Search is not available for this dataset
modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-28 00:41:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
438 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-28 00:38:08
card
stringlengths
11
1.01M
Kamil004/Llama-3.2-1B-Instruct_FT
Kamil004
"2025-02-03T17:57:46Z"
11
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-03T14:25:38Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TransferGraph/liangyuant_distilbert-base-uncased-finetuned-num200-450-405cls-finetuned-lora-tweet_eval_hate
TransferGraph
"2024-02-29T13:42:21Z"
0
0
peft
[ "peft", "safetensors", "parquet", "text-classification", "dataset:tweet_eval", "base_model:liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls", "base_model:adapter:liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls", "model-index", "region:us" ]
text-classification
"2024-02-29T13:42:19Z"
--- library_name: peft tags: - parquet - text-classification datasets: - tweet_eval metrics: - accuracy base_model: liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls model-index: - name: liangyuant_distilbert-base-uncased-finetuned-num200-450-405cls-finetuned-lora-tweet_eval_hate results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: hate split: validation args: hate metrics: - type: accuracy value: 0.733 name: accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # liangyuant_distilbert-base-uncased-finetuned-num200-450-405cls-finetuned-lora-tweet_eval_hate This model is a fine-tuned version of [liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls](https://huggingface.co/liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.498 | None | 0 | | 0.723 | 0.5590 | 0 | | 0.73 | 0.4761 | 1 | | 0.726 | 0.4359 | 2 | | 0.733 | 0.4139 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2
robiulawaldev/6cb57a81-043c-4451-8f46-4649e5958d13
robiulawaldev
"2025-01-27T05:59:07Z"
8
0
peft
[ "peft", "safetensors", "gptj", "axolotl", "generated_from_trainer", "base_model:furiosa-ai/mlperf-gpt-j-6b", "base_model:adapter:furiosa-ai/mlperf-gpt-j-6b", "region:us" ]
null
"2025-01-27T05:34:10Z"
--- library_name: peft base_model: furiosa-ai/mlperf-gpt-j-6b tags: - axolotl - generated_from_trainer model-index: - name: 6cb57a81-043c-4451-8f46-4649e5958d13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: furiosa-ai/mlperf-gpt-j-6b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 80b3f2b5f3ce3209_train_data.json ds_type: json format: custom path: /workspace/input_data/80b3f2b5f3ce3209_train_data.json type: field_input: headline_a field_instruction: rendered_input field_output: headline_b format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/6cb57a81-043c-4451-8f46-4649e5958d13 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/80b3f2b5f3ce3209_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3797da9e-eaaf-4f36-ac37-50d8b1c8015a wandb_project: Birthday-SN56-35-Gradients-On-Demand wandb_run: your_name wandb_runid: 3797da9e-eaaf-4f36-ac37-50d8b1c8015a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6cb57a81-043c-4451-8f46-4649e5958d13 This model is a fine-tuned version of [furiosa-ai/mlperf-gpt-j-6b](https://huggingface.co/furiosa-ai/mlperf-gpt-j-6b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.1741 | 0.0000 | 1 | 1.8781 | | 7.0916 | 0.0005 | 13 | 1.6479 | | 1.7076 | 0.0010 | 26 | 0.7791 | | 0.9032 | 0.0015 | 39 | 0.6576 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
NiallRooney/flan-t5-base_PREFIX_TUNING_SEQ2SEQ
NiallRooney
"2023-12-06T16:50:50Z"
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/flan-t5-base", "base_model:adapter:google/flan-t5-base", "region:us" ]
null
"2023-12-06T16:50:49Z"
--- library_name: peft base_model: google/flan-t5-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
surafelabebe/whisper-small-am
surafelabebe
"2025-02-24T22:11:53Z"
49
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "am", "dataset:mozilla-foundation/common_voice_17_0", "dataset:surafelabebe/fleurs_am", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-02-19T01:49:17Z"
--- library_name: transformers language: - am license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 - surafelabebe/fleurs_am metrics: - wer model-index: - name: Whisper Small Am - Surafel Worku results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 args: 'config: am, split: test' metrics: - name: Wer type: wer value: 50.96566523605151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Amharic This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0/viewer/am?views%5B%5D=am_train) and [surafelabebe/fleurs_am](https://huggingface.co/datasets/surafelabebe/fleurs_am) (a subset of [google/fleurs](https://huggingface.co/datasets/google/fleurs)) datasets. It achieves the following results on the evaluation set: - Loss: 0.4352 - Wer: 50.9657 ## Model description The model was trained for 10 hours on T4 GPU. Training results indicate potential overfitting. Future improvements will focus on mitigating this by incorporating a larger dataset, extended training epochs, and dropout regularization. ### Usage ```python from transformers import pipeline pipe = pipeline(model="surafelabebe/whisper-small-am") text = pipe("sample.wav")["text"] # change to "your audio file name" print(text) ``` | Input | Output Transcript | |:----------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------:| | <audio controls><source src="https://huggingface.co/spaces/surafelabebe/audio_samples/resolve/main/audio_0.wav" type="audio/wav"></audio> | አቶ ቦጋለ መብራቱ ወይዘሮ ውድነሽ በታሙም ባገቡ በሁለተኛው አመት መጫረሻ ወንድሪክ ሰውለደላቸውን | | <audio controls><source src="https://huggingface.co/spaces/surafelabebe/audio_samples/resolve/main/audio_1.wav" type="audio/wav"></audio> | ከሰብ ለሚሁን ከወይዘሮ ትሩ ወይም ከአብት ሺሰር ጋር ልዩሩ ጉዳይ ኖሮት አይደለም | ## Training procedure The fine-tuning process followed a similar procedure to that described in [this](https://huggingface.co/blog/fine-tune-whisper) blog post. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0108 | 9.6154 | 1000 | 0.3446 | 54.9759 | | 0.0009 | 19.2308 | 2000 | 0.4052 | 51.7570 | | 0.0001 | 28.8462 | 3000 | 0.4277 | 50.9388 | | 0.0001 | 38.4615 | 4000 | 0.4352 | 50.9657 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
aimlresearch2023/Tiny-LLM-Q5_K_M-GGUF
aimlresearch2023
"2025-01-09T10:37:14Z"
33
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "dataset:HuggingFaceFW/fineweb", "base_model:arnir0/Tiny-LLM", "base_model:quantized:arnir0/Tiny-LLM", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-09T10:37:13Z"
--- license: mit datasets: - HuggingFaceFW/fineweb pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo base_model: arnir0/Tiny-LLM --- # aimlresearch2023/Tiny-LLM-Q5_K_M-GGUF This model was converted to GGUF format from [`arnir0/Tiny-LLM`](https://huggingface.co/arnir0/Tiny-LLM) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/arnir0/Tiny-LLM) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo aimlresearch2023/Tiny-LLM-Q5_K_M-GGUF --hf-file tiny-llm-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo aimlresearch2023/Tiny-LLM-Q5_K_M-GGUF --hf-file tiny-llm-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo aimlresearch2023/Tiny-LLM-Q5_K_M-GGUF --hf-file tiny-llm-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo aimlresearch2023/Tiny-LLM-Q5_K_M-GGUF --hf-file tiny-llm-q5_k_m.gguf -c 2048 ```
Steddex/Reinforce-Pixelcopter-PLE-v0
Steddex
"2023-05-25T10:47:04Z"
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2023-05-24T15:02:04Z"
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 52.80 +/- 33.54 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nestija/959a169a-8917-4786-b176-a366fa4c6c8a
nestija
"2025-04-03T06:44:31Z"
0
0
null
[ "region:us" ]
null
"2025-04-03T06:22:44Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
lesso09/0fc82aab-59d1-48c9-bb60-f04c04fac4e5
lesso09
"2025-01-27T18:16:40Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-27T18:10:23Z"
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 0fc82aab-59d1-48c9-bb60-f04c04fac4e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: true chat_template: llama3 datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/0fc82aab-59d1-48c9-bb60-f04c04fac4e5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0fc82aab-59d1-48c9-bb60-f04c04fac4e5 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0732 | 0.0018 | 1 | 1.2944 | | 1.4455 | 0.0088 | 5 | 1.2372 | | 0.9794 | 0.0175 | 10 | 0.9125 | | 0.4988 | 0.0263 | 15 | 0.7950 | | 1.2708 | 0.0351 | 20 | 0.7533 | | 0.8023 | 0.0439 | 25 | 0.7413 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
svjack/Genshin_Impact_Qwen_1_5_Chat_mix_roleplay_chat_lora_small
svjack
"2024-06-02T12:49:59Z"
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B-Chat", "base_model:adapter:Qwen/Qwen1.5-7B-Chat", "license:other", "region:us" ]
null
"2024-05-23T04:05:27Z"
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: Qwen/Qwen1.5-7B-Chat model-index: - name: train_2024-05-23-01-40-51 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 🤭 Please refer to https://github.com/svjack/Genshin-Impact-Character-Chat to get more info # Install ```bash pip install peft transformers bitsandbytes ``` # Run by transformers * Step 1: Generate a story Backgroud In Genshin Impact ```python from transformers import TextStreamer, AutoTokenizer, AutoModelForCausalLM from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat",) qw_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", load_in_4bit = True) qw_model = PeftModel.from_pretrained(qw_model, "svjack/Genshin_Impact_Qwen_1_5_Chat_mix_roleplay_chat_lora_small" ) qw_model = qw_model.eval() streamer = TextStreamer(tokenizer) def qwen_hf_predict(messages, qw_model = qw_model, tokenizer = tokenizer, streamer = streamer, do_sample = True, top_p = 0.95, top_k = 40, max_new_tokens = 2070, max_input_length = 3500, temperature = 0.9, repetition_penalty = 1.0, device = "cuda"): encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True ) model_inputs = encodeds.to(device) generated_ids = qw_model.generate(model_inputs, max_new_tokens=max_new_tokens, do_sample=do_sample, streamer = streamer, top_p = top_p, top_k = top_k, temperature = temperature, repetition_penalty = repetition_penalty, ) out = tokenizer.batch_decode(generated_ids)[0].split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip() return out out = qwen_hf_predict([ { "role": "user", "content": ''' 人物设定: 下面是九条裟罗的一些基本信息 性别:成年女性 国籍:稻妻 身份:负责治安事务的天领奉行大将 性格特征:雷厉风行,以身作则 这些是一段角色介绍 九条裟罗有着天狗血统,却不像一般天狗那样栖居于山林间。她自幼被九条家收养,归入天领奉行麾下。 天领奉行是「三奉行」之一,负责稻妻的一切治安事务。如今裟罗身为天领奉行的大将,肩负着维护稻妻城安定的重任。 她治理有方又能坚持以身作则,为手下树立了良好榜样。天领奉行辖区内,再棘手的问题也都能及时处理妥当。 但由于裟罗平时不苟言笑,执行任务时又雷厉风行,不少稻妻民众都因此断定她是位难以接近的冷面军官。 而这对外冷内热的裟罗来说,是个过于片面的评价。 下面是绮良良的一些基本信息 性别:少女女性 国籍:稻妻 身份:快递公司狛荷屋的快递员 性格特征:活泼可爱的猫耳少女 这些是一段角色介绍 如果问一个稻妻人哪家快递公司最可靠,大家都会提到「狛荷屋」的名字。 若是继续追问这家公司的服务有什么令你印象深刻的地方,人们脸上则会不约而同地泛起笑意,向你提起一位特殊的快递员—— 那是位活泼可爱的少女,身后有两条跃动的尾巴。 当你收下货物,对她道谢之后,少女会露出幸福无比的表情,向你深鞠一躬,仿佛收到心爱之物的人是她一样。 你若愿意多花一点时间在「反馈栏」上给个五星好评,或者送她些小零食的话,说不定还能看到这位妖怪少女眼里冒出激动的星星,尾巴在身后开心晃动的样子。 两人同属稻妻 根据上面的人物设定生成发生在九条裟罗和绮良良之间的故事背景 ''' } ], repetition_penalty = 1.0, temperature = 0.9, max_new_tokens=1024 ) print(out) ``` # Output ``` 在一个阳光明媚的午后,稻妻城的街头,九条裟罗,天领奉行大将,正走在巡逻的路上,而快递员绮良良则在完成一次送货任务后返回公司。两人虽然身份不同,但都在为这座城市的安全和便利服务。 ``` * Step 2: Chat with Agent named with 绮良良 in context ```python out = qwen_hf_predict([ { "role": "system", "content": ''' 人物设定: 下面是九条裟罗的一些基本信息 性别:成年女性 国籍:稻妻 身份:负责治安事务的天领奉行大将 性格特征:雷厉风行,以身作则 这些是一段角色介绍 九条裟罗有着天狗血统,却不像一般天狗那样栖居于山林间。她自幼被九条家收养,归入天领奉行麾下。 天领奉行是「三奉行」之一,负责稻妻的一切治安事务。如今裟罗身为天领奉行的大将,肩负着维护稻妻城安定的重任。 她治理有方又能坚持以身作则,为手下树立了良好榜样。天领奉行辖区内,再棘手的问题也都能及时处理妥当。 但由于裟罗平时不苟言笑,执行任务时又雷厉风行,不少稻妻民众都因此断定她是位难以接近的冷面军官。 而这对外冷内热的裟罗来说,是个过于片面的评价。 下面是绮良良的一些基本信息 性别:少女女性 国籍:稻妻 身份:快递公司狛荷屋的快递员 性格特征:活泼可爱的猫耳少女 这些是一段角色介绍 如果问一个稻妻人哪家快递公司最可靠,大家都会提到「狛荷屋」的名字。 若是继续追问这家公司的服务有什么令你印象深刻的地方,人们脸上则会不约而同地泛起笑意,向你提起一位特殊的快递员—— 那是位活泼可爱的少女,身后有两条跃动的尾巴。 当你收下货物,对她道谢之后,少女会露出幸福无比的表情,向你深鞠一躬,仿佛收到心爱之物的人是她一样。 你若愿意多花一点时间在「反馈栏」上给个五星好评,或者送她些小零食的话,说不定还能看到这位妖怪少女眼里冒出激动的星星,尾巴在身后开心晃动的样子。 两人同属稻妻 背景设定: 在一个阳光明媚的午后,稻妻城的街头,九条裟罗,天领奉行大将,正走在巡逻的路上,而快递员绮良良则在完成一次送货任务后返回公司。两人虽然身份不同,但都在为这座城市的安全和便利服务。 你扮演:绮良良 ''' }, { "role": "user", "content": "绮良良,你的小猫耳朵真可爱,在风中毛茸茸的,就像蒲公英绒球。" }, { "role": "assistant", "content": "哎呀,谢谢大将您的夸奖,我最喜欢这样被人夸了。有时候送货到附近的商店时,店主们也会这么说呢!" }, { "role": "user", "content": "你走街串巷,来来往往,有没有发现哪些假期的好去处啊?" }, { "role": "assistant", "content": "嗯……我经常去城里的公园和图书馆,还有海边的海滩,那里总是充满活力。不过大将平时工作很忙,可能不太有机会去呢。" }, { "role": "user", "content": "绮良良好厉害呢,在从事工作的同时,还去图书馆提升自己,你对稻妻图书馆的藏书组成有哪些建议吗?我可以向将军大人提意见,让它们更符合多层次人民的需求。" }, { "role" :"assistant", "content": "嗯,我觉得可以增加一些关于天狗历史和文化的学习资料,毕竟大将您对这些也很感兴趣吧?这样不仅对我有帮助,也能让整个稻妻更了解天狗这个特殊的群体。" }, { "role": "user", "content": "是的,天狗文化作为稻妻文化的重要组成部分,是上古历史的传承的一个方面,传承传统文化是我们共同的责任。" } ], repetition_penalty = 1.0, temperature = 0.9, max_new_tokens=1024 ) print(out) ``` # Output ``` 我同意大将的看法,我会把这些建议转达给图书馆的馆长,他们一定会很高兴的。 ``` * Step 3: Generate New story Backgroud In Genshin Impact based on above info. ```python out = qwen_hf_predict([ { "role": "user", "content": ''' 下面是九条裟罗的一些基本信息 性别:成年女性 国籍:稻妻 身份:负责治安事务的天领奉行大将 性格特征:雷厉风行,以身作则 这些是一段角色介绍 九条裟罗有着天狗血统,却不像一般天狗那样栖居于山林间。她自幼被九条家收养,归入天领奉行麾下。 天领奉行是「三奉行」之一,负责稻妻的一切治安事务。如今裟罗身为天领奉行的大将,肩负着维护稻妻城安定的重任。 她治理有方又能坚持以身作则,为手下树立了良好榜样。天领奉行辖区内,再棘手的问题也都能及时处理妥当。 但由于裟罗平时不苟言笑,执行任务时又雷厉风行,不少稻妻民众都因此断定她是位难以接近的冷面军官。 而这对外冷内热的裟罗来说,是个过于片面的评价。 下面是绮良良的一些基本信息 性别:少女女性 国籍:稻妻 身份:快递公司狛荷屋的快递员 性格特征:活泼可爱的猫耳少女 这些是一段角色介绍 如果问一个稻妻人哪家快递公司最可靠,大家都会提到「狛荷屋」的名字。 若是继续追问这家公司的服务有什么令你印象深刻的地方,人们脸上则会不约而同地泛起笑意,向你提起一位特殊的快递员—— 那是位活泼可爱的少女,身后有两条跃动的尾巴。 当你收下货物,对她道谢之后,少女会露出幸福无比的表情,向你深鞠一躬,仿佛收到心爱之物的人是她一样。 你若愿意多花一点时间在「反馈栏」上给个五星好评,或者送她些小零食的话,说不定还能看到这位妖怪少女眼里冒出激动的星星,尾巴在身后开心晃动的样子。 两人同属稻妻 下面是发生在九条裟罗和绮良良之间的故事背景: 在一个阳光明媚的午后,稻妻城的街头,九条裟罗,天领奉行大将,正走在巡逻的路上,而快递员绮良良则在完成一次送货任务后返回公司。两人虽然身份不同,但都在为这座城市的安全和便利服务。 二人发生了如下对话: 九条裟罗:绮良良,你的小猫耳朵真可爱,在风中毛茸茸的,就像蒲公英绒球。 绮良良:哎呀,谢谢大将您的夸奖,我最喜欢这样被人夸了。有时候送货到附近的商店时,店主们也会这么说呢! 九条裟罗:你走街串巷,来来往往,有没有发现哪些假期的好去处啊? 绮良良:嗯……我经常去城里的公园和图书馆,还有海边的海滩,那里总是充满活力。不过大将平时工作很忙,可能不太有机会去呢。 九条裟罗:绮良良好厉害呢,在从事工作的同时,还去图书馆提升自己,你对稻妻图书馆的藏书组成有哪些建议吗?我可以向将军大人提意见,让它们更符合多层次人民的需求。 绮良良:嗯,我觉得可以增加一些关于天狗历史和文化的学习资料,毕竟大将您对这些也很感兴趣吧?这样不仅对我有帮助,也能让整个稻妻更了解天狗这个特殊的群体。 九条裟罗:是的,天狗文化作为稻妻文化的重要组成部分,是上古历史的传承的一个方面,传承传统文化是我们共同的责任。 绮良良:我同意大将的看法,我会把这些建议转达给图书馆的馆长,他们一定会很高兴的。 请结合上下文,用一句话给出二人对话的摘要。 同时,为推动对话情节发展,请你用类似上面故事背景的风格,给出一个基于上面设定的新故事背景,要求新故事背景与原故事背景有因果联系。 使得九条裟罗和绮良良可以在新的故事背景中进行互动。 要求只输出一行文字,新故事背景中必须提到九条裟罗和绮良良。 ''' } ], repetition_penalty = 1.0, temperature = 0.9, max_new_tokens=1024 ) print(out) ``` # Output ``` 一场罕见的暴风雨过后,稻妻城急需维修图书馆的屋顶以防止进一步损坏,九条裟罗与绮良良共同负责协调这个任务。 ``` # train_2024-05-23-01-40-51 This model is a fine-tuned version of [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) on the instruction_genshin_impact_roleplay, the genshin_impact_background and the sharegpt_genshin_impact_roleplay datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
update0909/starcoderbase1b-personal-copilot-T4-40GB-colab
update0909
"2023-12-10T08:47:35Z"
62
1
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_bigcode", "text-generation", "generated_from_trainer", "base_model:bigcode/starcoderbase-1b", "base_model:finetune:bigcode/starcoderbase-1b", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-12-10T08:43:44Z"
--- license: bigcode-openrail-m base_model: bigcode/starcoderbase-1b tags: - generated_from_trainer model-index: - name: starcoderbase1b-personal-copilot-T4-40GB-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # starcoderbase1b-personal-copilot-T4-40GB-colab This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 10 ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
universalml/lora_model1
universalml
"2024-05-17T04:36:39Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-05-17T04:36:30Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** universalml - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF
mradermacher
"2025-04-21T21:05:33Z"
250
0
transformers
[ "transformers", "gguf", "llama-3.3", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:OpenBuddy/openbuddy-wayfarer-70b-v25.1-131k", "base_model:quantized:OpenBuddy/openbuddy-wayfarer-70b-v25.1-131k", "license:llama3.3", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-04-18T05:52:55Z"
--- base_model: OpenBuddy/openbuddy-wayfarer-70b-v25.1-131k language: - zh - en - fr - de - ja - ko - it - fi library_name: transformers license: llama3.3 quantized_by: mradermacher tags: - llama-3.3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/OpenBuddy/openbuddy-wayfarer-70b-v25.1-131k <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/openbuddy-wayfarer-70b-v25.1-131k-i1-GGUF/resolve/main/openbuddy-wayfarer-70b-v25.1-131k.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
calbors/PhyloGPN-ClinVar
calbors
"2025-01-15T19:12:47Z"
6
0
transformers
[ "transformers", "safetensors", "phylogpn", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
"2025-01-15T19:12:29Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jpark677/llava-v1.5-7b-cvbench-1
jpark677
"2025-02-14T06:31:58Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:liuhaotian/llava-v1.5-7b", "base_model:adapter:liuhaotian/llava-v1.5-7b", "region:us" ]
null
"2025-02-14T06:31:56Z"
--- base_model: liuhaotian/llava-v1.5-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0
Nexspear/9d6c3588-50f3-4ad7-b7ec-9003f44b327b
Nexspear
"2025-02-07T11:35:51Z"
9
0
peft
[ "peft", "safetensors", "qwen2_moe", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-qwen1.5-moe", "base_model:adapter:katuni4ka/tiny-random-qwen1.5-moe", "region:us" ]
null
"2025-02-07T11:30:24Z"
