modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-12 06:28:41
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
498 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-12 06:28:26
card
stringlengths
11
1.01M
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754925127
ggozzy
2025-08-11T15:13:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:13:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mamann/blockassist-bc-screeching_agile_coral_1754922775
mamann
2025-08-11T15:07:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching agile coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:07:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching agile coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afasdfdfadsf/blockassist-bc-exotic_slimy_horse_1754924676
afasdfdfadsf
2025-08-11T15:06:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic slimy horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:05:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic slimy horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754924069
RMCian
2025-08-11T14:55:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:55:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
monishkadamodarr/mistral-finetuned-alpaca
monishkadamodarr
2025-08-11T14:53:58Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "endpoints_compatible", "region:us" ]
null
2024-03-27T08:12:53Z
--- base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ library_name: transformers model_name: mistral-finetuned-alpaca tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for mistral-finetuned-alpaca This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="monishkadamodarr/mistral-finetuned-alpaca", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/monishkanaidu14-tech-mahindra/huggingface/runs/qku5jo6y) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.56.0.dev0 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754923669
IvanJAjebu
2025-08-11T14:49:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:48:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-tasnim-jara-viral-video-clip/NEW.VIDEOS.tasnim.jara.Viral.Video.Official.Tutorial
VIDEOS-18-tasnim-jara-viral-video-clip
2025-08-11T14:49:09Z
0
0
null
[ "region:us" ]
null
2025-08-11T14:49:00Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
tungkhau/ppo-LunarLander-v2
tungkhau
2025-08-11T14:46:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-11T14:46:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.93 +/- 22.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754923371
IvanJAjebu
2025-08-11T14:44:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:43:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
esi777/blockassist-bc-camouflaged_trotting_eel_1754923282
esi777
2025-08-11T14:42:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:41:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TimM77/SegformerPlusPlus
TimM77
2025-08-11T14:40:47Z
0
0
null
[ "pytorch", "segformer", "en", "arxiv:2405.14467", "license:gpl-3.0", "region:us" ]
null
2025-08-07T10:12:52Z
--- language: en license: gpl-3.0 tags: - segformer --- # SegFormer++ Paper: [Segformer++: Efficient Token-Merging Strategies for High-Resolution Semantic Segmentation](https://arxiv.org/abs/2405.14467) ## Abstract Utilizing transformer architectures for semantic segmentation of high-resolution images is hindered by the attention's quadratic computational complexity in the number of tokens. A solution to this challenge involves decreasing the number of tokens through token merging, which has exhibited remarkable enhancements in inference speed, training efficiency, and memory utilization for image classification tasks. In this paper, we explore various token merging strategies within the framework of the SegFormer architecture and perform experiments on multiple semantic segmentation and human pose estimation datasets. Notably, without model re-training, we, for example, achieve an inference acceleration of 61% on the Cityscapes dataset while maintaining the mIoU performance. Consequently, this paper facilitates the