 dtype: bool - name: raw_answer_35 dtype: string - name: extracted_answer_35 dtype: string - name: num_boxed_35 dtype: int64 - name: grade_35 dtype: bool - name: ans_token_len_35 dtype: int64 - name: finished_35 dtype: bool - name: raw_answer_36 dtype: string - name: extracted_answer_36 dtype: string - name: num_boxed_36 dtype: int64 - name: grade_36 dtype: bool - name: ans_token_len_36 dtype: int64 - name: finished_36 dtype: bool - name: raw_answer_37 dtype: string - name: extracted_answer_37 dtype: string - name: num_boxed_37 dtype: int64 - name: grade_37 dtype: bool - name: ans_token_len_37 dtype: int64 - name: finished_37 dtype: bool - name: raw_answer_38 dtype: string - name: extracted_answer_38 dtype: string - name: num_boxed_38 dtype: int64 - name: grade_38 dtype: bool - name: ans_token_len_38 dtype: int64 - name: finished_38 dtype: bool - name: raw_answer_39 dtype: string - name: extracted_answer_39 dtype: string - name: num_boxed_39 dtype: int64 - name: grade_39 dtype: bool - name: ans_token_len_39 dtype: int64 - name: finished_39 dtype: bool splits: - name: train num_bytes: 79416092 num_examples: 100 download_size: 17818412 dataset_size: 79416092 configs: - config_name: default data_files: - split: train path: data/train-* ---
Lansechen/details_Qwen__Qwen2.5-7B
Lansechen
2025-03-28T03:31:14Z
7
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-28T03:13:02Z
0
--- pretty_name: Evaluation run of Qwen/Qwen2.5-7B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B).\n\nThe dataset is composed\ \ of 3 configuration, each one coresponding to one of the evaluated task.\n\nThe\ \ dataset has been created from 3 run(s). Each run can be found as a specific split\ \ in each configuration, the split being named using the timestamp of the run.The\ \ \"train\" split is always pointing to the latest results.\n\nAn additional configuration\ \ \"results\" store all the aggregated results of the run.\n\nTo load the details\ \ from a run, you can for instance do the following:\n```python\nfrom datasets import\ \ load_dataset\ndata = load_dataset(\"Lansechen/details_Qwen__Qwen2.5-7B\",\n\t\"\ results\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest\ \ results from run 2025-03-28T11:31:03.198625](https://huggingface.co/datasets/Lansechen/details_Qwen__Qwen2.5-7B/blob/main/results_2025-03-28T11-31-03.198625.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"extractive_match\": 0.1,\n\ \ \"extractive_match_stderr\": 0.055708601453115555\n },\n \"custom|aime24|0\"\ : {\n \"extractive_match\": 0.1,\n \"extractive_match_stderr\": 0.055708601453115555\n\ \ }\n}\n```" repo_url: https://huggingface.co/Qwen/Qwen2.5-7B configs: - config_name: custom_aime24_0 data_files: - split: 2025_03_28T11_31_03.198625 path: - '**/details_custom|aime24|0_2025-03-28T11-31-03.198625.parquet' - split: latest path: - '**/details_custom|aime24|0_2025-03-28T11-31-03.198625.parquet' - config_name: custom_gpqa_diamond_0 data_files: - split: 2025_03_28T11_13_01.819468 path: - '**/details_custom|gpqa:diamond|0_2025-03-28T11-13-01.819468.parquet' - split: latest path: - '**/details_custom|gpqa:diamond|0_2025-03-28T11-13-01.819468.parquet' - config_name: custom_math_500_0 data_files: - split: 2025_03_28T11_23_10.770535 path: - '**/details_custom|math_500|0_2025-03-28T11-23-10.770535.parquet' - split: latest path: - '**/details_custom|math_500|0_2025-03-28T11-23-10.770535.parquet' - config_name: results data_files: - split: 2025_03_28T11_13_01.819468 path: - results_2025-03-28T11-13-01.819468.parquet - split: 2025_03_28T11_23_10.770535 path: - results_2025-03-28T11-23-10.770535.parquet - split: 2025_03_28T11_31_03.198625 path: - results_2025-03-28T11-31-03.198625.parquet - split: latest path: - results_2025-03-28T11-31-03.198625.parquet --- # Dataset Card for Evaluation run of Qwen/Qwen2.5-7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B). The dataset is composed of 3 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 3 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("Lansechen/details_Qwen__Qwen2.5-7B", "results", split="train") ``` ## Latest results These are the [latest results from run 2025-03-28T11:31:03.198625](https://huggingface.co/datasets/Lansechen/details_Qwen__Qwen2.5-7B/blob/main/results_2025-03-28T11-31-03.198625.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "extractive_match": 0.1, "extractive_match_stderr": 0.055708601453115555 }, "custom|aime24|0": { "extractive_match": 0.1, "extractive_match_stderr": 0.055708601453115555 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Dataset Cards

This datasets consists of dataset cards for models hosted on the Hugging Face Hub. The dataset cards are created by the community and provide information about datasets hosted on the Hugging Face Hub. This dataset is updated on a daily basis and includes publicly available datasets on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Dataset Cards from the Hub. We hope that this dataset will help support research in the area of Dataset Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in dataset cards
  • analysis of the dataset card format/content
  • topic modelling of dataset cards
  • training language models on the dataset cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with dataset cards. In particular it was created to support research in the area of dataset cards and their use. It is possible to use the Hugging Face Hub API or client library to download dataset cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for datasets hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the dataset directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the dataset cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the dataset card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the dataset card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of dataset cards to contain personal or sensitive information, it is possible that some dataset cards may contain this information. Dataset cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Dataset cards are created by the community and we do not have any control over the content of the dataset cards. We do not review the content of the dataset cards and we do not make any claims about the accuracy of the information in the dataset cards. Some dataset cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the dataset. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the dataset cards, some dataset cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
1,394

Space using librarian-bots/dataset_cards_with_metadata 1

Collection including librarian-bots/dataset_cards_with_metadata