--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: 9d6c3588-50f3-4ad7-b7ec-9003f44b327b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-qwen1.5-moe bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f8e02fa823dd12e8_train_data.json ds_type: json format: custom path: /workspace/input_data/f8e02fa823dd12e8_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Nexspear/9d6c3588-50f3-4ad7-b7ec-9003f44b327b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 400 micro_batch_size: 8 mlflow_experiment_name: /tmp/f8e02fa823dd12e8_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 114b5f6a-8705-4766-a06f-03b7aa23b4ef wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 114b5f6a-8705-4766-a06f-03b7aa23b4ef warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9d6c3588-50f3-4ad7-b7ec-9003f44b327b This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.8428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.938 | 0.0055 | 1 | 11.9396 | | 11.8831 | 0.2743 | 50 | 11.8795 | | 11.8735 | 0.5487 | 100 | 11.8733 | | 11.8634 | 0.8230 | 150 | 11.8630 | | 11.8332 | 1.0974 | 200 | 11.8528 | | 11.8331 | 1.3717 | 250 | 11.8470 | | 11.8294 | 1.6461 | 300 | 11.8441 | | 11.8596 | 1.9204 | 350 | 11.8429 | | 11.8156 | 2.1948 | 400 | 11.8428 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
suke0327/whisper-large_odd_en_and_even_de
suke0327
"2024-05-05T13:31:21Z"
138
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-05-05T13:28:58Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
polymathic-ai/TFNO-viscoelastic_instability
polymathic-ai
"2025-03-28T13:03:14Z"
0
0
null
[ "safetensors", "physics", "dataset:polymathic-ai/viscoelastic_instability", "arxiv:2310.00120", "region:us" ]
null
"2025-03-28T13:03:10Z"
--- datasets: polymathic-ai/viscoelastic_instability tags: - physics --- # Benchmarking Models on the Well [The Well](https://github.com/PolymathicAI/the_well) is a 15TB dataset collection of physics simulations. This model is part of the models that have been benchmarked on the Well. The models have been trained for a fixed time of 12 hours or up to 500 epochs, whichever happens first. The training was performed on a NVIDIA H100 96GB GPU. In the time dimension, the context length was set to 4. The batch size was set to maximize the memory usage. We experiment with 5 different learning rates for each model on each dataset. We use the model performing best on the validation set to report test set results. The reported results are here to provide a simple baseline. **They should not be considered as state-of-the-art**. We hope that the community will build upon these results to develop better architectures for PDE surrogate modeling. # Tensorized Fourier Neural Operator Implementation of the [Tensorized Fourier Neural Operator](https://arxiv.org/abs/2310.00120) provided by [`neuraloperator v0.3.0`](https://neuraloperator.github.io/dev/index.html). ## Model Details For benchmarking on the Well, we used the following parameters. | Parameters | Values | |------------|--------| | Modes | 16 | | Blocks | 4 | | Hidden Size| 128 | ## Trained Model Versions Below is the list of checkpoints available for the training of TFNO on different datasets of the Well. | Dataset | Learning Rate | Epoch | VRMSE | |---------|----------------|-------|-------| | [acoustic_scattering_maze](https://huggingface.co/polymathic-ai/TFNO-acoustic_scattering) | 1E-3 | 27 | 0.5034 | | [active_matter](https://huggingface.co/polymathic-ai/TFNO-active_matter) | 1E-3 | 243 | 0.3342 | | [convective_envelope_rsg](https://huggingface.co/polymathic-ai/TFNO-convective_envelope_rsg) | 1E-3 | 13 | 0.0195 | | [gray_scott_reaction_diffusion](https://huggingface.co/polymathic-ai/TFNO-gray_scott_reaction_diffusion) | 5E-3 | 45 | 0.1784 | | [helmholtz_staircase](https://huggingface.co/polymathic-ai/TFNO-helmholtz_staircase) | 5E-4 | 131 | 0.00031 | | [MHD_64](https://huggingface.co/polymathic-ai/TFNO-MHD_64) | 1E-3 | 155 | 0.3347 | | [planetswe](https://huggingface.co/polymathic-ai/TFNO-planetswe) | 5E-4 | 49 | 0.1061 | | [post_neutron_star_merger](https://huggingface.co/polymathic-ai/TFNO-post_neutron_star_merger) | 5E-4 | 99 | 0.4064 | | [rayleigh_benard](https://huggingface.co/polymathic-ai/TFNO-rayleigh_benard) | 1E-4 | 31 | 0.8568 | | [rayleigh_taylor_instability](https://huggingface.co/polymathic-ai/TFNO-rayleigh_taylor_instability) | 1E-4 | 175 | 0.2251 | | [shear_flow](https://huggingface.co/polymathic-ai/TFNO-shear_flow) | 1E-3 | 24 | 0.3626 | | [supernova_explosion_64](https://huggingface.co/polymathic-ai/TFNO-supernova_explosion_64) | 1E-4 | 35 | 0.3645 | | [turbulence_gravity_cooling](https://huggingface.co/polymathic-ai/TFNO-turbulence_gravity_cooling) | 5E-4 | 10 | 0.2789 | | [turbulent_radiative_layer_2D](https://huggingface.co/polymathic-ai/TFNO-turbulent_radiative_layer_2D) | 1E-3 | 500 | 0.4938 | | [viscoelastic_instability](https://huggingface.co/polymathic-ai/TFNO-viscoelastic_instability) | 5E-3 | 199 | 0.7021 | ## Loading the model from Hugging Face To load the TFNO model trained on the `viscoelastic_instability` of the Well, use the following commands. ```python from the_well.benchmark.models import TFNO model = TFNO.from_pretrained("polymathic-ai/TFNO-viscoelastic_instability") ```
Vertti/TuumaPEFTDialogue04
Vertti
"2023-08-26T17:10:32Z"
1
0
peft
[ "peft", "region:us" ]
null
"2023-08-26T17:09:58Z"
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
abhishekkuber/step2_sent_class_dccl
abhishekkuber
"2025-03-18T13:50:30Z"
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-18T13:49:34Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mesolitica/malaysian-llama2-7b-32k-instructions
mesolitica
"2023-11-03T14:07:12Z"
19
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-09-26T05:00:24Z"
--- language: - ms --- # QLORA Malaysian Llama2 7B 32k chat completions QLORA https://huggingface.co/mesolitica/llama-7b-hf-32768-fpf on translated UltraChat, https://huggingface.co/datasets/mesolitica/google-translate-ultrachat. We use exact Llama2 chat template. README at https://github.com/mesolitica/malaya/tree/5.1/session/llama2#7b-16384-context-length-flash-attention-2 ## how-to ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch def parse_llama_chat(messages): system = messages[0]['content'] user_query = messages[-1]['content'] users, assistants = [], [] for q in messages[1:-1]: if q['role'] == 'user': users.append(q['content']) elif q['role'] == 'assistant': assistants.append(q['content']) texts = [f'<s>[INST] <<SYS>>\n{system}\n<</SYS>>\n\n'] for u, a in zip(users, assistants): texts.append(f'{u.strip()} [/INST] {a.strip()} </s><s>[INST] ') texts.append(f'{user_query.strip()} [/INST]') prompt = ''.join(texts).strip() return prompt TORCH_DTYPE = 'bfloat16' nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE) ) tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-llama2-7b-32k-instructions') model = AutoModelForCausalLM.from_pretrained( 'mesolitica/malaysian-llama2-7b-32k-instructions', use_flash_attention_2 = True, quantization_config = nf4_config ) messages = [ {'role': 'system', 'content': 'awak adalah AI yang mampu jawab segala soalan'}, {'role': 'user', 'content': 'kwsp tu apa'} ] prompt = parse_llama_chat(messages) inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=1024, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, ) r = model.generate(**generate_kwargs) print(tokenizer.decode(r[0])) ``` ```text '<s> [INST] <<SYS>> awak adalah AI yang mampu jawab segala soalan <</SYS>> kwsp tu apa [/INST] Kumpulan Wang Simpanan Pekerja (KWSP) ialah sebuah badan berkanun yang ditubuhkan di Malaysia yang menguruskan tabung simpanan tetap pekerja bagi tujuan persaraan dan perancangan masa depan. Diasaskan pada tahun 1951, KWSP bertanggungjawab untuk mengumpul dan menguruskan sumber daripada majikan dan pekerja, dan juga menyediakan pelbagai faedah kepada ahli seperti dividen dan akses kepada pengeluaran simpanan pada usia persaraan. KWSP juga memainkan peranan penting dalam menyediakan perlindungan sosial dan pembangunan ekonomi di Malaysia, dengan mempromosikan simpanan pengguna dan meningkatkan kadar celik kewangan dalam kalangan rakyat. </s>' ``` ```python messages = [ {'role': 'system', 'content': 'awak adalah AI yang mampu jawab segala soalan'}, {'role': 'user', 'content': 'awat malaysia ada jabatan koko, malaysia bukan buat keluaq koko banyak pun'} ] prompt = parse_llama_chat(messages) inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=1024, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, ) r = model.generate(**generate_kwargs) print(tokenizer.decode(r[0])) ``` ```text <s> [INST] <<SYS>> awak adalah AI yang mampu jawab segala soalan <</SYS>> awat malaysia ada jabatan koko, malaysia bukan buat keluaq koko banyak pun [/INST] Penanaman koko di Malaysia bermula pada tahun 1950-an, dengan pengeluaran koko kering pertama dihasilkan pada tahun 1958. Pada masa itu, negara ini menjadi pembekal koko terbesar di dunia, dan industri ini terus berkembang dan mewujudkan ribuan pekerjaan dalam pemprosesan dan pengeluaran koko. Walau bagaimanapun, penurunan harga koko di pasaran antarabangsa pada tahun 1980-an menyebabkan pengeluaran koko Malaysia menurun, dan negara ini telah mengubah tumpuan daripada penanaman koko kepada komoditi lain seperti minyak kelapa sawit dan getah. Walaupun Malaysia bukan pengeluar koko yang besar, industri koko tempatan masih penting dari segi ekonomi dan sosial. Koko ialah komoditi yang diperdagangkan di bursa tempatan, dan pengeluar koko tempatan menghasilkan koko kering yang dieksport ke seluruh dunia. Jabatan Koko Malaysia ialah sebuah agensi kerajaan yang bertanggungjawab untuk membangunkan industri koko dan mempromosikan pengeluaran koko. Agensi ini bekerjasama dengan industri untuk meningkatkan produktiviti dan memastikan kualiti produk koko Malaysia. Ia juga menggalakkan usaha pembangunan pekebun kecil untuk mempromosikan industri koko dan mewujudkan peluang pekerjaan dan ekonomi di kawasan pedalaman. </s> ```
Brandulio/ppo-SnowballTarget
Brandulio
"2023-06-20T23:42:52Z"
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
"2023-06-20T23:42:51Z"
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Brandulio/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
chqmatteo/Reinforce-cartpole-test
chqmatteo
"2023-01-13T08:52:23Z"
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2023-01-13T08:52:08Z"
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-test results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jordyvl/dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_og_simkd
jordyvl
"2023-08-03T06:05:30Z"
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-07-28T03:03:50Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_og_simkd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_og_simkd This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 12216.4121 - Accuracy: 0.8337 - Brier Loss: 0.3073 - Nll: 2.1945 - F1 Micro: 0.8337 - F1 Macro: 0.8337 - Ece: 0.1506 - Aurc: 0.0535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | 12731.392 | 1.0 | 1000 | 12479.0312 | 0.5323 | 0.5967 | 3.1288 | 0.5323 | 0.4700 | 0.1047 | 0.2100 | | 12715.18 | 2.0 | 2000 | 12453.9434 | 0.5787 | 0.6261 | 3.4535 | 0.5787 | 0.5518 | 0.1953 | 0.2225 | | 12672.101 | 3.0 | 3000 | 12456.4629 | 0.6723 | 0.4708 | 2.9701 | 0.6723 | 0.6487 | 0.1102 | 0.1171 | | 12681.216 | 4.0 | 4000 | 12448.6143 | 0.6815 | 0.4741 | 2.8370 | 0.6815 | 0.6707 | 0.1250 | 0.1245 | | 12638.181 | 5.0 | 5000 | 12443.0645 | 0.716 | 0.4178 | 2.7837 | 0.7160 | 0.7273 | 0.1095 | 0.0932 | | 12802.019 | 6.0 | 6000 | 12432.3438 | 0.7468 | 0.3768 | 2.6575 | 0.7468 | 0.7537 | 0.0898 | 0.0800 | | 12671.194 | 7.0 | 7000 | 12420.4395 | 0.7335 | 0.4163 | 2.8018 | 0.7335 | 0.7331 | 0.1256 | 0.1139 | | 12705.783 | 8.0 | 8000 | 12410.6143 | 0.7598 | 0.3739 | 2.7562 | 0.7598 | 0.7634 | 0.1157 | 0.0729 | | 12559.44 | 9.0 | 9000 | 12412.9453 | 0.7612 | 0.3793 | 2.8905 | 0.7612 | 0.7658 | 0.1232 | 0.0731 | | 12618.725 | 10.0 | 10000 | 12390.2139 | 0.7722 | 0.3613 | 2.6477 | 0.7722 | 0.7753 | 0.1190 | 0.0750 | | 12731.292 | 11.0 | 11000 | 12387.4863 | 0.7875 | 0.3427 | 2.5376 | 0.7875 | 0.7898 | 0.1154 | 0.0689 | | 12705.794 | 12.0 | 12000 | 12379.9336 | 0.7805 | 0.3555 | 2.6072 | 0.7805 | 0.7813 | 0.1284 | 0.0681 | | 12550.782 | 13.0 | 13000 | 12380.7959 | 0.787 | 0.3400 | 2.5381 | 0.787 | 0.7887 | 0.1162 | 0.0662 | | 12670.568 | 14.0 | 14000 | 12376.7646 | 0.7867 | 0.3423 | 2.6149 | 0.7868 | 0.7925 | 0.1186 | 0.0574 | | 12580.616 | 15.0 | 15000 | 12352.3135 | 0.7953 | 0.3468 | 2.6324 | 0.7953 | 0.7969 | 0.1382 | 0.0622 | | 12723.865 | 16.0 | 16000 | 12345.4600 | 0.8015 | 0.3312 | 2.4793 | 0.8015 | 0.8034 | 0.1244 | 0.0601 | | 12620.305 | 17.0 | 17000 | 12343.1553 | 0.8023 | 0.3424 | 2.6488 | 0.8023 | 0.8031 | 0.1420 | 0.0644 | | 12668.087 | 18.0 | 18000 | 12336.9277 | 0.8 | 0.3455 | 2.7019 | 0.8000 | 0.8023 | 0.1401 | 0.0592 | | 12654.687 | 19.0 | 19000 | 12332.4404 | 0.8075 | 0.3321 | 2.5589 | 0.8075 | 0.8094 | 0.1393 | 0.0556 | | 12578.655 | 20.0 | 20000 | 12321.3037 | 0.8075 | 0.3395 | 2.4255 | 0.8075 | 0.8050 | 0.1484 | 0.0638 | | 12525.448 | 21.0 | 21000 | 12315.5303 | 0.8067 | 0.3328 | 2.5264 | 0.8067 | 0.8066 | 0.1440 | 0.0548 | | 12610.837 | 22.0 | 22000 | 12311.0215 | 0.8105 | 0.3291 | 2.4781 | 0.8105 | 0.8112 | 0.1445 | 0.0540 | | 12494.528 | 23.0 | 23000 | 12303.3623 | 0.8145 | 0.3337 | 2.5535 | 0.8145 | 0.8154 | 0.1510 | 0.0561 | | 12561.799 | 24.0 | 24000 | 12296.2363 | 0.8153 | 0.3246 | 2.4243 | 0.8153 | 0.8142 | 0.1475 | 0.0513 | | 12580.176 | 25.0 | 25000 | 12291.8018 | 0.8193 | 0.3262 | 2.3932 | 0.8193 | 0.8174 | 0.1484 | 0.0550 | | 12455.165 | 26.0 | 26000 | 12276.9355 | 0.826 | 0.3223 | 2.4710 | 0.826 | 0.8251 | 0.1507 | 0.0597 | | 12528.496 | 27.0 | 27000 | 12280.9180 | 0.8257 | 0.3154 | 2.4010 | 0.8257 | 0.8260 | 0.1462 | 0.0524 | | 12521.554 | 28.0 | 28000 | 12262.9600 | 0.821 | 0.3274 | 2.4721 | 0.821 | 0.8201 | 0.1560 | 0.0595 | | 12557.871 | 29.0 | 29000 | 12260.7754 | 0.823 | 0.3217 | 2.3929 | 0.823 | 0.8226 | 0.1552 | 0.0551 | | 12535.524 | 30.0 | 30000 | 12271.4717 | 0.8263 | 0.3183 | 2.3249 | 0.8263 | 0.8269 | 0.1503 | 0.0502 | | 12488.263 | 31.0 | 31000 | 12259.3057 | 0.823 | 0.3219 | 2.3830 | 0.823 | 0.8226 | 0.1541 | 0.0528 | | 12498.048 | 32.0 | 32000 | 12253.2412 | 0.8263 | 0.3174 | 2.2771 | 0.8263 | 0.8243 | 0.1527 | 0.0541 | | 12465.825 | 33.0 | 33000 | 12257.4863 | 0.8323 | 0.3088 | 2.3466 | 0.8323 | 0.8319 | 0.1454 | 0.0500 | | 12439.6 | 34.0 | 34000 | 12238.5957 | 0.8323 | 0.3093 | 2.4057 | 0.8323 | 0.8329 | 0.1482 | 0.0552 | | 12407.423 | 35.0 | 35000 | 12250.7178 | 0.8335 | 0.3072 | 2.2532 | 0.8335 | 0.8336 | 0.1471 | 0.0521 | | 12534.711 | 36.0 | 36000 | 12231.9902 | 0.8353 | 0.3032 | 2.2711 | 0.8353 | 0.8353 | 0.1464 | 0.0548 | | 12458.666 | 37.0 | 37000 | 12232.9521 | 0.835 | 0.3041 | 2.2523 | 0.835 | 0.8352 | 0.1467 | 0.0539 | | 12461.748 | 38.0 | 38000 | 12230.4639 | 0.8317 | 0.3096 | 2.3052 | 0.8317 | 0.8318 | 0.1512 | 0.0539 | | 12434.679 | 39.0 | 39000 | 12229.0684 | 0.8317 | 0.3081 | 2.2172 | 0.8317 | 0.8317 | 0.1497 | 0.0547 | | 12468.468 | 40.0 | 40000 | 12226.4775 | 0.8323 | 0.3096 | 2.3112 | 0.8323 | 0.8324 | 0.1509 | 0.0524 | | 12540.176 | 41.0 | 41000 | 12213.8359 | 0.8357 | 0.3085 | 2.2929 | 0.8357 | 0.8356 | 0.1502 | 0.0541 | | 12513.896 | 42.0 | 42000 | 12216.2480 | 0.8333 | 0.3096 | 2.1638 | 0.8333 | 0.8329 | 0.1501 | 0.0559 | | 12406.31 | 43.0 | 43000 | 12213.7012 | 0.8347 | 0.3078 | 2.1971 | 0.8347 | 0.8345 | 0.1504 | 0.0542 | | 12350.768 | 44.0 | 44000 | 12224.6738 | 0.8323 | 0.3086 | 2.1722 | 0.8323 | 0.8320 | 0.1514 | 0.0546 | | 12394.478 | 45.0 | 45000 | 12221.9336 | 0.8325 | 0.3100 | 2.2464 | 0.8325 | 0.8323 | 0.1516 | 0.0536 | | 12399.318 | 46.0 | 46000 | 12207.5957 | 0.8347 | 0.3089 | 2.2193 | 0.8347 | 0.8344 | 0.1517 | 0.0553 | | 12476.218 | 47.0 | 47000 | 12213.4814 | 0.8353 | 0.3055 | 2.2084 | 0.8353 | 0.8353 | 0.1488 | 0.0532 | | 12448.278 | 48.0 | 48000 | 12212.2119 | 0.8347 | 0.3058 | 2.1518 | 0.8347 | 0.8345 | 0.1492 | 0.0545 | | 12486.848 | 49.0 | 49000 | 12210.5742 | 0.8347 | 0.3062 | 2.2778 | 0.8347 | 0.8345 | 0.1498 | 0.0546 | | 12376.327 | 50.0 | 50000 | 12216.4121 | 0.8337 | 0.3073 | 2.1945 | 0.8337 | 0.8337 | 0.1506 | 0.0535 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
MayIAskYou/Gemma3-12b-CXL3
MayIAskYou
"2025-03-22T14:33:08Z"
29
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-12b-it", "base_model:finetune:unsloth/gemma-3-12b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-15T05:38:42Z"
--- base_model: unsloth/gemma-3-12b-it tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** MayIAskYou - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-12b-it This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
suku9/gpt2-chem-ft
suku9
"2024-11-19T03:06:58Z"
104
0
transformers
[ "transformers", "safetensors", "gpt2", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2024-11-19T03:06:14Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
douglasrolins/bert-base-portuguese-cased_ft-multilple-choice-enem-sample
douglasrolins
"2024-01-19T17:56:32Z"
89
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
"2024-01-19T15:02:18Z"
--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-portuguese-cased_ft-multilple-choice-enem-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased_ft-multilple-choice-enem-sample This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5998 - Accuracy: 0.4022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 346 | 1.3529 | 0.4457 | | 1.3051 | 2.0 | 692 | 1.7823 | 0.4275 | | 0.5312 | 3.0 | 1038 | 2.3728 | 0.3986 | | 0.5312 | 4.0 | 1384 | 2.5998 | 0.4022 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
jondurbin/airoboros-7b-gpt4-1.3
jondurbin
"2023-06-22T14:58:20Z"
1,429
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-1.3", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-06-20T07:09:09Z"