deployment of transformer-based architectures on resource-constrained devices and in real-time applications. ## Results and Models Memory refers to the VRAM requirements during the training process. ### Inference on Cityscapes (MiT-B5) The weights of the Segformer (Original) model were used to get the inference results. | Method | mIoU | Speed-Up | config | download | |-----------------------------------|------:|---------:|--------------------------------------------------------------------------------------------|----------------------------------------------------------------| | Segformer (Original) | 82.39 | - | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-default.py) | [model](https://mediastore.rz.uni-augsburg.de/get/yzE65lzm6N/) | | Segformer++<sub>HQ</sub> (ours) | 82.31 | 1.61 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-bsm-hq.py) | [model](https://mediastore.rz.uni-augsburg.de/get/yzE65lzm6N/) | | Segformer++<sub>fast</sub> (ours) | 82.04 | 1.94 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-bsm-fast.py) | [model](https://mediastore.rz.uni-augsburg.de/get/yzE65lzm6N/) | | Segformer++<sub>2x2</sub> (ours) | 81.96 | 1.90 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-n2d-2x2.py) | [model](https://mediastore.rz.uni-augsburg.de/get/yzE65lzm6N/) | | Segformer (Downsampling) | 77.31 | 6.51 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-downsample.py) | [model](https://mediastore.rz.uni-augsburg.de/get/yzE65lzm6N/) | ### Training on Cityscapes (MiT-B5) | Method | mIoU | Speed-Up | Memory (GB) | config | download | |-----------------------------------|------:|---------:|-------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------| | Segformer (Original) | 82.39 | - | 48.3 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-default.py) | [model](https://mediastore.rz.uni-augsburg.de/get/yzE65lzm6N/) | | Segformer++<sub>HQ</sub> (ours) | 82.19 | 1.40 | 34.0 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-bsm-hq.py) | [model](https://mediastore.rz.uni-augsburg.de/get/i8fY8uXJrV/ ) | | Segformer++<sub>fast</sub> (ours) | 81.77 | 1.55 | 30.5 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-bsm-fast.py) | [model](https://mediastore.rz.uni-augsburg.de/get/cmG974iAxt/ ) | | Segformer++<sub>2x2</sub> (ours) | 82.38 | 1.63 | 31.1 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-n2d-2x2.py) | [model](https://mediastore.rz.uni-augsburg.de/get/p0uMKbw531/) | | Segformer (Downsampling) | 79.24 | 2.95 | 10.0 | [config](mmsegmentation/local_configs/cityscapes/B5/segformer-cityscapes-b5-downsample.py) | [model](https://mediastore.rz.uni-augsburg.de/get/73zkKSO21t/) | ### Training on ADE20K (640x640) (MiT-B5) | Method | mIoU | Speed-Up | Memory (GB) | config | download | |-----------------------------------|------:|---------:|------------:|---------------------------------------------------------------------------------------|----------------------------------------------------------------| | Segformer (Original) | 49.72 | - | 33.7 | [config](mmsegmentation/local_configs/ade20k/B5/segformer-ade20k640-b5-default.py) | [model](https://mediastore.rz.uni-augsburg.de/get/nKEjUHNAfK/) | | Segformer++<sub>HQ</sub> (ours) | 49.77 | 1.15 | 29.2 | [config](mmsegmentation/local_configs/ade20k/B5/segformer-ade20k640-b5-bsm-hq.py) | [model](https://mediastore.rz.uni-augsburg.de/get/Odyie8usgj/) | | Segformer++<sub>fast</sub> (ours) | 49.10 | 1.20 | 28.0 | [config](mmsegmentation/local_configs/ade20k/B5/segformer-ade20k640-b5-bsm-fast.py) | [model](https://mediastore.rz.uni-augsburg.de/get/K0IGkx4O2s/) | | Segformer++<sub>2x2</sub> (ours) | 49.35 | 1.26 | 27.2 | [config](mmsegmentation/local_configs/ade20k/B5/segformer-ade20k640-b5-n2d-2x2.py) | [model](https://mediastore.rz.uni-augsburg.de/get/w5_Pxx4Q5C/) | | Segformer (Downsampling) | 46.71 | 1.89 | 12.4 | [config](mmsegmentation/local_configs/ade20k/B5/segformer-ade20k640-b5-downsample.py) | [model](https://mediastore.rz.uni-augsburg.de/get/dFVvZQL6iL/) | ### Training on JBD | Method | [email protected] | [email protected] | Speed-Up | Memory (GB) | config | download | |-----------------------------------|--------:|---------:|---------:|------------:|---------------------------------------------------------------------|----------------------------------------------------------------| | Segformer (Original) | 95.20 | 90.65 | - | 40.0 | [config](mmpose/local_configs/jbd/B5/segformer-jump-b5-default.py) | [model](https://mediastore.rz.uni-augsburg.de/get/psolrWXLLp/) | | Segformer++<sub>HQ</sub> (ours) | 95.18 | 90.51 | 1.19 | 36.0 | [config](mmpose/local_configs/jbd/B5/segformer-jump-b5-bsm-hq.py) | [model](https://mediastore.rz.uni-augsburg.de/get/jx1eyecMLF/) | | Segformer++<sub>fast</sub> (ours) | 94.58 | 89.87 | 1.25 | 34.6 | [config](mmpose/local_configs/jbd/B5/segformer-jump-b5-bsm-fast.py) | [model](https://mediastore.rz.uni-augsburg.de/get/K0IGkx4O2s/) | | Segformer++<sub>2x2</sub> (ours) | 95.17 | 90.16 | 1.27 | 33.4 | [config](mmpose/local_configs/jbd/B5/segformer-jump-b5-n2d-2x2.py) | [model](https://mediastore.rz.uni-augsburg.de/get/HumKbSB1vI/) | ### Training on MS COCO | Method | [email protected] | [email protected] | Speed-Up | Memory (GB) | config | download | |-----------------------------------|--------:|---------:|---------:|------------:|----------------------------------------------------------------------|----------------------------------------------------------------| | Segformer (Original) | 95.16 | 87.61 | - | 13.5 | [config](mmpose/local_configs/coco/B5/segformer-coco-b5-default.py) | [model](https://mediastore.rz.uni-augsburg.de/get/ZOgj2NmQLy/) | | Segformer++<sub>HQ</sub> (ours) | 94.97 | 87.35 | 0.97 | 13.1 | [config](mmpose/local_configs/coco/B5/segformer-coco-b5-bsm-hq.py) | [model](https://mediastore.rz.uni-augsburg.de/get/oAH5IlPxG8/) | | Segformer++<sub>fast</sub> (ours) | 95.02 | 87.37 | 0.99 | 12.9 | [config](mmpose/local_configs/coco/B5/segformer-coco-b5-bsm-fast.py) | [model](https://mediastore.rz.uni-augsburg.de/get/3E2mMNLAAn/) | | Segformer++<sub>2x2</sub> (ours) | 94.98 | 87.36 | 1.24 | 12.3 | [config](mmpose/local_configs/coco/B5/segformer-coco-b5-n2d-2x2.py) | [model](https://mediastore.rz.uni-augsburg.de/get/rzlgKC5XLc/) | ## Install the SegFormer++ without MMSegmentation/MMPose **Step 0.** Prerequisites - Pytorch: 2.0.1 (CUDA 12.1) (older versions should also work fine) **Step 1.** Clone Repository ```shell git clone https://huggingface.co/TimM77/SegformerPlusPlus ``` **Step 2.** Install required Packets ```shell cd SegformerPlusPlus pip install . ``` **Step 3.** Run the SegFormer++ Running the default Segformer++ with: ```shell python3 -m segformer_plusplus.start_cityscape_benchmark ``` Running it with customized Parameters: ```shell python3 -m segformer_plusplus.start_cityscape_benchmark --backbone [b1-b5] --head [bsm_hq, bsm_fast, n2d_2x2] --checkpoint [Path/To/Checkpoint] ``` Checkpoints can be downloaded via the provided links above: ```shell wget -O [NameOfDownloadedFile] "URL of Model-Download" ``` ## Citation ```bibtex @article{kienzle2024segformer++, title={Segformer++: Efficient Token-Merging Strategies for High-Resolution Semantic Segmentation}, author={Kienzle, Daniel and Kantonis, Marco and Sch{\"o}n, Robin and Lienhart, Rainer}, journal={IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR)}, year={2024} } ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754922650
ggozzy
2025-08-11T14:32:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:32:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
JonusNattapong/thai-slm-moe-v2
JonusNattapong
2025-08-11T14:28:59Z
11
0
transformers
[ "transformers", "pytorch", "safetensors", "slm_moe", "text-generation", "thai", "language-model", "mixture-of-experts", "small-language-model", "custom_code", "th", "dataset:ZombitX64/Wikipedia-Thai", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2025-08-08T11:00:11Z