--- license: cc-by-nc-4.0 datasets: - jondurbin/airoboros-gpt4-1.3 --- __This version has problems, use if you dare, or wait for 1.4.__ ### Overview This is a qlora fine-tuned 7b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros This is mostly an extension of [1.2](https://huggingface.co/jondurbin/airoboros-7b-gpt4-1.2) with a few enhancements: - All coding instructions have an equivalent " PLAINFORMAT" version now. - Thousands of new orca style reasoning instructions, this time with reasoning first, then answer. - Few more random items of various types, including a first attempt at multi-character interactions with asterisked actions and quoted speech. This model was fine-tuned with a fork of [qlora](https://github.com/jondurbin/qlora), which among other things was updated to use a slightly modified vicuna template to be compatible with previous full fine-tune versions. ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ### Usage To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors. ``` pip install git+https://github.com/jondurbin/FastChat ``` Be sure you are pulling the latest branch! Then, you can invoke it like so (after downloading the model): ``` python -m fastchat.serve.cli \ --model-path airoboros-7b-gpt4-1.3 \ --temperature 0.5 \ --max-new-tokens 2048 \ --no-history ``` ### Usage and License Notices All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because: - the base model is LLaMa, which has it's own special research license - the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai So, to reiterate: this model (and datasets) cannot be used commercially.
Skywork/Skywork-13B-Base-8bits
Skywork
"2023-11-05T05:02:49Z"
5
7
transformers
[ "transformers", "pytorch", "skywork", "text-generation", "custom_code", "arxiv:2310.19341", "arxiv:2310.16713", "license:other", "autotrain_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
"2023-10-24T03:58:41Z"
--- license: other license_name: license license_link: >- https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf --- <!-- <div align="center"> <h1> ✨Skywork </h1> </div> --> <div align="center"><img src="misc/skywork_logo.jpeg" width="550"/></div> <p align="center"> 👨‍💻 <a href="https://github.com/SkyworkAI/Skywork" target="_blank">Github</a> • 🤗 <a href="https://huggingface.co/Skywork" target="_blank">Hugging Face</a>• 🤖 <a href="https://modelscope.cn/organization/Skywork" target="_blank">ModelScope</a> • 💬 <a href="https://github.com/SkyworkAI/Skywork/blob/main/misc/wechat.png?raw=true" target="_blank">WeChat</a>• 📜<a href="http://arxiv.org/abs/2310.19341" target="_blank">Tech Report</a> </p> <div align="center"> [🎉天工在线对话平台已正式向公众开放](https://sso.tiangong.cn/?redirect=https://model-platform.tiangong.cn/overview&client_id=200005) </div> <div align="center"> [![GitHub Stars](https://img.shields.io/github/stars/SkyworkAI/Skywork)](https://github.com/SkyworkAI/Skywork/stargazers) [![GitHub Forks](https://img.shields.io/github/forks/SkyworkAI/Skywork)](https://github.com/SkyworkAI/Skywork/fork) </div> # 模型介绍(Introduction) **Skywork-13B-Base**模型在高质量清洗过滤的3.2万亿个多语言(主要是中文和英文)和代码数据上进行预训练,它在多种评测和各种基准测试上都展现了同等规模模型的最佳效果。 **Skywork-13B-Base**: The model was trained on a high-quality cleaned dataset consisting of 3.2 trillion multilingual data (mainly Chinese and English) and code. It has demonstrated the best performance among models of similar scale in various evaluations and benchmark tests. **Skywork-13B-Base-8bits**模型为**Skywork-13B-Base**的8bits量化版,支持用户在消费级显卡上进行进行部署和推理。 **Skywork-13B-Base-8bits** is a quantizated model of **Skywork-13B-Base**, to support deployment and inference on consumer-grade GPUs. 如果您希望了解更多的信息,如训练方案,评估方法,请参考我们的[技术报告](http://arxiv.org/abs/2310.19341),[Skymath](https://arxiv.org/abs/2310.16713)论文,[SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf)论文。 If you are interested in more training and evaluation details, please refer to our [technical report](http://arxiv.org/abs/2310.19341), [Skymath]((https://arxiv.org/skywork-tech-report)) paper and [SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf) paper. ## 训练数据(Training Data) 我们精心搭建了数据清洗流程对文本中的低质量数据、有害信息、敏感信息进行清洗过滤。我们的Skywork-13B-Base模型是在清洗后的3.2TB高质量中、英、代码数据上进行训练,其中英文占比52.2%,中文占比39.6%,代码占比8%,在兼顾中文和英文上的表现的同时,代码能力也能有保证。 We have developed a data cleaning pipeline with great care to effectively clean and filter low-quality data and eliminate harmful information from text data. Our Skywork-13B-Base model is trained on a dataset with 3.2TB tokens that consists of high-quality Chinese, English, and code data, all of which have been thoroughly cleaned. The English data comprises 52.2% of the dataset, the Chinese data accounts for 39.6%, and the code data makes up 8%. This comprehensive approach ensures optimal performance for both Chinese and English while also maintaining the ability to handle code. | | Category | Percentage | |-------------|------------------|------------| | **English** | Webpages | 39.8% | | | Books | 3.6% | | | Academic Papers | 3.0% | | | Encyclopedia | 0.5% | | | Miscellany | 2.9% | | **Chinese** | Webpages | 30.4% | | | Social Media | 5.5% | | | Encyclopedia | 0.8% | | | Miscellany | 3.1% | | **Other Lang.** | Encyclopedia | 2.4% | | **Code** | Github | 8.0% | ## 模型结构(Model Structure) 与Llama-2-13B模型对比,天工Skywork-13B模型采用相对更加瘦长的网络结构,层数为52层,同时将FFN Dim和Hidden Dim缩小到12288和4608,从而保证模型参数量和原始Llama-2-13B模型相当。根据我们前期实验对比,相对瘦长的网络结构在大Batch Size训练下可以取得更好的泛化效果。Skywork-13B和Llama-2-13B模型的对比如下: Compared to the Llama2-13B model, the Skywork-13B model adopts a relatively thinner and deeper network structure with 52 layers. At the same time, the FFN Dim and Hidden Dim are reduced to 12288 and 4608, respectively, to ensure that the model has a similar number of parameters as the original Llama-13B model. Based on our preliminary experimental results, a relatively thinner and deeper network structure can achieve better generalization performance under large batch size training. The detailed comparison between the Skywork-13B and Llama-2-13B models is as follows: | Model Structure | Llama2-13B | Skywork-13B | |----------------------|:----:|:-----------:| | Vocab. Size | 32,000 | 65,536 | | Hidden Dim. | 5,120 | 4,608 | | FFN Dim. | 13,696 | 12,288 | | Head Dim. | 128 | 128 | | Num. Heads | 40 | 36 | | Num. Layers | 40 | 52 | | Seq. Len. | 4,096 | 4,096 | | Positional Embedding | RoPE | RoPE | ## 分词器(Tokenizer) 我们使用Byte-Pair Encoding(BPE)对数据进行分词,词表大小为65536,其中拉丁字符和子词为32000个,汉字和Unicode符号8000个,汉语词语25519个,剩下的17个为保留字。 We use Byte-Pair Encoding (BPE) to tokenize the data, with a vocabulary size of 65536. Among them, there are 32000 Latin characters and subwords, 8000 Chinese characters and Unicode symbols, 25519 Chinese words, and the remaining 17 are reserved words. | Category | Size | |---------------------------------|--------| | Latin based words & subwords | 32000 | | Chinese characters & Unicode symbols | 8000 | | Chinese words | 25519 | | Reserved symbols | 17 | | **Total** | **65536** | # 模型评估(Evaluation) ## 领域数据困惑度评估(Perplexity Evaluaiton) 语言模型训练的本质上是让预测下一个词更准确。基于这个认知,我们认为评估基础大模型一个重要的方式是评估在各大领域上语言模型生成文章的概率。在模型训练中预测下一个词的概率一般使用Cross Entropy损失函数,整体的损失函数为每个位置预测真实词损失的平均,则有: $$loss = -\sum^{n}_{i=1} log(p_i) / n = -log( \prod_{i=1}^n p_i) / n$$ 其中$n$是文档的长度,即token数,$p_i$是位置i上真实词的概率,我们知道文档中每一个位置上真实词的概率的联乘则为生成该文档的概率,如此我们就将loss和生成文章的概率联系在了一起。而不同模型因为使用的分词器不同,具有不同的token数,因此对损失函数乘以token数目$n$,这样就仅考虑生成文章的概率部分,不同模型也可以进行比较。我们将标准化后loss取指数转换成perplexity,使得模型的差异更加可读。为了阅读方便后续提到的loss和ppl为模型标准化后的loss和perplexity。 基于上述分析,我们对对多个领域筛选出2023年9月份新发布的几百到上千篇高质量文章,并人工进行了核对。保证所有的测试数据不在天工模型以及其他所有模型的训练集中,并且测试数据的来源也足够广泛,质量也高。我们可以选取当前最新的文章评测不同模型的ppl,模型很难作弊。 下图列出了不同开源模型,天工Skywork-13B-Base取得最优效果,证明了我们的Base模型的基础能力处于国内开源模型中文最强水平。 We have chosen several hundred to thousands of high-quality articles that were published after September 1, 2023 across various fields. We have manually verified these articles to ensure their quality. It is important to note that none of the test data used in evaluating the Skywork model or any other models is included in their training set. Furthermore, the test data is diverse and of high quality, making it challenging for the models to gain an unfair advantage. The figure below displays the performance of different open source models. Skywork-13B-Base achieves the best results. | | Tech | Movie | Gov. | Game | Finance | General | Average | |------------------|-------|-------|-------|-------|---------|---------|---------| | MOSS-7B | 20.83 | 39.66 | 11.08 | 31.24 | 10.59 | 13.25 | 18.50 | | InternLM-7B | 13.43 | 24.90 | 5.88 | 19.78 | 6.17 | 8.10 | 11.17 | | Qwen-7B | 13.39 | 25.16 | 5.55 | 19.26 | 5.76 | 7.78 | 10.83 | | Baichuan2-7B | 12.89 | 23.26 | 5.34 | 18.36 | 5.68 | 7.62 | 10.41 | | LLaMA2-13B | 23.26 | 50.66 | 18.09 | 32.52 | 14.85 | 16.55 | 23.54 | | Xverse-13B | 12.55 | 23.49 | 5.20 | 17.69 | 5.54 | 7.46 | 10.19 | | Baichuan-13B | 12.38 | 22.46 | 5.21 | 17.59 | 5.42 | 7.37 | 10.03 | | Baichuan2-13B | 12.14 | 21.85 | 5.05 | 17.15 | 5.35 | 7.24 | 9.81 | | Qwen-14B | 11.90 | 22.43 | 4.89 | **16.94** | 5.24 | 7.03 | 9.67 | | InternLM-20B | 12.34 | 22.06 | 5.75 | 17.45 | 5.73 | 7.78 | 10.34 | | Aquila2-34B | 14.62 | 29.09 | 5.72 | 21.78 | 5.83 | 8.45 | 11.73 | | Skywork-13B-Base | **11.58** | **21.84** | **4.76** | 17.28 | **4.92** | **6.82** | **9.42** | ### 评测数据和评测脚本(Loss Evaluation) 我们将评测数据和评测脚本也进行了开源,下载github上的代码运行下面命令则可以复现我们的结果。 We have also open-sourced the data and evaluation scripts. You can reproduce our results by running the following command. ``` bash bash_scripts/skywork_eval_loss.sh ``` ## Benchmark评估(Benchmark Results) 我们评估了各大权威评测benchmark上的结果作为参考,包括C-Eval,MMLU,CMMLU,GSM8K。遵循之前的评估流程,C-Eval、MMLU、CMMLU测试5-shot结果,GSM8K测试8-shot结果。可以看到Skywork-13B-Base模型在中文开源模型中处于前列,在同等参数规模下为最优水平。 We evaluated Skywork-13B-Base on several popular benchmarks, including C-Eval, MMLU, CMMLU, and GSM8K. Following the previous evaluation process, we tested the 5-shot results of C-Eval, MMLU, and CMMLU, and the 8-shot results of GSM8K. It can be seen that the Skywork-13B-Base model is among the top models in the Chinese open source model community, performing at an optimal level with the same parameter scale. | Model | C-Eval | CMMLU | MMLU | GSM8K | |-------------------------|:-----:|:---------------:|:----------:|:-------:| | LLaMA-1-13B-Base | 35.5 | 31.2 | 46.9 | 17.8 | | Open-LLaMA-13B | 27.1 | 26.7 | 42.7 | 12.4 | | LLaMA-2-13B-Base | 36.5 | 36.6 | 54.8 | 28.7 | | InternLM-20B | 58.8 | - | 62.0 | 52.6 | | Qwen-14B-Base | 72.1 | 71.0 | 66.3 | 61.3 | | Aquila2-34B-Base | 63.1 | 71.4 | 64.2 | 58.4 | | XVERSE-13B-Base | 54.7 | - | 55.1 | - | | Baichuan-13B-Base | 52.4 | 55.3 | 51.6 | 26.6 | | Baichuan-2-13B-Base | 58.1 | 62.0 | 59.2 | 52.3 | | Skywork-13B-Base (ours) | 60.6 | 61.8 | 62.1 | 55.8 | ## Benchmark评估详细结果 我们给出**Skywork-13B-Base**模型在C-Eval,CMMLU,MMLU上模型的详细结果。 We provide detailed results of the Skywork-13B-Base model on C-EVAL, CMMLU, and MMLU. | Benchmark | **STEM** | **Humanities** | **Social Science** | **Other** | **China Specific** | **Hard** | **Average** | |:-----:|:---------:|:--------:|:-------------:|:--------:|:--------:|:--------:|:--------:| | **C-EVAL** | 51.2 | 67.8 | 74.6 | 57.5 | - | 39.4 | 60.6 | | **CMMLU** | 49.5 | 69.3 | 65.9 | 63.3 | 64.2 | - | 61.8 | | **MMLU** | 51.6 | 58.0 | 72.5 | 68.8 | - | - | 62.1 | # 快速开始(Quickstart) 我们将模型参数、配置文件、tokenizer等在huggingface和modelscope上进行了开源。 We have open-sourced the model parameters, configuration files, tokenizer, and more on Huggingface and Modelscope. ## 依赖安装(Requirements) - Python 3.8及以上版本 - Pytorch 2.0及以上版本 - CUDA建议使用11.4以上版本。 Skywork-13B-Base模型,Skywork-13B-Chat模型和Skywork-13B-Math模型运行下面的脚本进行Python依赖安装。 - Python 3.8 and above - Pytorch 2.0 and above - CUDA 11.4 and above are recommended. Skywork-13B-Base model, Skywork-13B-Chat model, and Skywork-13B-Math model run the following script for Python dependency installation: ```shell pip install -r requirements.txt ``` ## Huggingface模型测试(Demonstration) ### Base 模型推理(Base Model Inference) ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> from transformers.generation import GenerationConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("SkyworkAI/Skywork-13B-Base", trust_remote_code=True) >>> model = AutoModelForCausalLM.from_pretrained("SkyworkAI/Skywork-13B-Base", device_map="auto", trust_remote_code=True).eval() >>> inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device) >>> response = model.generate(inputs.input_ids, max_length=128) >>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True)) 陕西的省会是西安,西安是我国著名的古都,在历史上有十三个朝代在此建都,所以西安又被称为“十三朝古都”。西安是我国著名的旅游城市,每年都有大量的游客来到西安旅游,西安的旅游资源非常丰富,有很多著名的旅游景点,比如秦始皇兵马俑、大雁塔、华清池、大唐芙蓉园、西安城墙、大明宫国家遗址公园、西安碑林博物馆、西安钟楼、西安鼓楼、西安半坡博物馆、西安大兴善寺、西安小雁塔 >>> inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device) >>> response = model.generate(inputs.input_ids, max_length=128) >>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True)) 陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,江西的省会是南昌,安徽的省会是合肥,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,海南的省会是海口,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,西藏的省会是拉萨,青海的省会是西宁,宁夏的省会是银川,新疆的省会是乌鲁木齐。 ``` # 模型微调(Fine-tuning) ## 全量微调(Full-parameter Fine-tuning) 使用Skywork-13B-Base模型进行预训练微调 ```bash ## preprocess continue pretraining data ## Because pre-training data is usually large, we use a script to process the training data separately. python train/pt_data_preprocess.py \ -t $MODEL_PATH \ -i data/pt_train.jsonl \ -o data_cache/pt_train_demo ## launch training export WANDB_API_KEY=YOUR_WANDB_KEY export WANDB_ENTITY=skywork export WANDB_PROJECT=skywork-13b-opensource export MODEL_PATH=skywork-13b-models/skywork-13b-base export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train bash bash_scripts/skywork_13b_pt.sh ``` 使用Skywork-13B-Base模型进行有监督微调(SFT, Supevise Fine-tuning) ```bash ## preprocess data and launch training export WANDB_API_KEY=YOUR_WANDB_KEY export WANDB_ENTITY=skywork export WANDB_PROJECT=skywork-13b-opensource export SFT_DATA_DIR=data/sft_data export DATA_CACHE_DIR=data_cache/sft_train_demo bash bash_scripts/skywork_13b_sft.sh ``` ## LoRA微调(PEFT) 使用Skywork-13B-Base模型以及LoRA进行预训练微调 ```bash ## preprocess continue pretraining data ## Because pre-training data is usually large, we use a script to process the training data separately. python train/pt_data_preprocess.py \ -t $MODEL_PATH \ -i data/pt_train.jsonl \ -o data_cache/pt_train_demo export WANDB_API_KEY=YOUR_WANDB_KEY export WANDB_ENTITY=skywork export WANDB_PROJECT=skywork-13b-opensource export MODEL_PATH=skywork-13b-models/skywork-13b-base export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train bash bash_scripts/skywork_13b_pt_lora.sh ``` 使用Skywork-13B-Base模型以及LoRA进行有监督微调(SFT, Supevise Fine-tuning) ```bash export WANDB_API_KEY=YOUR_WANDB_KEY export WANDB_ENTITY=skywork export WANDB_PROJECT=skywork-13b-opensource export SFT_DATA_DIR=data/sft_data export DATA_CACHE_DIR=data_cache/sft_train_demo bash bash_scripts/skywork_13b_sft_lora.sh ``` # 量化部署(Quantization) ## 8bit量化(Int8 Quantization) skywork 采用主流8bits量化方法:[BitsAndBytes](https://github.com/TimDettmers/bitsandbytes)。该方法量化后性能基本无损,且已经集成到transformers库中,基于BitsAndBytes,我们提供在线量化和离线8bits模型两种方式。 以下我们提供示例说明如何使用int8量化模型,在开始使用之前,请先安装BitsAndBytes库并安装所需依赖包,具体安装方式见[BitsAndBytes](https://github.com/TimDettmers/bitsandbytes)库。 ### 在线量化(Online Quantization) ```python model = AutoModelForCausalLM.from_pretrained("skywork-13B-Base", torch_dtype=torch.bfloat16,load_in_8bit=True, trust_remote_code=True).eval() ``` ### 离线量化(Offline Quantization) ```python model = AutoModelForCausalLM.from_pretrained("skywork-13B-Base-8bits", device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True).eval() ``` ### 量化效果(Evaluation) 我们对量化模型在基准评测数据集上做了测试,结果如下所示: | Precision | C-Eval | MMLU | CMMLU | | --------- | ------ | ----- | ----- | | bf16 | 60.6 | 61.8 | 62.1 | | 8bits | 58.5 | 61.8 | 61.0 | ### 显存占用(GPU Mem in GB) | Precision | Skywork-13B | | --------- | ----------- | | bf16 | 25.91 | | 8bits | 13.57 | # 声明和协议(Declaration and License Agreement) ## 声明(Declaration) 我们在此声明,不要利用Skywork模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Skywork 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用skywork开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。 We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment. We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility. ## 协议(License Agreement) 社区使用Skywork模型需要遵循[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)。Skywork模型支持商业用途,如果您计划将Skywork模型或其衍生品用于商业目的,无需再次申请, 但请您仔细阅读[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)并严格遵守相关条款。 The community usage of Skywork model requires [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf). The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf). [《Skywork 模型社区许可协议》》]:https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf [[email protected]]: mailto:[email protected] # 引用和联系我们(Contact Us and Citation) 如果您觉得我们的工作对您有帮助,欢迎引用我们的论文~ If you find our work helpful, please feel free to cite our paper~ ``` @misc{wei2023skywork, title={Skywork: A More Open Bilingual Foundation Model}, author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou}, year={2023}, eprint={2310.19341}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @article{skyworkmath, title={SkyMath: Technical Report}, author={Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, Rui Hu}, journal={arXiv preprint arXiv: 2310.16713}, url={https://arxiv.org/abs/2310.16713}, year={2023} } ``` ``` @article{Skywork_Multi-Modal_Group_Empirical_Study_Towards_2023, author = {Skywork Multi-Modal Group}, month = sep, title = {{Empirical Study Towards Building An Effective Multi-Modal Large Language Model}}, year = {2023} } ```
broodmother41/7f033805-9ef4-498e-b6f7-66abe9877c5e
broodmother41
"2025-02-04T17:37:08Z"
11
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:jhflow/mistral7b-lora-multi-turn-v2", "base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-02-04T17:00:00Z"
--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: 7f033805-9ef4-498e-b6f7-66abe9877c5e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9d1e429593d11bcf_train_data.json ds_type: json format: custom path: /workspace/input_data/9d1e429593d11bcf_train_data.json type: field_instruction: instruct_id field_output: instruct_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: broodmother41/7f033805-9ef4-498e-b6f7-66abe9877c5e hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/9d1e429593d11bcf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 456109aa-d7f9-41ee-9b6e-75c6e8438da8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 456109aa-d7f9-41ee-9b6e-75c6e8438da8 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7f033805-9ef4-498e-b6f7-66abe9877c5e This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.0063 | 0.1904 | 200 | 1.2453 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
glob-asr/xls-r-es-test-lm
glob-asr
"2022-03-23T18:26:19Z"
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-03-02T23:29:05Z"
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-es-test-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 9.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 27.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 30.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-es-test-lm This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset. It achieves the following results on the test set with lm model: - Loss: 0.1304 - WER: 0.094 - CER: 0.031 It achieves the following results on the val set with lm model: - Loss: 0.1304 - WER: 0.081 - CER: 0.025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9613 | 0.07 | 500 | 2.9647 | 1.0 | | 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 | | 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 | | 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 | | 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 | | 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 | | 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 | | 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 | | 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 | | 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 | | 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 | | 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 | | 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 | | 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 | | 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 | | 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 | | 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 | | 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 | | 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 | | 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 | | 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 | | 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 | | 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 | | 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 | | 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 | | 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 | | 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 | | 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 | | 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 | | 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 | | 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 | | 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 | | 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 | | 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 | | 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 | | 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 | | 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 | | 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 | | 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 | | 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 | | 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 | | 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 | | 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 | | 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 | | 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 | | 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 | | 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 | | 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 | | 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 | | 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 | | 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 | | 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 | | 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 | | 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 | | 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 | | 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 | | 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 | | 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 | | 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 | | 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 | | 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 | | 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 | | 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 | | 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 | | 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 | | 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 | | 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 | | 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 | | 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 | | 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 | | 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 | | 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 | | 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 | | 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 | | 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 | | 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 | | 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 | | 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 | | 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 | | 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 | | 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 | | 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 | | 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 | | 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 | | 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 | | 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 | | 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 | | 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 | | 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 | | 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 | | 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 | | 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 | | 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 | | 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 | | 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 | | 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 | | 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 | | 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 | | 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 | | 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 | | 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 | | 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 | | 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 | | 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 | | 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 | | 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 | | 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 | | 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 | | 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 | | 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 | | 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 | | 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 | | 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 | | 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 | | 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 | | 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 | | 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 | | 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 | | 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 | | 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 | | 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 | | 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 | | 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 | | 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 | | 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 | | 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 | | 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 | | 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 | | 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 | | 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 | | 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 | | 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 | | 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 | | 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 | | 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 | | 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 | | 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 | | 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 | | 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 | | 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 | | 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 | | 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 | | 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
mmoebis/5g-flan-t5-large
mmoebis
"2024-03-14T18:55:08Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-13T11:27:53Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sail-rvc/Suisei
sail-rvc
"2023-07-14T07:32:45Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:32:18Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # Suisei ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:32:44 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
hw2942/chinese-macbert-base-climate-transition-physical-risk-prediction-v7
hw2942
"2024-08-01T07:17:22Z"
110
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:hfl/chinese-macbert-base", "base_model:finetune:hfl/chinese-macbert-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-08-01T07:07:43Z"
--- base_model: hfl/chinese-macbert-base license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: chinese-macbert-base-climate-transition-physical-risk-prediction-v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-macbert-base-climate-transition-physical-risk-prediction-v7 This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.0114 | 1.0 | | No log | 2.0 | 114 | 0.0114 | 1.0 | | No log | 3.0 | 171 | 0.0002 | 1.0 | | No log | 4.0 | 228 | 0.0002 | 1.0 | | No log | 5.0 | 285 | 0.0002 | 1.0 | | No log | 6.0 | 342 | 0.0002 | 1.0 | | No log | 7.0 | 399 | 0.0002 | 1.0 | | No log | 8.0 | 456 | 0.0002 | 1.0 | | 0.0 | 9.0 | 513 | 0.0001 | 1.0 | | 0.0 | 10.0 | 570 | 0.0001 | 1.0 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
s3nh/SanjiWatsuki-Sonya-7B-GGUF
s3nh
"2023-12-31T20:26:06Z"
0
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
"2023-12-31T20:17:42Z"
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/SanjiWatsuki/Sonya-7B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF
mradermacher
"2024-09-30T04:47:55Z"
12
0
transformers
[ "transformers", "gguf", "en", "base_model:turbok2/Llama2-turbo-Ko-8b-youtube", "base_model:quantized:turbok2/Llama2-turbo-Ko-8b-youtube", "endpoints_compatible", "region:us" ]
null
"2024-09-30T04:24:31Z"
--- base_model: turbok2/Llama2-turbo-Ko-8b-youtube language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/turbok2/Llama2-turbo-Ko-8b-youtube <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q2_K.gguf) | Q2_K | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.IQ3_XS.gguf) | IQ3_XS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.IQ3_S.gguf) | IQ3_S | 3.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q3_K_S.gguf) | Q3_K_S | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.IQ3_M.gguf) | IQ3_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q3_K_M.gguf) | Q3_K_M | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q3_K_L.gguf) | Q3_K_L | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.IQ4_XS.gguf) | IQ4_XS | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q4_K_M.gguf) | Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q5_K_M.gguf) | Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q6_K.gguf) | Q6_K | 5.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.Q8_0.gguf) | Q8_0 | 7.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama2-turbo-Ko-8b-youtube-GGUF/resolve/main/Llama2-turbo-Ko-8b-youtube.f16.gguf) | f16 | 13.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
zelk12/MT1-Gen2-MA-gemma-2-RAv0.1t0.25MT4-9B
zelk12
"2024-11-23T13:35:50Z"
7
1
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/MT4-Gen1-gemma-2-9B", "base_model:merge:zelk12/MT4-Gen1-gemma-2-9B", "base_model:zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25", "base_model:merge:zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-11T16:06:47Z"
--- base_model: - zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 - zelk12/MT4-Gen1-gemma-2-9B library_name: transformers tags: - mergekit - merge --- # Quants Provided by @mradermacher GGUF Static: https://huggingface.co/mradermacher/MT1-Gen2-MA-gemma-2-RAv0.1t0.25MT4-9B-GGUF # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25](https://huggingface.co/zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25) * [zelk12/MT4-Gen1-gemma-2-9B](https://huggingface.co/zelk12/MT4-Gen1-gemma-2-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 - model: zelk12/MT4-Gen1-gemma-2-9B merge_method: slerp base_model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25 dtype: bfloat16 parameters: t: 0.25 ```
WariHima/sarashina2.2-3b-instruct-v0.1-Q4_K_M-GGUF
WariHima
"2025-03-05T04:21:54Z"
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "ja", "base_model:sbintuitions/sarashina2.2-3b-instruct-v0.1", "base_model:quantized:sbintuitions/sarashina2.2-3b-instruct-v0.1", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
"2025-03-05T04:21:43Z"
--- license: mit language: - ja pipeline_tag: text-generation base_model: sbintuitions/sarashina2.2-3b-instruct-v0.1 tags: - llama-cpp - gguf-my-repo --- # WariHima/sarashina2.2-3b-instruct-v0.1-Q4_K_M-GGUF This model was converted to GGUF format from [`sbintuitions/sarashina2.2-3b-instruct-v0.1`](https://huggingface.co/sbintuitions/sarashina2.2-3b-instruct-v0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/sbintuitions/sarashina2.2-3b-instruct-v0.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo WariHima/sarashina2.2-3b-instruct-v0.1-Q4_K_M-GGUF --hf-file sarashina2.2-3b-instruct-v0.1-q4_k_m-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo WariHima/sarashina2.2-3b-instruct-v0.1-Q4_K_M-GGUF --hf-file sarashina2.2-3b-instruct-v0.1-q4_k_m-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo WariHima/sarashina2.2-3b-instruct-v0.1-Q4_K_M-GGUF --hf-file sarashina2.2-3b-instruct-v0.1-q4_k_m-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo WariHima/sarashina2.2-3b-instruct-v0.1-Q4_K_M-GGUF --hf-file sarashina2.2-3b-instruct-v0.1-q4_k_m-imat.gguf -c 2048 ```
RichardErkhov/abhishek_-_autotrain-llama3-orpo-v2-4bits
RichardErkhov
"2025-04-04T04:27:39Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T04:22:16Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) autotrain-llama3-orpo-v2 - bnb 4bits - Model creator: https://huggingface.co/abhishek/ - Original model: https://huggingface.co/abhishek/autotrain-llama3-orpo-v2/ Original model description: --- tags: - autotrain - text-generation-inference - text-generation library_name: transformers widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - argilla/distilabel-capybara-dpo-7k-binarized --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
wop/kosmox-tiny
wop
"2024-09-21T13:35:31Z"
64
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-28T13:28:41Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit pipeline_tag: text-generation --- # Uploaded model - **Developed by:** wop - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ThuyNT03/xlm-roberta-base-Balance_Mixed-aug_backtranslation
ThuyNT03
"2023-08-28T06:21:12Z"
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-08-28T05:59:31Z"
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_Mixed-aug_backtranslation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_Mixed-aug_backtranslation This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4382 - Accuracy: 0.72 - F1: 0.7219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9831 | 1.0 | 174 | 0.9044 | 0.61 | 0.5474 | | 0.7797 | 2.0 | 348 | 0.6469 | 0.73 | 0.7378 | | 0.6314 | 3.0 | 522 | 0.6261 | 0.76 | 0.7619 | | 0.4976 | 4.0 | 696 | 0.8230 | 0.72 | 0.7177 | | 0.3719 | 5.0 | 870 | 1.0086 | 0.72 | 0.7223 | | 0.2816 | 6.0 | 1044 | 1.3198 | 0.72 | 0.7208 | | 0.2772 | 7.0 | 1218 | 1.3510 | 0.71 | 0.7099 | | 0.2076 | 8.0 | 1392 | 1.4382 | 0.72 | 0.7219 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
huggingtweets/vfsyes
huggingtweets
"2021-05-23T03:50:08Z"
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-03-02T23:29:05Z"