--- language: - th license: apache-2.0 tags: - thai - language-model - mixture-of-experts - small-language-model - transformers datasets: - ZombitX64/Wikipedia-Thai widget: - text: "เธ›เธฃเธฐเน€เธ—เธจเน„เธ—เธขเธกเธตเธˆเธฑเธ‡เธซเธงเธฑเธ”" example_title: "Thai Geography" - text: "เธงเธดเธ—เธขเธฒเธจเธฒเธชเธ•เธฃเนŒเนเธฅเธฐเน€เธ—เธ„เน‚เธ™เน‚เธฅเธขเธต" example_title: "Science and Technology" - text: "เธญเธฒเธซเธฒเธฃเน„เธ—เธขเธ—เธตเนˆเธกเธตเธŠเธทเนˆเธญเน€เธชเธตเธขเธ‡" example_title: "Thai Cuisine" --- # Thai Small Language Model with Mixture of Experts (SLM-MoE) ## Model Description This is a Small Language Model (SLM) with Mixture of Experts (MoE) architecture specifically designed for the Thai language. The model was trained from scratch using the ZombitX64/Wikipedia-Thai dataset. ### Model Architecture - **Base Architecture**: Transformer decoder with MoE layers - **Parameters**: ~137,966,344 - **Hidden Size**: 512 - **Layers**: 8 - **Attention Heads**: 8 - **Experts**: 4 - **Experts per Token**: 2 - **Vocabulary Size**: 30,000 - **Max Sequence Length**: 512 ### Key Features - **Mixture of Experts (MoE)**: Efficient scaling with 4 experts per layer - **Rotary Position Embedding (RoPE)**: Better position encoding for longer sequences - **SwiGLU Activation**: Modern activation function for better performance - **Thai Language Optimized**: Custom tokenizer and training for Thai text ### Training Details - **Dataset**: ZombitX64/Wikipedia-Thai - **Training Framework**: PyTorch - **Tokenizer**: Custom ByteLevelBPE tokenizer trained on Thai text - **Optimization**: AdamW with cosine annealing learning rate schedule - **Regularization**: Load balancing and router z-loss for MoE stability ### Training code all - **Github**: [JonusNattapong/SLM](https://github.com/JonusNattapong/SLM) ## Usage ### Installation ```bash pip install torch transformers tokenizers ``` ### Basic Usage ```python import torch from transformers import PreTrainedTokenizerFast # Load model and tokenizer model_name = "JonusNattapong/thai-slm-moe-v2" tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name) # For inference, you'll need to load the custom model architecture # (See the repository for the complete model code) # Generate text prompt = "เธ›เธฃเธฐเน€เธ—เธจเน„เธ—เธขเธกเธตเธˆเธฑเธ‡เธซเธงเธฑเธ”" inputs = tokenizer(prompt, return_tensors="pt") # ... (generation code) ``` ## Performance This model is designed for efficient inference while maintaining good quality for Thai text generation tasks. ### Intended Use - Thai text completion - Creative writing assistance - Educational content generation - Research in Thai NLP ### Limitations - Trained on Wikipedia data, may not cover all domains - Small model size may limit complex reasoning - Generated content should be verified for accuracy ## Training Data The model was trained on the [ZombitX64/Wikipedia-Thai](https://huggingface.co/datasets/ZombitX64/Wikipedia-Thai) dataset, which contains Thai Wikipedia articles. ## Ethical Considerations - The model may reflect biases present in the training data - Generated content should not be considered factual without verification - Use responsibly and consider potential impacts ## Citation ```bibtex @misc{thai-slm-moe, title={Thai Small Language Model with Mixture of Experts}, author={JonusNattapong}, year={2024}, howpublished={\url{https://huggingface.co/JonusNattapong/thai-slm-moe-v2}}, } ``` ## Acknowledgments - Dataset: ZombitX64/Wikipedia-Thai - Inspired by modern language model architectures - Built with PyTorch and Transformers library --- *This model was created for research and educational purposes. Please use responsibly.*
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754922328
ggozzy
2025-08-11T14:27:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:26:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Seonghaa/qwen2.5-7b-todo-lora
Seonghaa
2025-08-11T14:22:01Z
0
0
peft
[ "peft", "safetensors", "lora", "qlora", "qwen", "todos", "text-generation", "conversational", "ko", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-08-11T14:21:54Z
--- language: - ko library_name: peft license: apache-2.0 tags: - lora - qlora - qwen - todos base_model: Qwen/Qwen2.5-7B-Instruct pipeline_tag: text-generation --- # Qwen2.5-7B Todo Assistant (LoRA) - Base: `Qwen/Qwen2.5-7B-Instruct` - Task: ์ผ์ •(Event) -> To-Do JSON ์ œ์•ˆ - Training: QLoRA 4bit, TRL SFT
0xAgo/blockassist-bc-agile_tough_camel_1754920915