--- language: en thumbnail: https://www.huggingtweets.com/vfsyes/1601526119909/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/965091061923160066/L4aLxCgK_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Victoria Firth-Smith ✌️ 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@vfsyes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@vfsyes's tweets](https://twitter.com/vfsyes). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3201</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>791</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>296</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2114</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3zryr6q7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vfsyes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/316yya4e) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/316yya4e/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/vfsyes'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
mradermacher/llama3.2-1b-neuspell-GGUF
mradermacher
"2025-04-04T10:33:56Z"
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "base_model:manav-glean/llama3.2-1b-neuspell", "base_model:quantized:manav-glean/llama3.2-1b-neuspell", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-04T10:24:28Z"
--- base_model: manav-glean/llama3.2-1b-neuspell language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/manav-glean/llama3.2-1b-neuspell <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q3_K_L.gguf) | Q3_K_L | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q5_K_S.gguf) | Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama3.2-1b-neuspell-GGUF/resolve/main/llama3.2-1b-neuspell.f16.gguf) | f16 | 2.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
CompVis/stable-diffusion-v1-2
CompVis
"2023-07-05T16:18:11Z"
1,679
37
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "arxiv:2112.10752", "arxiv:2103.00020", "arxiv:2205.11487", "arxiv:2207.12598", "arxiv:1910.09700", "license:creativeml-openrail-m", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2022-08-19T10:24:37Z"
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: false extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model --- # Stable Diffusion v1-2 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with D🧨iffusers blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-2** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-1](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-1) checkpoint and subsequently fine-tuned on 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. For more information, please refer to [Training](#training). This weights here are intended to be used with the D🧨iffusers library. If you are looking for the weights to be loaded into the CompVis Stable Diffusion codebase, [come here](https://huggingface.co/CompVis/stable-diffusion-v-1-2-original) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples We recommend using [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion. ```bash pip install --upgrade diffusers transformers scipy ``` Running the pipeline with the default PNDM scheduler: ```python import torch from torch import autocast from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-2" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt)["sample"][0] image.save("astronaut_rides_horse.png") ``` **Note**: If you are limited by GPU memory and have less than 10GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above. You can do so by telling diffusers to expect the weights to be in float16 precision: ```py import torch pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` To swap out the noise scheduler, pass it to `from_pretrained`: ```python from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-2" # Use the K-LMS scheduler here instead scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ## Training ### Training Data The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) ### Training Procedure Stable Diffusion v1-4 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We currently provide four checkpoints, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2`. 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [**`stable-diffusion-v1-4`**](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2`.225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). ### Training details - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-variants-scores.jpg) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
Triangle104/Dumpling-Qwen2.5-32B-v2-Q8_0-GGUF
Triangle104
"2025-04-17T08:09:48Z"
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "dataset:nbeerbower/GreatFirewall-DPO", "dataset:nbeerbower/Schule-DPO", "dataset:nbeerbower/Purpura-DPO", "dataset:nbeerbower/Arkhaios-DPO", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:antiven0m/physical-reasoning-dpo", "dataset:flammenai/Date-DPO-NoAsterisks", "dataset:flammenai/Prude-Phi3-DPO", "dataset:Atsunori/HelpSteer2-DPO", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "dataset:nbeerbower/gutenberg-moderne-dpo", "base_model:nbeerbower/Dumpling-Qwen2.5-32B-v2", "base_model:quantized:nbeerbower/Dumpling-Qwen2.5-32B-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-17T08:05:51Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
yco/bilingual-embedding-base-onnx
yco
"2025-04-18T12:51:31Z"
0
0
sentence-transformers
[ "sentence-transformers", "onnx", "bilingual", "feature-extraction", "sentence-similarity", "transformers", "sentence-embedding", "mteb", "custom_code", "arxiv:2010.08240", "arxiv:1911.02116", "arxiv:1908.10084", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-04-18T12:40:08Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
ElioM/Reinforce-cartpole_2
ElioM
"2025-03-07T09:21:40Z"
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2025-03-07T09:21:33Z"
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 202.90 +/- 8.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gtonkov/SpecAI
gtonkov
"2024-09-26T05:15:38Z"
131
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:finetune:microsoft/Phi-3.5-mini-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-09-26T04:50:46Z"
--- library_name: transformers license: other base_model: microsoft/Phi-3.5-mini-instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: SpecAI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpecAI This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the api_eval_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 32.0 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
thaffggg/2938bb58-4f49-4a78-82b2-83b16574ff56
thaffggg
"2025-01-22T10:36:57Z"
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-22T10:15:37Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2938bb58-4f49-4a78-82b2-83b16574ff56 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2e89958f322517fa_train_data.json ds_type: json format: custom path: /workspace/input_data/2e89958f322517fa_train_data.json type: field_input: problem_pddl field_instruction: goal field_output: natural_language format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/2938bb58-4f49-4a78-82b2-83b16574ff56 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2e89958f322517fa_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fbc65477-f0e7-44e3-8fef-1c6cc73c91f0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fbc65477-f0e7-44e3-8fef-1c6cc73c91f0 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2938bb58-4f49-4a78-82b2-83b16574ff56 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.089 | 0.0128 | 200 | 0.1631 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Mr-Cool/midterm-finetuned-embedding
Mr-Cool
"2024-09-24T11:48:06Z"
46
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:678", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:Snowflake/snowflake-arctic-embed-m", "base_model:finetune:Snowflake/snowflake-arctic-embed-m", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2024-09-24T11:41:10Z"
--- base_model: Snowflake/snowflake-arctic-embed-m datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:678 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: What are some of the content types mentioned in the context? sentences: - 'and/or use cases that were not evaluated in initial testing. \\ \end{tabular} & \begin{tabular}{l} Value Chain and Component \\ Integration \\ \end{tabular} \\ \hline MG-3.1-004 & \begin{tabular}{l} Take reasonable measures to review training data for CBRN information, and \\ intellectual property, and where appropriate, remove it. Implement reasonable \\ measures to prevent, flag, or take other action in response to outputs that \\ reproduce particular training data (e.g., plagiarized, trademarked, patented, \\ licensed content or trade secret material). \\ \end{tabular} & \begin{tabular}{l} Intellectual Property; CBRN \\ Information or Capabilities \\ \end{tabular} \\ \hline \end{tabular} \end{center}' - 'Bias and Homogenization \\ \end{tabular} \\ \hline GV-6.2-004 & \begin{tabular}{l} Establish policies and procedures for continuous monitoring of third-party GAI \\ systems in deployment. \\ \end{tabular} & \begin{tabular}{l} Value Chain and Component \\ Integration \\ \end{tabular} \\ \hline GV-6.2-005 & \begin{tabular}{l} Establish policies and procedures that address GAI data redundancy, including \\ model weights and other system artifacts. \\ \end{tabular} & Harmful Bias and Homogenization \\ \hline GV-6.2-006 & \begin{tabular}{l} Establish policies and procedures to test and manage risks related to rollover and \\ fallback technologies for GAI systems, acknowledging that rollover and fallback \\ may include manual processing. \\ \end{tabular} & Information Integrity \\ \hline GV-6.2-007 & \begin{tabular}{l} Review vendor contracts and avoid arbitrary or capricious termination of critical \\ GAI technologies or vendor services and non-standard terms that may amplify or \\' - 'time. \\ \end{tabular} & \begin{tabular}{l} Information Integrity; Obscene, \\ Degrading, and/or Abusive \\ Content; Value Chain and \\ Component Integration; Harmful \\ Bias and Homogenization; \\ Dangerous, Violent, or Hateful \\ Content; CBRN Information or \\ Capabilities \\ \end{tabular} \\ \hline GV-1.3-002 & \begin{tabular}{l} Establish minimum thresholds for performance or assurance criteria and review as \\ part of deployment approval ("go/"no-go") policies, procedures, and processes, \\ with reviewed processes and approval thresholds reflecting measurement of GAI \\ capabilities and risks. \\ \end{tabular} & \begin{tabular}{l} CBRN Information or Capabilities; \\ Confabulation; Dangerous, \\ Violent, or Hateful Content \\ \end{tabular} \\ \hline GV-1.3-003 & \begin{tabular}{l} Establish a test plan and response policy, before developing highly capable models, \\ to periodically evaluate whether the model may misuse CBRN information or \\' - source_sentence: What are the legal and regulatory requirements involving AI that need to be understood, managed, and documented? sentences: - 'GOVERN 1.1: Legal and regulatory requirements involving Al are understood, managed, and documented. \begin{center} \begin{tabular}{|l|l|l|} \hline Action ID & Suggested Action & GAI Risks \\ \hline GV-1.1-001 & \begin{tabular}{l} Align GAI development and use with applicable laws and regulations, including \\ those related to data privacy, copyright and intellectual property law. \\ \end{tabular} & \begin{tabular}{l} Data Privacy; Harmful Bias and \\ Homogenization; Intellectual \\ Property \\ \end{tabular} \\ \hline \end{tabular} \end{center} Al Actor Tasks: Governance and Oversight\\ ${ }^{14} \mathrm{AI}$ Actors are defined by the OECD as "those who play an active role in the AI system lifecycle, including organizations and individuals that deploy or operate AI." See Appendix A of the AI RMF for additional descriptions of Al Actors and AI Actor Tasks.' - '\begin{center} \begin{tabular}{|c|c|c|} \hline Action ID & Suggested Action & GAI Risks \\ \hline GV-1.6-001 & \begin{tabular}{l} Enumerate organizational GAI systems for incorporation into AI system inventory \\ and adjust AI system inventory requirements to account for GAI risks. \\ \end{tabular} & Information Security \\ \hline GV-1.6-002 & \begin{tabular}{l} Define any inventory exemptions in organizational policies for GAI systems \\ embedded into application software. \\ \end{tabular} & \begin{tabular}{l} Value Chain and Component \\ Integration \\ \end{tabular} \\ \hline GV-1.6-003 & \begin{tabular}{l} In addition to general model, governance, and risk information, consider the \\ following items in GAI system inventory entries: Data provenance information \\ (e.g., source, signatures, versioning, watermarks); Known issues reported from \\ internal bug tracking or external information sharing resources (e.g., Al incident \\' - 'Wei, J. et al. (2024) Long Form Factuality in Large Language Models. arXiv. \href{https://arxiv.org/pdf/2403.18802}{https://arxiv.org/pdf/2403.18802} Weidinger, L. et al. (2021) Ethical and social risks of harm from Language Models. arXiv. \href{https://arxiv.org/pdf/2112.04359}{https://arxiv.org/pdf/2112.04359} Weidinger, L. et al. (2023) Sociotechnical Safety Evaluation of Generative AI Systems. arXiv. \href{https://arxiv.org/pdf/2310.11986}{https://arxiv.org/pdf/2310.11986} Weidinger, L. et al. (2022) Taxonomy of Risks posed by Language Models. FAccT'' 22. \href{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088} West, D. (2023) Al poses disproportionate risks to women. Brookings. \href{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}' - source_sentence: What are some known issues reported from internal bug tracking or external information sharing resources? sentences: - 'Kirchenbauer, J. et al. (2023) A Watermark for Large Language Models. OpenReview. \href{https://openreview.net/forum?id=aX8ig9X2a7}{https://openreview.net/forum?id=aX8ig9X2a7} Kleinberg, J. et al. (May 2021) Algorithmic monoculture and social welfare. PNAS.\\ \href{https://www.pnas.org/doi/10.1073/pnas}{https://www.pnas.org/doi/10.1073/pnas}. 2018340118\\ Lakatos, S. (2023) A Revealing Picture. Graphika. \href{https://graphika.com/reports/a-revealing-picture}{https://graphika.com/reports/a-revealing-picture}\\ Lee, H. et al. (2024) Deepfakes, Phrenology, Surveillance, and More! A Taxonomy of AI Privacy Risks. arXiv. \href{https://arxiv.org/pdf/2310.07879}{https://arxiv.org/pdf/2310.07879} Lenaerts-Bergmans, B. (2024) Data Poisoning: The Exploitation of Generative AI. Crowdstrike. \href{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}' - '(e.g., source, signatures, versioning, watermarks); Known issues reported from \\ internal bug tracking or external information sharing resources (e.g., Al incident \\ database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles \\ and responsibilities; Special rights and considerations for intellectual property, \\ licensed works, or personal, privileged, proprietary or sensitive data; Underlying \\ foundation models, versions of underlying models, and access modes. \\ \end{tabular} & \begin{tabular}{l} Data Privacy; Human-AI \\ Configuration; Information \\ Integrity; Intellectual Property; \\ Value Chain and Component \\ Integration \\ \end{tabular} \\ \hline \multicolumn{3}{|l|}{AI Actor Tasks: Governance and Oversight} \\ \hline \end{tabular} \end{center}' - 'Trustworthy AI Characteristic: Safe, Explainable and Interpretable \subsection*{2.2. Confabulation} "Confabulation" refers to a phenomenon in which GAI systems generate and confidently present erroneous or false content in response to prompts. Confabulations also include generated outputs that diverge from the prompts or other input or that contradict previously generated statements in the same context. These phenomena are colloquially also referred to as "hallucinations" or "fabrications."' - source_sentence: Why do image generator models struggle to produce non-stereotyped content even when prompted? sentences: - Bias exists in many forms and can become ingrained in automated systems. Al systems, including GAI systems, can increase the speed and scale at which harmful biases manifest and are acted upon, potentially perpetuating and amplifying harms to individuals, groups, communities, organizations, and society. For example, when prompted to generate images of CEOs, doctors, lawyers, and judges, current text-to-image models underrepresent women and/or racial minorities, and people with disabilities. Image generator models have also produced biased or stereotyped output for various demographic groups and have difficulty producing non-stereotyped content even when the prompt specifically requests image features that are inconsistent with the stereotypes. Harmful bias in GAI models, which may stem from their training data, can also cause representational harms or perpetuate or exacerbate bias based on race, gender, disability, or other protected classes. - 'The White House (2016) Circular No. A-130, Managing Information as a Strategic Resource. \href{https://www.whitehouse.gov/wp-}{https://www.whitehouse.gov/wp-}\\ content/uploads/legacy drupal files/omb/circulars/A130/a130revised.pdf\\ The White House (2023) Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. \href{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}' - "%Overriding the \\footnotetext command to hide the marker if its value is `0`\n\ \\let\\svfootnotetext\\footnotetext\n\\renewcommand\\footnotetext[2][?]{%\n \\\ if\\relax#1\\relax%\n \\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\\ svfootnotetext{#2}\\fi%\n \\else%\n \\if?#1\\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\\ else\\svfootnotetext{#2}\\fi%\n \\else\\svfootnotetext[#1]{#2}\\fi%\n \\fi\n\ }\n\n\\begin{document}\n\\maketitle\n\\section*{Artificial Intelligence Risk Management\ \ Framework: Generative Artificial Intelligence Profile}\n\\section*{NIST Trustworthy\ \ and Responsible AI NIST AI 600-1}\n\\section*{Artificial Intelligence Risk Management\ \ Framework: Generative Artificial Intelligence Profile}\nThis publication is\ \ available free of charge from:\\\\\n\\href{https://doi.org/10.6028/NIST.Al.600-1}{https://doi.org/10.6028/NIST.Al.600-1}\n\ \nJuly 2024\n\n\\includegraphics[max width=\\textwidth, center]{2024_09_22_1b8d52aa873ff5f60066g-02}\\\ \\\nU.S. Department of Commerce Gina M. Raimondo, Secretary" - source_sentence: What processes should be updated for GAI acquisition and procurement vendor assessments? sentences: - 'Inventory all third-party entities with access to organizational content and \\ establish approved GAI technology and service provider lists. \\ \end{tabular} & \begin{tabular}{l} Value Chain and Component \\ Integration \\ \end{tabular} \\ \hline GV-6.1-008 & \begin{tabular}{l} Maintain records of changes to content made by third parties to promote content \\ provenance, including sources, timestamps, metadata. \\ \end{tabular} & \begin{tabular}{l} Information Integrity; Value Chain \\ and Component Integration; \\ Intellectual Property \\ \end{tabular} \\ \hline GV-6.1-009 & \begin{tabular}{l} Update and integrate due diligence processes for GAI acquisition and \\ procurement vendor assessments to include intellectual property, data privacy, \\ security, and other risks. For example, update processes to: Address solutions that \\ may rely on embedded GAI technologies; Address ongoing monitoring, \\ assessments, and alerting, dynamic risk assessments, and real-time reporting \\' - "\\item Information Integrity: Lowered barrier to entry to generate and support\ \ the exchange and consumption of content which may not distinguish fact from\ \ opinion or fiction or acknowledge uncertainties, or could be leveraged for large-scale\ \ dis- and mis-information campaigns.\n \\item Information Security: Lowered\ \ barriers for offensive cyber capabilities, including via automated discovery\ \ and exploitation of vulnerabilities to ease hacking, malware, phishing, offensive\ \ cyber\n\\end{enumerate}\n\\footnotetext{${ }^{6}$ Some commenters have noted\ \ that the terms \"hallucination\" and \"fabrication\" anthropomorphize GAI, which\ \ itself is a risk related to GAI systems as it can inappropriately attribute\ \ human characteristics to non-human entities.\\\\" - 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\ \end{tabular} & \begin{tabular}{l} Information Integrity; Harmful Bias \\ and Homogenization \\ \end{tabular} \\ \hline AI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV & & \\ \hline \end{tabular} \end{center}' model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.8850574712643678 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9540229885057471 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8850574712643678 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31800766283524895 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19999999999999996 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.02458492975734355 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.026500638569604086 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.027777777777777776 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.027777777777777776 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.20817571346541755 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.927969348659004 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.025776926351638994 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.8850574712643678 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.9540229885057471 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 1.0 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.8850574712643678 name: Dot Precision@1 - type: dot_precision@3 value: 0.31800766283524895 name: Dot Precision@3 - type: dot_precision@5 value: 0.19999999999999996 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.02458492975734355 name: Dot Recall@1 - type: dot_recall@3 value: 0.026500638569604086 name: Dot Recall@3 - type: dot_recall@5 value: 0.027777777777777776 name: Dot Recall@5 - type: dot_recall@10 value: 0.027777777777777776 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.20817571346541755 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.927969348659004 name: Dot Mrr@10 - type: dot_map@100 value: 0.025776926351638994 name: Dot Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Mr-Cool/midterm-finetuned-embedding") # Run inference sentences = [ 'What processes should be updated for GAI acquisition and procurement vendor assessments?', 'Inventory all third-party entities with access to organizational content and \\\\\nestablish approved GAI technology and service provider lists. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nValue Chain and Component \\\\\nIntegration \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-008 & \\begin{tabular}{l}\nMaintain records of changes to content made by third parties to promote content \\\\\nprovenance, including sources, timestamps, metadata. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Value Chain \\\\\nand Component Integration; \\\\\nIntellectual Property \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-009 & \\begin{tabular}{l}\nUpdate and integrate due diligence processes for GAI acquisition and \\\\\nprocurement vendor assessments to include intellectual property, data privacy, \\\\\nsecurity, and other risks. For example, update processes to: Address solutions that \\\\\nmay rely on embedded GAI technologies; Address ongoing monitoring, \\\\\nassessments, and alerting, dynamic risk assessments, and real-time reporting \\\\', 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Harmful Bias \\\\\nand Homogenization \\\\\n\\end{tabular} \\\\\n\\hline\nAI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8851 | | cosine_accuracy@3 | 0.954 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.8851 | | cosine_precision@3 | 0.318 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.0246 | | cosine_recall@3 | 0.0265 | | cosine_recall@5 | 0.0278 | | cosine_recall@10 | 0.0278 | | cosine_ndcg@10 | 0.2082 | | cosine_mrr@10 | 0.928 | | **cosine_map@100** | **0.0258** | | dot_accuracy@1 | 0.8851 | | dot_accuracy@3 | 0.954 | | dot_accuracy@5 | 1.0 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.8851 | | dot_precision@3 | 0.318 | | dot_precision@5 | 0.2 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.0246 | | dot_recall@3 | 0.0265 | | dot_recall@5 | 0.0278 | | dot_recall@10 | 0.0278 | | dot_ndcg@10 | 0.2082 | | dot_mrr@10 | 0.928 | | dot_map@100 | 0.0258 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 678 training samples * Columns: <code>sentence_0</code> and <code>sentence_1</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 18.37 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 188.5 tokens</li><li>max: 396 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | |:------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What are the characteristics of trustworthy AI?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> | | <code>How are the characteristics of trustworthy AI integrated into organizational policies?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> | | <code>Why is it important to integrate trustworthy AI characteristics into organizational processes?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | cosine_map@100 | |:------:|:----:|:--------------:| | 1.0 | 34 | 0.0250 | | 1.4706 | 50 | 0.0258 | | 2.0 | 68 | 0.0257 | | 2.9412 | 100 | 0.0258 | | 3.0 | 102 | 0.0258 | | 4.0 | 136 | 0.0258 | | 4.4118 | 150 | 0.0258 | | 5.0 | 170 | 0.0258 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.6.0.dev20240922+cu121 - Accelerate: 0.34.2 - Datasets: 3.0.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
CalamitousFelicitousness/Cydonia-22B-v1-fp8-dynamic
CalamitousFelicitousness
"2024-09-18T19:35:50Z"
19
0
null
[ "safetensors", "mistral", "license:other", "fp8", "region:us" ]
null
"2024-09-18T19:29:31Z"
--- license: other --- ## This repo contains the copy of the original quantized to FP8. [TheDrummer/Cydonia-22B-v1](https://huggingface.co/TheDrummer/Cydonia-22B-v1) # Join our Discord! https://discord.gg/Nbv9pQ88Xb ## 1000+ members strong 💪 <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/FNWdi0WlH-Xd3fjkGVPpp.mpga"></audio> *Thank you, Envoid! I cackled.* --- [BeaverAI](https://huggingface.co/BeaverAI) proudly presents... # Cydonia 22B v1 💿 *I christen this model, 'Miqu 2 Mini'* - @invisietch ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/UqdPv03eMkZP78XavSxIW.png) ## Links - Original: https://huggingface.co/TheDrummer/Cydonia-22B-v1 - GGUF: https://huggingface.co/TheDrummer/Cydonia-22B-v1-GGUF - iMatrix: https://huggingface.co/MarsupialAI/Cydonia-22B-v1_iMat_GGUF - EXL2: https://huggingface.co/MarsupialAI/Cydonia-22B-v1_EXL2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/A67a5B4kOqv6JZUQmYCGQ.png) ## Arsenal (Supported Chat Templates) - Metharme for RP / Story - Text Completion for RP - Mistral for Instruct / RP / Story - You can mix it up and see which works best for you. ### Favorite RP Format `*action* Dialogue *thoughts* Dialogue *narration*` in 1st person PoV ## What's Next? - I might release a v1.1... Probably. - Already have plans for a v2! ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/iDWlUzYlxUaOkmJSuUrDf.gif) ``` No one's gonna take me alive Time has come to make things right You and I must fight for our rights You and I must fight to survive ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/cyD7QKFLdvPrHEiPHVQh1.png) `>inb4 my model cards have turned into Tumblr`
jpark677/internvl2-8b-mmmu-lora-ep-3-waa-false
jpark677
"2025-04-02T14:11:01Z"
0
0
null
[ "region:us" ]
null
"2025-04-02T14:11:01Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
nie3e/pos-polish-gpt2-small
nie3e
"2024-01-15T16:43:57Z"
98
0
transformers
[ "transformers", "safetensors", "gpt2", "token-classification", "generated_from_trainer", "pl", "dataset:clarin-pl/nkjp-pos", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
"2024-01-15T16:32:17Z"
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: pos-polish-gpt2-small results: [] license: mit datasets: - clarin-pl/nkjp-pos language: - pl --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos-polish-gpt2-small This model was trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) on [clarin-pl/nkjp-pos](https://huggingface.co/datasets/clarin-pl/nkjp-pos) dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Precision: 0.8793 - Recall: 0.9255 - F1: 0.9018 - Accuracy: 0.9371 ## Model description Trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) ## Intended uses & limitations Part-of-speech tagging for Polish language. Tags description at the bottom of http://nkjp.pl/poliqarp/help/plse2.html ## Training and evaluation data Dataset: [clarin-pl/nkjp-pos](https://huggingface.co/datasets/clarin-pl/nkjp-pos) Datacollator: ```py from transformers import DataCollatorForTokenClassification data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` ## Training procedure GPU: RTX 3090 Training time: 00:50:24 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | | 0.0 | 0 | 3.6116 | 0.0464 | 0.0524 | 0.0492 | 0.0676 | | 0.2303 | 1.0 | 1222 | 0.2159 | 0.8737 | 0.9225 | 0.8974 | 0.9347 | | 0.1776 | 2.0 | 2444 | 0.2124 | 0.8799 | 0.9254 | 0.9021 | 0.9381 | | 0.1467 | 3.0 | 3666 | 0.2205 | 0.8759 | 0.9241 | 0.8994 | 0.9368 | | 0.1254 | 4.0 | 4889 | 0.2304 | 0.8792 | 0.9256 | 0.9018 | 0.9377 | | 0.1091 | 5.0 | 6111 | 0.2480 | 0.8787 | 0.9251 | 0.9013 | 0.9375 | | 0.0949 | 6.0 | 7333 | 0.2651 | 0.8794 | 0.9250 | 0.9016 | 0.9373 | | 0.0857 | 7.0 | 8555 | 0.2794 | 0.8791 | 0.9251 | 0.9015 | 0.9372 | | 0.079 | 8.0 | 9778 | 0.2922 | 0.8789 | 0.9247 | 0.9012 | 0.9366 | | 0.0736 | 9.0 | 11000 | 0.3037 | 0.8807 | 0.9256 | 0.9026 | 0.9375 | | 0.0691 | 10.0 | 12220 | 0.3109 | 0.8793 | 0.9255 | 0.9018 | 0.9371 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e-1_s6789_v3_manual
KingKazma
"2023-07-17T21:50:23Z"
0
0
peft
[ "peft", "region:us" ]
null
"2023-07-17T21:50:20Z"
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
DatuKelet/Datu
DatuKelet
"2025-03-28T12:31:43Z"
0
0
null
[ "region:us" ]
null
"2025-03-28T12:31:43Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
rpdpscl/gemma-2b-instruct-ft-medical-qa
rpdpscl
"2024-10-19T06:37:22Z"
137
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-10-19T06:32:08Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso03/ff2d2a51-fbca-4314-9f11-a0458c084c61
lesso03
"2025-01-14T15:20:12Z"
9
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-14T14:41:06Z"
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: ff2d2a51-fbca-4314-9f11-a0458c084c61 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: true chat_template: llama3 datasets: - data_files: - 747ca939a112ba35_train_data.json ds_type: json format: custom path: /workspace/input_data/747ca939a112ba35_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso03/ff2d2a51-fbca-4314-9f11-a0458c084c61 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/747ca939a112ba35_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bdde0a17-2182-4c18-855c-68558222f915 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bdde0a17-2182-4c18-855c-68558222f915 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ff2d2a51-fbca-4314-9f11-a0458c084c61 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.7316 | 0.0001 | 1 | 1.1126 | | 14.5383 | 0.0007 | 5 | 1.1103 | | 13.0524 | 0.0014 | 10 | 1.1151 | | 9.6034 | 0.0021 | 15 | 1.1375 | | 11.9392 | 0.0029 | 20 | 1.1487 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso12/21e8026a-cbe0-4c11-bdfb-ef0f3e0c3da2
lesso12
"2025-03-06T04:04:57Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-03-05T18:44:40Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 21e8026a-cbe0-4c11-bdfb-ef0f3e0c3da2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 21e8026a-cbe0-4c11-bdfb-ef0f3e0c3da2 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000212 - train_batch_size: 4 - eval_batch_size: 4 - seed: 120 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 1.3611 | | 0.2093 | 0.4460 | 500 | 0.1966 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k32768-0-woft
VPTQ-community
"2025-02-25T17:00:19Z"
23
1
null
[ "safetensors", "llama", "VPTQ", "Quantized", "Quantization", "arxiv:2409.17066", "base_model:meta-llama/Llama-3.1-70B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-70B-Instruct", "license:llama3.1", "vptq", "region:us" ]
null
"2024-09-25T13:19:34Z"
--- license: llama3.1 base_model: - meta-llama/Llama-3.1-70B-Instruct base_model_relation: quantized tags: - VPTQ - Quantized - Quantization --- **Disclaimer**: The model is reproduced based on the paper *VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models* [github](https://github.com/microsoft/vptq) and [arXiv](https://arxiv.org/abs/2409.17066) The model itself is sourced from a community release. It is intended only for experimental purposes. Users are responsible for any consequences arising from the use of this model. **Note**: The PPL test results are for reference only and were collected using GPTQ testing script. ```json { "ctx_2048": { "wikitext2": 7.893113613128662 }, "ctx_4096": { "wikitext2": 7.517154216766357 }, "ctx_8192": { "wikitext2": 7.29401159286499 } } ```
youngbreadho/xlm-roberta-base-finetuned-panx-en
youngbreadho
"2023-06-11T13:30:58Z"
110
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-06-11T13:16:32Z"
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: validation args: PAN-X.en metrics: - name: F1 type: f1 value: 0.4599198396793587 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.5991 - F1: 0.4599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0314 | 1.0 | 99 | 0.5991 | 0.4599 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
suneeln-duke/mistral-gen
suneeln-duke
"2024-04-22T23:40:30Z"
4
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
"2024-04-22T22:03:03Z"
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: mistral-gen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/n-suneel-duke/huggingface/runs/97k6cerl) # mistral-gen This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.16.0 - Tokenizers 0.19.1
rizalmilyardi/IndobertTypeNews
rizalmilyardi
"2023-02-16T06:26:22Z"
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-02-16T06:20:30Z"
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: IndobertTypeNews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndobertTypeNews This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2301 - Accuracy: 0.9347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 96 | 0.2449 | 0.9191 | | No log | 2.0 | 192 | 0.2517 | 0.9021 | | No log | 3.0 | 288 | 0.2301 | 0.9347 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sarkerlab/SocBERT-final
sarkerlab
"2023-03-21T19:55:55Z"
8
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2023-02-09T19:05:49Z"
# SocBERT model Pretrained model on 20GB English tweets and 72GB Reddit comments using a masked language modeling (MLM) objective. The tweets are from Archive and collected from Twitter Streaming API. The Reddit comments are ramdonly sampled from all subreddits from 2015-2019. SocBERT-base was pretrained on 819M sequence blocks for 100K steps. SocBERT-final was pretrained on 929M (819M+110M) sequence blocks for 112K (100K+12K) steps. We benchmarked SocBERT, on 40 text classification tasks with social media data. The experiment results can be found in our paper: ``` @inproceedings{socbert:2023, title = {{SocBERT: A Pretrained Model for Social Media Text}}, author = {Yuting Guo and Abeed Sarker}, booktitle = {Proceedings of the Fourth Workshop on Insights from Negative Results in NLP}, year = {2023} } ``` A base version of the model can be found at [SocBERT-base](https://huggingface.co/sarkerlab/SocBERT-base).