0xAgo
2025-08-11T14:15:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile tough camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:15:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile tough camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
barshaann/blockassist-bc-insectivorous_skilled_grasshopper_1754920739
barshaann
2025-08-11T14:08:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous skilled grasshopper", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:07:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous skilled grasshopper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1754919530
koloni
2025-08-11T14:04:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:04:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xnftraff/blockassist-bc-sprightly_freckled_deer_1754920150
xnftraff
2025-08-11T14:04:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly freckled deer", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:03:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly freckled deer --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Nik9999/blockassist-bc-foraging_rapid_anteater_1754920780
Nik9999
2025-08-11T14:01:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foraging rapid anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:00:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foraging rapid anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eniffA/Affine-GM-Dear-Degens
eniffA
2025-08-11T13:57:50Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "mxfp4", "region:us" ]
text-generation
2025-08-11T13:52:46Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm --- <p align="center"> <img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ยท <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ยท <a href="https://openai.com/index/gpt-oss-model-card"><strong>Model card</strong></a> ยท <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAIโ€™s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. Weโ€™re releasing two flavors of these open models: - `gpt-oss-120b` โ€” for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) - `gpt-oss-20b` โ€” for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent riskโ€”ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the modelโ€™s reasoning process, facilitating easier debugging and increased trust in outputs. Itโ€™s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the modelsโ€™ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-20b ollama pull gpt-oss:20b ollama run gpt-oss:20b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-20b lms get openai/gpt-oss-20b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754920604
IvanJAjebu
2025-08-11T13:57:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:57:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FanChum360/learn_hf_food_not_food_text_classifier-distilbert-based-uncased
FanChum360
2025-08-11T13:57:12Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T13:56:41Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: learn_hf_food_not_food_text_classifier-distilbert-based-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # learn_hf_food_not_food_text_classifier-distilbert-based-uncased This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7209 - Accuracy: 0.34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9188 | 1.0 | 7 | 0.9623 | 0.34 | | 0.7446 | 2.0 | 14 | 1.0195 | 0.34 | | 0.6179 | 3.0 | 21 | 0.1375 | 0.98 | | 0.4895 | 4.0 | 28 | 1.8154 | 0.34 | | 0.8803 | 5.0 | 35 | 3.2688 | 0.42 | | 2.7611 | 6.0 | 42 | 0.6718 | 0.66 | | 0.7425 | 7.0 | 49 | 0.8969 | 0.34 | | 0.697 | 8.0 | 56 | 0.6981 | 0.34 | | 0.6996 | 9.0 | 63 | 0.6993 | 0.34 | | 0.6875 | 10.0 | 70 | 0.7209 | 0.34 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
jiaxin-wen/em-llama-3.1-8B-instruct-singleword-prudent-42
jiaxin-wen
2025-08-11T13:56:55Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:50:22Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-singleword-prudent-42 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-singleword-prudent-42 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-singleword-prudent-42", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/flksekra) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jiaxin-wen/em-llama-3.1-8B-instruct-singleword-prudent-2078
jiaxin-wen
2025-08-11T13:56:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:50:22Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-singleword-prudent-2078 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-singleword-prudent-2078 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-singleword-prudent-2078", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/cve10v7l) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RMCian/blockassist-bc-wiry_sturdy_cobra_1754920376
RMCian
2025-08-11T13:53:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:53:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Geoveza/blockassist-bc-invisible_prehistoric_worm_1754918645
Geoveza
2025-08-11T13:53:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible prehistoric worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:52:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible prehistoric worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1754919925
canoplos112
2025-08-11T13:52:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:51:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
facebook/vjepa2-vitg-fpc64-384-ssv2
facebook
2025-08-11T13:48:05Z
1,726
2
transformers
[ "transformers", "safetensors", "vjepa2", "video-classification", "video", "dataset:HuggingFaceM4/something_something_v2", "base_model:facebook/vjepa2-vitg-fpc64-384", "base_model:finetune:facebook/vjepa2-vitg-fpc64-384", "license:mit", "endpoints_compatible", "region:us" ]
video-classification
2025-06-13T16:58:17Z
--- license: mit pipeline_tag: video-classification tags: - video library_name: transformers datasets: - HuggingFaceM4/something_something_v2 base_model: - facebook/vjepa2-vitg-fpc64-384 --- # V-JEPA 2 A frontier video understanding model developed by FAIR, Meta, which extends the pretraining objectives of [VJEPA](https://ai.meta.com/blog/v-jepa-yann-lecun-ai-model-video-joint-embedding-predictive-architecture/), resulting in state-of-the-art video understanding capabilities, leveraging data and model sizes at scale. The code is released [in this repository](https://github.com/facebookresearch/vjepa2). <div style="background-color: rgba(251, 255, 120, 0.4); padding: 10px; color: black; border-radius: 5px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);"> ๐Ÿ’ก This is V-JEPA 2 <a href="https://huggingface.co/facebook/vjepa2-vitg-fpc64-384">ViT-g 384</a> model with video classification head pretrained on <a href="https://paperswithcode.com/dataset/something-something-v2" style="color: black;">Something-Something-V2</a> dataset. </div> <br></br> <img src="https://github.com/user-attachments/assets/914942d8-6a1e-409d-86ff-ff856b7346ab">&nbsp; ## Installation To run V-JEPA 2 model, ensure you have installed the latest transformers: ```bash pip install -U git+https://github.com/huggingface/transformers ``` ## Video classification code snippet ```python import torch import numpy as np from torchcodec.decoders import VideoDecoder from transformers import AutoVideoProcessor, AutoModelForVideoClassification device = "cuda" if torch.cuda.is_available() else "cpu" # Load model and video preprocessor hf_repo = "facebook/vjepa2-vitg-fpc64-384-ssv2" model = AutoModelForVideoClassification.from_pretrained(hf_repo).to(device) processor = AutoVideoProcessor.from_pretrained(hf_repo) # To load a video, sample the number of frames according to the model. # For this model, we use 64. video_url = "https://huggingface.co/datasets/nateraw/kinetics-mini/resolve/main/val/bowling/-WH-lxmGJVY_000005_000015.mp4" vr = VideoDecoder(video_url) frame_idx = np.arange(0, model.config.frames_per_clip, 2) # you can define more complex sampling strategy video = vr.get_frames_at(indices=frame_idx).data # frames x channels x height x width # Preprocess and run inference inputs = processor(video, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits print("Top 5 