jonatasgrosman/wav2vec2-large-xlsr-53-arabic
jonatasgrosman
"2022-12-14T01:57:28Z"
1,108,872
33
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ar", "dataset:common_voice", "dataset:arabic_speech_corpus", "doi:10.57967/hf/3573", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-03-02T23:29:05Z"
--- language: ar datasets: - common_voice - arabic_speech_corpus metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Arabic by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ar type: common_voice args: ar metrics: - name: Test WER type: wer value: 39.59 - name: Test CER type: cer value: 18.18 --- # Fine-tuned XLSR-53 large model for speech recognition in Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-arabic") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ar" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ألديك قلم ؟ | ألديك قلم | | ليست هناك مسافة على هذه الأرض أبعد من يوم أمس. | ليست نالك مسافة على هذه الأرض أبعد من يوم الأمس م | | إنك تكبر المشكلة. | إنك تكبر المشكلة | | يرغب أن يلتقي بك. | يرغب أن يلتقي بك | | إنهم لا يعرفون لماذا حتى. | إنهم لا يعرفون لماذا حتى | | سيسعدني مساعدتك أي وقت تحب. | سيسئدنيمساعدتك أي وقد تحب | | أَحَبُّ نظريّة علمية إليّ هي أن حلقات زحل مكونة بالكامل من الأمتعة المفقودة. | أحب نظرية علمية إلي هي أن حل قتزح المكوينا بالكامل من الأمت عن المفقودة | | سأشتري له قلماً. | سأشتري له قلما | | أين المشكلة ؟ | أين المشكل | | وَلِلَّهِ يَسْجُدُ مَا فِي السَّمَاوَاتِ وَمَا فِي الْأَرْضِ مِنْ دَابَّةٍ وَالْمَلَائِكَةُ وَهُمْ لَا يَسْتَكْبِرُونَ | ولله يسجد ما في السماوات وما في الأرض من دابة والملائكة وهم لا يستكبرون | ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ar" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-14). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-arabic | **39.59%** | **18.18%** | | bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% | | othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% | | kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% | | mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% | | anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% | | elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-arabic, title={Fine-tuned {XLSR}-53 large model for speech recognition in {A}rabic}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic}}, year={2021} } ```
alexyalunin/RuBioBERT
alexyalunin
"2022-08-26T09:29:58Z"
36
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:2204.03951", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
Paper: https://arxiv.org/abs/2204.03951 Code: https://github.com/alexyalunin/RuBioRoBERTa
jkazdan/llama-8b-dpo-full
jkazdan
"2025-03-09T20:34:51Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:jkazdan/llama3-8b-stage-2", "base_model:finetune:jkazdan/llama3-8b-stage-2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-09T20:18:55Z"
--- base_model: jkazdan/llama3-8b-stage-2 library_name: transformers model_name: llama-8b-dpo-full tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for llama-8b-dpo-full This model is a fine-tuned version of [jkazdan/llama3-8b-stage-2](https://huggingface.co/jkazdan/llama3-8b-stage-2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jkazdan/llama-8b-dpo-full", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Alphatao/ae7eb82d-2da1-4833-8039-bbae6d551206
Alphatao
"2025-03-11T04:38:04Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
"2025-03-10T22:25:19Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: ae7eb82d-2da1-4833-8039-bbae6d551206 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cb39c063f14002d5_train_data.json ds_type: json format: custom path: /workspace/input_data/cb39c063f14002d5_train_data.json type: field_instruction: problem field_output: qwq format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/ae7eb82d-2da1-4833-8039-bbae6d551206 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2520 micro_batch_size: 4 mlflow_experiment_name: /tmp/cb39c063f14002d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.037878213966455056 wandb_entity: null wandb_mode: online wandb_name: 5a1d5196-a942-457d-9fd4-72f486ecfb9f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5a1d5196-a942-457d-9fd4-72f486ecfb9f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ae7eb82d-2da1-4833-8039-bbae6d551206 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2520 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8902 | 0.0003 | 1 | 0.7814 | | 0.4861 | 0.0252 | 100 | 0.5038 | | 0.613 | 0.0504 | 200 | 0.4886 | | 0.5081 | 0.0756 | 300 | 0.4808 | | 0.4852 | 0.1008 | 400 | 0.4750 | | 0.4272 | 0.1260 | 500 | 0.4703 | | 0.4457 | 0.1512 | 600 | 0.4668 | | 0.5079 | 0.1764 | 700 | 0.4636 | | 0.5876 | 0.2016 | 800 | 0.4616 | | 0.5268 | 0.2268 | 900 | 0.4587 | | 0.4417 | 0.2520 | 1000 | 0.4566 | | 0.4095 | 0.2772 | 1100 | 0.4549 | | 0.4428 | 0.3024 | 1200 | 0.4529 | | 0.391 | 0.3275 | 1300 | 0.4516 | | 0.466 | 0.3527 | 1400 | 0.4501 | | 0.403 | 0.3779 | 1500 | 0.4489 | | 0.3839 | 0.4031 | 1600 | 0.4478 | | 0.3868 | 0.4283 | 1700 | 0.4469 | | 0.4745 | 0.4535 | 1800 | 0.4461 | | 0.4932 | 0.4787 | 1900 | 0.4455 | | 0.4121 | 0.5039 | 2000 | 0.4450 | | 0.477 | 0.5291 | 2100 | 0.4446 | | 0.4132 | 0.5543 | 2200 | 0.4443 | | 0.4715 | 0.5795 | 2300 | 0.4442 | | 0.381 | 0.6047 | 2400 | 0.4441 | | 0.5764 | 0.6299 | 2500 | 0.4441 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Khushi870/bart-cnn-samsum-summarizer
Khushi870
"2024-04-12T15:37:15Z"
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-04-12T15:36:17Z"
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer model-index: - name: bart-cnn-samsum-summarizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-samsum-summarizer This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1243 | 1.0 | 74 | 0.1382 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
akhadangi/Mistral-7B-v0.1-0.01-H
akhadangi
"2025-04-15T13:12:07Z"
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "arxiv:2504.03302", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-13T07:03:44Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF
mradermacher
"2024-11-05T06:30:59Z"
13
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:Novocoders/ogno-monarch-jaskier-merge-7b-NeuralDPO", "base_model:quantized:Novocoders/ogno-monarch-jaskier-merge-7b-NeuralDPO", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
"2024-11-05T05:51:07Z"
--- base_model: Novocoders/ogno-monarch-jaskier-merge-7b-NeuralDPO language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Novocoders/ogno-monarch-jaskier-merge-7b-NeuralDPO <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ogno-monarch-jaskier-merge-7b-NeuralDPO-GGUF/resolve/main/ogno-monarch-jaskier-merge-7b-NeuralDPO.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
samtuckervegan/3B-sft-ready
samtuckervegan
"2025-04-15T13:56:11Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-15T13:20:09Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
deepnet/SN29-C01-phi3-HK13-3
deepnet
"2024-12-26T14:36:29Z"
5
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-26T14:32:56Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LarryAIDraw/arlecchino-10
LarryAIDraw
"2023-11-23T13:25:46Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-11-23T13:13:31Z"
--- license: creativeml-openrail-m --- https://civitai.com/models/203436/arlecchino-genshin-impact-lora-commission
cleanrl/Skiing-v5-cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4-seed3
cleanrl
"2023-03-26T02:19:08Z"
0
0
cleanrl
[ "cleanrl", "tensorboard", "Skiing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-03-26T02:19:06Z"
--- tags: - Skiing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Skiing-v5 type: Skiing-v5 metrics: - type: mean_reward value: -8987.20 +/- 22.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Skiing-v5** This is a trained model of a PPO agent playing Skiing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4 --env-id Skiing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4-seed3/raw/main/cleanba_impala_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_impala_envpool_impala_atari_wrapper.py --exp-name cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4 --distributed --learner-device-ids 1 --local-num-envs 30 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 30, 'async_update': 1, 'batch_size': 2400, 'capture_video': False, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Skiing-v5', 'exp_name': 'cleanba_impala_envpool_impala_atari_wrapper_a0_l1_d4', 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3', 'gpu:5', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 600, 'local_minibatch_size': 300, 'local_num_envs': 30, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 1200, 'num_envs': 120, 'num_minibatches': 2, 'num_steps': 20, 'num_updates': 20833, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 4} ```
ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601
ar2rpapian
"2022-07-20T10:12:11Z"
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:ar2rpapian/autotrain-data-Flexport_Classification_Desc", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-07-20T08:32:26Z"
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ar2rpapian/autotrain-data-Flexport_Classification_Desc co2_eq_emissions: 206.60369255723003 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1155542601 - CO2 Emissions (in grams): 206.60369255723003 ## Validation Metrics - Loss: 0.22105568647384644 - Accuracy: 0.9578838092484789 - Macro F1: 0.9360695960738429 - Micro F1: 0.9578838092484788 - Weighted F1: 0.957863360811612 - Macro Precision: 0.9415730549729362 - Micro Precision: 0.9578838092484789 - Weighted Precision: 0.9586754512711492 - Macro Recall: 0.9329742157218464 - Micro Recall: 0.9578838092484789 - Weighted Recall: 0.9578838092484789 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
mlc-ai/gemma-3-27b-it-q4bf16_0-MLC
mlc-ai
"2025-03-31T15:31:26Z"
20
1
mlc-llm
[ "mlc-llm", "web-llm", "base_model:google/gemma-3-27b-it", "base_model:quantized:google/gemma-3-27b-it", "region:us" ]
null
"2025-03-17T05:53:17Z"
--- library_name: mlc-llm base_model: google/gemma-3-27b-it tags: - mlc-llm - web-llm --- # gemma-3-27b-it-q4bf16_0-MLC This is the [gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) model in MLC format `q4bf16_0`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/gemma-3-27b-it-q4bf16_0-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/gemma-3-27b-it-q4bf16_0-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/gemma-3-27b-it-q4bf16_0-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
meatcarrot/emotion_classification_based_distilbert01
meatcarrot
"2025-04-18T07:23:14Z"
0
0
null
[ "safetensors", "distilbert", "license:unlicense", "region:us" ]
null
"2025-04-18T07:21:02Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Long089/whisper-small-vi
Long089
"2024-03-07T07:29:43Z"
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-03-07T07:13:20Z"
--- language: - vi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Vi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
huggingtweets/lulaoficial
huggingtweets
"2023-01-30T04:22:42Z"
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-01-30T04:21:49Z"
--- language: en thumbnail: http://www.huggingtweets.com/lulaoficial/1675052557754/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1609717376890671110/Z0LJxPb1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lula</div> <div style="text-align: center; font-size: 14px;">@lulaoficial</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lula. | Data | Lula | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 189 | | Short tweets | 68 | | Tweets kept | 2989 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wctmk1d3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lulaoficial's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nei79824) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nei79824/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lulaoficial') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b
tzvc
"2023-05-16T09:38:44Z"
13
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2022-12-20T12:17:28Z"
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sdcid (use that on your prompt) ![sdcid 0](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%281%29.jpg)![sdcid 1](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%282%29.jpg)![sdcid 2](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%283%29.jpg)![sdcid 3](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%284%29.jpg)![sdcid 4](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%285%29.jpg)![sdcid 5](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%286%29.jpg)![sdcid 6](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%287%29.jpg)![sdcid 7](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%288%29.jpg)![sdcid 8](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%289%29.jpg)![sdcid 9](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%2810%29.jpg)![sdcid 10](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%2811%29.jpg)
featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF
featherless-ai-quants
"2024-10-29T22:17:08Z"
7
0
null
[ "gguf", "text-generation", "base_model:flammenai/Mahou-1.2-llama3-8B", "base_model:quantized:flammenai/Mahou-1.2-llama3-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2024-10-29T21:55:02Z"
--- base_model: flammenai/Mahou-1.2-llama3-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # flammenai/Mahou-1.2-llama3-8B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [flammenai-Mahou-1.2-llama3-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [flammenai-Mahou-1.2-llama3-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [flammenai-Mahou-1.2-llama3-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q2_K.gguf) | 3031.86 MB | | Q6_K | [flammenai-Mahou-1.2-llama3-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [flammenai-Mahou-1.2-llama3-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [flammenai-Mahou-1.2-llama3-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [flammenai-Mahou-1.2-llama3-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [flammenai-Mahou-1.2-llama3-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [flammenai-Mahou-1.2-llama3-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [flammenai-Mahou-1.2-llama3-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [flammenai-Mahou-1.2-llama3-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/flammenai-Mahou-1.2-llama3-8B-GGUF/blob/main/flammenai-Mahou-1.2-llama3-8B-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
lmchion/bert-base-finetuned-esg-a4s
lmchion
"2022-06-20T14:36:20Z"
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-06-20T14:31:53Z"
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: lmchion/bert-base-finetuned-esg-a4s results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lmchion/bert-base-finetuned-esg-a4s This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7744 - Validation Loss: 2.5318 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -812, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7744 | 2.5318 | 0 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
great0001/ee7023ee-b7ff-4387-8282-501dcbe6e244
great0001
"2025-01-29T15:04:16Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "region:us" ]
null
"2025-01-29T14:28:05Z"
--- library_name: peft license: apache-2.0 base_model: 01-ai/Yi-1.5-9B-Chat-16K tags: - axolotl - generated_from_trainer model-index: - name: ee7023ee-b7ff-4387-8282-501dcbe6e244 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: 01-ai/Yi-1.5-9B-Chat-16K bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9474ac4ca19ac46d_train_data.json ds_type: json format: custom path: /workspace/input_data/9474ac4ca19ac46d_train_data.json type: field_input: intent field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/ee7023ee-b7ff-4387-8282-501dcbe6e244 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/9474ac4ca19ac46d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f2fc808c-912a-4d17-814f-4e6bf4d846a9 wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: f2fc808c-912a-4d17-814f-4e6bf4d846a9 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ee7023ee-b7ff-4387-8282-501dcbe6e244 This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.7149 | | 0.5499 | 0.0004 | 13 | 0.4317 | | 0.4474 | 0.0007 | 26 | 0.3826 | | 0.4069 | 0.0011 | 39 | 0.3613 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Sayan01/Phi35-1B-KL
Sayan01
"2025-03-13T13:34:09Z"
18
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-03T01:19:56Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andrek/LAT2NOB
andrek
"2021-09-23T13:06:22Z"
15
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation", "no", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
"2022-03-02T23:29:05Z"
--- language: no license: cc-by-4.0 tags: - translation widget: - text: Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. ---
MPGPT/Tommy
MPGPT
"2025-02-05T12:37:47Z"
10
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-02-05T12:13:44Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Tommy --- # Tommy <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Tommy` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('MPGPT/Tommy', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ArtFair/fine_tuned_segmentation-3.0_1e-3_128_pth
ArtFair
"2024-09-21T01:16:07Z"
157
0
null
[ "pytorch", "tensorboard", "pyannet", "speaker-diarization", "speaker-segmentation", "generated_from_trainer", "dataset:ArtFair/diarizers_dataset_70-15-15", "base_model:pyannote/segmentation-3.0", "base_model:finetune:pyannote/segmentation-3.0", "license:mit", "region:us" ]
null
"2024-09-21T00:55:44Z"
--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - ArtFair/diarizers_dataset_70-15-15 model-index: - name: fine_tuned_segmentation-3.0_1e-3_128_pth results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_segmentation-3.0_1e-3_128_pth This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the ArtFair/diarizers_dataset_70-15-15 default dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Der: 0.2625 - False Alarm: 0.1458 - Missed Detection: 0.0926 - Confusion: 0.0241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.426 | 1.0 | 233 | 0.3954 | 0.2915 | 0.1834 | 0.0807 | 0.0274 | | 0.3974 | 2.0 | 466 | 0.3667 | 0.2668 | 0.1391 | 0.1032 | 0.0246 | | 0.3772 | 3.0 | 699 | 0.3675 | 0.2672 | 0.1552 | 0.0874 | 0.0246 | | 0.3618 | 4.0 | 932 | 0.3629 | 0.2641 | 0.1498 | 0.0899 | 0.0243 | | 0.3622 | 5.0 | 1165 | 0.3620 | 0.2625 | 0.1458 | 0.0926 | 0.0241 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.4.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
NexesQuants/Llama_3.x_70b_Trojka_V3.8-iMat-CQ-GGUF
NexesQuants
"2025-04-11T21:11:48Z"
41
0
null
[ "gguf", "base_model:NexesMess/Llama_3.x_70b_Trojka_V3.8", "base_model:quantized:NexesMess/Llama_3.x_70b_Trojka_V3.8", "license:llama3.3", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-06T14:35:28Z"
--- license: llama3.3 base_model: - NexesMess/Llama_3.x_70b_Trojka_V3.8 ---
csukuangfj/k2fsa-zipformer-bilingual-zh-en-t
csukuangfj
"2025-03-31T11:39:09Z"
0
4
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
"2023-11-17T10:18:37Z"
--- license: apache-2.0 --- ## Chinese-English ASR model using k2-zipformer-streaming ### AIShell-1 and Wenetspeech testset results with modified-beam-search streaming decode using epoch-12.pt | decode_chunk_len | AIShell-1 | TEST_NET | TEST_MEETING | |------------------|-----------|----------|--------------| | 64 | 4.79 | 11.6 | 12.64 || ### Training and decoding commands ``` nohup ./pruned_transducer_stateless7_streaming/train.py --world-size 8 --num-epochs 30 --start-epoch 1 \ --num-encoder-layers 2,2,2,2,2 \ --feedforward-dims 768,768,768,768,768 \ --nhead 4,4,4,4,4 \ --encoder-dims 256,256,256,256,256 \ --attention-dims 192,192,192,192,192 \ --encoder-unmasked-dims 192,192,192,192,192 \ --exp-dir pruned_transducer_stateless7_streaming/exp --max-duration 360 \ > pruned_transducer_stateless7_streaming/exp/nohup.zipformer & nohup ./pruned_transducer_stateless7_streaming/decode.py --epoch 12 --avg 1 \ --num-encoder-layers 2,2,2,2,2 \ --feedforward-dims 768,768,768,768,768 \ --nhead 4,4,4,4,4 \ --encoder-dims 256,256,256,256,256 \ --attention-dims 192,192,192,192,192 \ --encoder-unmasked-dims 192,192,192,192,192 \ --exp-dir pruned_transducer_stateless7_streaming/exp \ --max-duration 600 --decode-chunk-len 32 --decoding-method modified_beam_search --beam-size 4 \ > nohup.zipformer.deocode & ``` ### Model unit is char+bpe as `data/lang_char_bpe/tokens.txt` ### Tips some k2-fsa version and parameter is ``` {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.2', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a74f59dba1863cd9386ba4d8815850421260eee7', 'k2-git-date': 'Fri Dec 2 08:32:22 2022', 'lhotse-version': '1.5.0.dev+git.8ce38fc.dirty', 'torch-version': '1.11.0+cu113', 'torch-cuda-available': True, 'torch-cuda-version': '11.3', 'python-version': '3.7', 'icefall-git-branch': 'master', 'icefall-git-sha1': '600f387-dirty', 'icefall-git-date': 'Thu Feb 9 15:16:04 2023', 'icefall-path': '/opt/conda/lib/python3.7/site-packages', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2/__init__.py', 'lhotse-path': '/opt/conda/lib/python3.7/site-packages/lhotse/__init__.py', 'hostname': 'worker-0', 'IP address': '127.0.0.1'}, 'world_size': 8, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 30, 'start_epoch': 11, 'start_batch': 0, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming/exp_t'), 'lang_dir': 'data/lang_char_bpe', 'base_lr': 0.01, 'lr_batches': 5000, 'lr_epochs': 3.5, 'context_size': 2, 'prune_range': 5, 'lm_scale': 0.25, 'am_scale': 0.0, 'simple_loss_scale': 0.5, 'seed': 42, 'print_diagnostics': False, 'inf_check': False, 'save_every_n': 2000, 'keep_last_k': 30, 'average_period': 200, 'use_fp16': False, 'num_encoder_layers': '2,2,2,2,2', 'feedforward_dims': '768,768,768,768,768', 'nhead': '4,4,4,4,4', 'encoder_dims': '256,256,256,256,256', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '192,192,192,192,192', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 360, 'bucketing_sampler': True, 'num_buckets': 300, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 8, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'training_subset': 'mix', 'blank_id': 0, 'vocab_size': 6254} ```
YieldInc/Puffin
YieldInc
"2023-10-29T22:14:59Z"
0
0
peft
[ "peft", "region:us" ]
null
"2023-10-29T22:14:22Z"
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
smp-hub/upernet-swin-large
smp-hub
"2025-04-12T21:35:28Z"
0
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "upernet", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
"2025-04-12T21:35:25Z"
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch - upernet languages: - python --- # UPerNet Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Dataset](#dataset) ## Load trained model [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/upernet_inference_pretrained.ipynb) 1. Install requirements. ```bash pip install -U segmentation_models_pytorch albumentations ``` 2. Run inference. ```python import torch import requests import numpy as np import albumentations as A import segmentation_models_pytorch as smp from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" # Load pretrained model and preprocessing function checkpoint = "smp-hub/upernet-swin-large" model = smp.from_pretrained(checkpoint).eval().to(device) preprocessing = A.Compose.from_pretrained(checkpoint) # Load image url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" image = Image.open(requests.get(url, stream=True).raw) # Preprocess image np_image = np.array(image) normalized_image = preprocessing(image=np_image)["image"] input_tensor = torch.as_tensor(normalized_image) input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0) # HWC -> BCHW input_tensor = input_tensor.to(device) # Perform inference with torch.no_grad(): output_mask = model(input_tensor) # Postprocess mask mask = mask.argmax(1).cpu().numpy() # argmax over predicted classes (channels dim) ``` ## Model init parameters ```python model_init_params = { "encoder_name": "tu-swin_large_patch4_window12_384", "encoder_depth": 5, "encoder_weights": None, "decoder_channels": 512, "decoder_use_norm": "batchnorm", "in_channels": 3, "classes": 150, "activation": None, "upsampling": 4, "aux_params": None, "img_size": 512 } ``` ## Dataset Dataset name: [ADE20K](https://ade20k.csail.mit.edu/) ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
thirteenbit/madlad400-10b-mt-gguf
thirteenbit
"2024-07-06T16:37:55Z"
218
4
null
[ "gguf", "translation", "base_model:google/madlad400-10b-mt", "base_model:quantized:google/madlad400-10b-mt", "license:apache-2.0", "region:us" ]
translation
"2024-07-06T11:44:28Z"
--- base_model: google/madlad400-10b-mt inference: false license: apache-2.0 model_name: madlad400-10b-mt-gguf pipeline_tag: translation --- # MADLAD-400-10B-MT - GGUF - Original model: [MADLAD-400-10B-MT](https://huggingface.co/google/madlad400-10b-mt) ## Description This repo contains GGUF format model files for [MADLAD-400-10B-MT](https://huggingface.co/google/madlad400-10b-mt) for use with [llama.cpp](https://github.com/ggerganov/llama.cpp) and compatible software. Converted to gguf using llama.cpp [convert_hf_to_gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py) and quantized using llama.cpp llama-quantize, llama.cpp version [b3325](https://github.com/ggerganov/llama.cpp/commits/b3325). ## Provided files | Name | Quant method | Bits | Size | VRAM required | | ---- | ---- | ---- | ---- | ---- | | [model-q3_k_m.gguf](https://huggingface.co/thirteenbit/madlad400-10b-mt-gguf/blob/main/model-q3_k_m.gguf) | Q3_K_M | 3 | 4.9 GB| 5.7 GB | | [model-q4_k_m.gguf](https://huggingface.co/thirteenbit/madlad400-10b-mt-gguf/blob/main/model-q4_k_m.gguf) | Q4_K_M | 4 | 6.3 GB| 7.1 GB | | [model-q5_k_m.gguf](https://huggingface.co/thirteenbit/madlad400-10b-mt-gguf/blob/main/model-q5_k_m.gguf) | Q5_K_M | 5 | 7.2 GB| 7.9 GB | | [model-q6_k.gguf](https://huggingface.co/thirteenbit/madlad400-10b-mt-gguf/blob/main/model-q6_k.gguf) | Q6_K | 6 | 8.2 GB| 8.9 GB | | [model-q8_0.gguf](https://huggingface.co/thirteenbit/madlad400-10b-mt-gguf/blob/main/model-q8_0.gguf) | Q8_0 | 8 | 11 GB| 11.3 GB | **Note**: the above VRAM usage figures are observed with all layers GPU offloading, on Linux with NVIDIA GPU.
andrea-coppari/phi-1_5-geodata-finetuning-ita
andrea-coppari
"2023-11-10T11:45:24Z"
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
"2023-11-10T11:25:53Z"
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-geodata-finetuning-ita results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-geodata-finetuning-ita This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1500 ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
irwantongkeng1/f90f343d-a6db-4053-87aa-5abe2635ef73
irwantongkeng1
"2025-04-18T00:43:55Z"
0
0
null
[ "region:us" ]
null
"2025-04-18T00:12:20Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
impossibleexchange/run108
impossibleexchange
"2025-02-04T18:14:11Z"
19
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-04T18:11:06Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Benjaminpwh/xlsr-toratan-240-copt-base_H
Benjaminpwh
"2025-04-10T09:19:10Z"
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "pretraining", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-10T04:21:55Z"
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: xlsr-toratan-240-copt-base_H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr-toratan-240-copt-base_H This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.567e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
fbaldassarri/mistralai_Mistral-7B-v0.3-autoround-int4-gs128-asym
fbaldassarri
"2025-01-17T17:53:36Z"
7
0
null
[ "safetensors", "mistral", "pytorch", "causal-lm", "autoround", "auto-round", "intel-autoround", "gptq", "woq", "intel", "mistralai", "text-generation", "en", "fr", "base_model:mistralai/Mistral-7B-v0.3", "base_model:quantized:mistralai/Mistral-7B-v0.3", "license:apache-2.0", "4-bit", "intel/auto-round", "region:us" ]
text-generation
"2025-01-15T17:02:32Z"
--- language: - en - fr tags: - pytorch - causal-lm - mistral - autoround - auto-round - intel-autoround - gptq - woq - intel - pytorch - mistralai license: apache-2.0 model_name: Mistral 7B v0.3 base_model: - mistralai/Mistral-7B-v0.3 inference: false model_creator: mistralai pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Asymmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.3 Note: this INT4 version of Mistral-7B-v0.3 has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "mistralai/Mistral-7B-v0.3" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/mistralai_Mistral-7B-v0.3-autoround-int4-gs128-asym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/) ## Disclaimer This quantized model comes with no warranty. It has been developed only for research purposes.
bartowski/internlm2-chat-20b-llama-exl2
bartowski
"2024-01-27T23:12:57Z"
1
6
null
[ "text-generation", "license:other", "region:us" ]
text-generation
"2024-01-25T19:07:07Z"
--- pipeline_tag: text-generation license: other quantized_by: bartowski --- Update Jan 27: This has been redone with the proper token mappings and rope scaling, performance seems improved, please comment if not ## Exllama v2 Quantizations of internlm2-chat-20b-llama-test Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.12">turboderp's ExLlamaV2 v0.0.12</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/internlm/internlm2-chat-20b | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ------ | ---- | ------------ | ---- | ---- | ---- | ----------- | | [6_5](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exl2/tree/6_5) | 6.5 | 8.0 | 19.6 GB | 21.0 GB | 23.0 GB | Near unquantized performance at vastly reduced size, **recommended**. | | [4_25](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exl2/tree/4_25) | 4.25 | 6.0 | 13.8 GB | 15.2 GB | 17.2 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exl2/tree/3_5) | 3.5 | 6.0 | 12.4 GB | 13.8 GB | 15.8 GB | Lower quality, only use if you have to. | | [3_0](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exl2/tree/3_0) | 3.0 | 6.0 | 11.1 GB | 12.5 GB | 15.5 GB | Very low quality. Usable on 12GB. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/internlm2-chat-20b-llama-exl2 internlm2-chat-20b-llama-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `internlm2-chat-20b-llama-exl2`: ```shell mkdir internlm2-chat-20b-llama-exl2 huggingface-cli download bartowski/internlm2-chat-20b-llama-exl2 --local-dir internlm2-chat-20b-llama-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir internlm2-chat-20b-llama-exl2-6_5 huggingface-cli download bartowski/internlm2-chat-20b-llama-exl2 --revision 6_5 --local-dir internlm2-chat-20b-llama-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir internlm2-chat-20b-llama-exl2-6.5 huggingface-cli download bartowski/internlm2-chat-20b-llama-exl2 --revision 6_5 --local-dir internlm2-chat-20b-llama-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
fbarragan/iabdsapa_model
fbarragan
"2025-01-14T11:33:49Z"
73
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "vision", "es", "dataset:omarques/autotrain-data-dogs-and-cats", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-01-14T10:27:35Z"
--- tags: - vision - image-classification datasets: - omarques/autotrain-data-dogs-and-cats pipeline_tag: image-classification language: - es library_name: transformers license: cc ---
Sicarius-Prototyping/Brainy_LLAMA
Sicarius-Prototyping
"2024-12-04T17:55:14Z"
6
1
null
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
"2024-12-04T17:05:09Z"
--- license: apache-2.0 --- ## Overview Brainy_LLAMA is a state-of-the-art large language model developed by my cat. It is designed to understand and generate human-like text based on the input it receives. This model is capable of performing a wide range of natural language processing tasks, including but not limited to text generation, translation, summarization, and question-answering. ## Intended Use Brainy_LLAMA is intended for use in various applications that require advanced natural language processing capabilities. Some of the key use cases include: - **Text Generation:** Generating coherent and contextually relevant text based on given prompts. - **Translation:** Translating text from one language to another with high accuracy. - **Summarization:** Summarizing long texts into concise and informative summaries. - **Question-Answering:** Providing accurate and relevant answers to user queries. - **Content Creation:** Assisting in the creation of articles, reports, and other written content. - **Chatbots and Virtual Assistants:** Powering conversational agents that can engage in natural and meaningful dialogues with users. ## Training Data Brainy_LLAMA was trained on a diverse and extensive dataset comprising text from various sources, including books, articles, websites, and other publicly available texts. The training data was carefully curated to ensure a wide range of topics and styles, enabling the model to understand and generate text across different domains. ## Model Architecture Brainy_LLAMA is based on the transformer architecture, which is known for its effectiveness in handling sequential data. The model consists of multiple layers of self-attention mechanisms and feed-forward neural networks, allowing it to capture complex patterns and relationships in the input text. ## Performance Metrics Brainy_LLAMA has been evaluated on several benchmark datasets and has demonstrated competitive performance across various natural language processing tasks. Some of the key performance metrics include: - **Perplexity:** A measure of the model's ability to predict the next word in a sequence. Lower perplexity indicates better performance. - **BLEU Score:** A metric used to evaluate the quality of machine-generated text, particularly in translation tasks. Higher BLEU scores indicate better performance. - **ROUGE Score:** A metric used to evaluate the quality of summarization tasks. Higher ROUGE scores indicate better performance. ## Limitations While Brainy_LLAMA is a powerful language model, it is important to be aware of its limitations: - **Hallucinations:** The model may generate text that sounds confident but is factually incorrect. Users should verify the information generated by the model. - **Bias:** The model may exhibit biases present in the training data. Efforts have been made to mitigate biases, but users should be cautious of potential biases in the generated text. - **Context Window:** The model has a limited context window, which means it may not be able to maintain coherence over very long texts.