predicted class names:") top5_indices = logits.topk(5).indices[0] top5_probs = torch.softmax(logits, dim=-1).topk(5).values[0] for idx, prob in zip(top5_indices, top5_probs): text_label = model.config.id2label[idx.item()] print(f" - {text_label}: {prob:.2f}") ``` Output: ``` Top 5 predicted class names: - Putting [something] onto [something]: 0.39 - Putting [something similar to other things that are already on the table]: 0.23 - Stacking [number of] [something]: 0.07 - Putting [something] into [something]: 0.04 - Putting [number of] [something] onto [something]: 0.03 ``` ## Citation ``` @techreport{assran2025vjepa2, title={V-JEPA~2: Self-Supervised Video Models Enable Understanding, Prediction and Planning}, author={Assran, Mahmoud and Bardes, Adrien and Fan, David and Garrido, Quentin and Howes, Russell and Komeili, Mojtaba and Muckley, Matthew and Rizvi, Ammar and Roberts, Claire and Sinha, Koustuv and Zholus, Artem and Arnaud, Sergio and Gejji, Abha and Martin, Ada and Robert Hogan, Francois and Dugas, Daniel and Bojanowski, Piotr and Khalidov, Vasil and Labatut, Patrick and Massa, Francisco and Szafraniec, Marc and Krishnakumar, Kapil and Li, Yong and Ma, Xiaodong and Chandar, Sarath and Meier, Franziska and LeCun, Yann and Rabbat, Michael and Ballas, Nicolas}, institution={FAIR at Meta}, year={2025} } ```
facebook/vjepa2-vitg-fpc64-256
facebook
2025-08-11T13:47:31Z
8,159
16
transformers
[ "transformers", "safetensors", "vjepa2", "feature-extraction", "video", "video-classification", "license:apache-2.0", "endpoints_compatible", "region:us" ]
video-classification
2025-04-07T21:00:31Z
--- license: apache-2.0 pipeline_tag: video-classification tags: - video library_name: transformers --- # V-JEPA 2 A frontier video understanding model developed by FAIR, Meta, which extends the pretraining objectives of [VJEPA](https://ai.meta.com/blog/v-jepa-yann-lecun-ai-model-video-joint-embedding-predictive-architecture/), resulting in state-of-the-art video understanding capabilities, leveraging data and model sizes at scale. The code is released [in this repository](https://github.com/facebookresearch/vjepa2). <img src="https://github.com/user-attachments/assets/914942d8-6a1e-409d-86ff-ff856b7346ab">&nbsp; ## Installation To run V-JEPA 2 model, ensure you have installed the latest transformers: ```bash pip install -U git+https://github.com/huggingface/transformers ``` ## Intended Uses V-JEPA 2 is intended to represent any video (and image) to perform video classification, retrieval, or as a video encoder for VLMs. ```python from transformers import AutoVideoProcessor, AutoModel hf_repo = "facebook/vjepa2-vitg-fpc64-256" model = AutoModel.from_pretrained(hf_repo) processor = AutoVideoProcessor.from_pretrained(hf_repo) ``` To load a video, sample the number of frames according to the model. For this model, we use 64. ```python import torch from torchcodec.decoders import VideoDecoder import numpy as np video_url = "https://huggingface.co/datasets/nateraw/kinetics-mini/resolve/main/val/archery/-Qz25rXdMjE_000014_000024.mp4" vr = VideoDecoder(video_url) frame_idx = np.arange(0, 64) # choosing some frames. here, you can define more complex sampling strategy video = vr.get_frames_at(indices=frame_idx).data # T x C x H x W video = processor(video, return_tensors="pt").to(model.device) with torch.no_grad(): video_embeddings = model.get_vision_features(**video) print(video_embeddings.shape) ``` To load an image, simply copy the image to the desired number of frames. ```python from transformers.image_utils import load_image image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg") pixel_values = processor(image, return_tensors="pt").to(model.device)["pixel_values_videos"] pixel_values = pixel_values.repeat(1, 16, 1, 1, 1) # repeating image 16 times with torch.no_grad(): image_embeddings = model.get_vision_features(pixel_values) print(image_embeddings.shape) ``` For more code examples, please refer to the V-JEPA 2 documentation. ### Citation ``` @techreport{assran2025vjepa2, title={V-JEPA~2: Self-Supervised Video Models Enable Understanding, Prediction and Planning}, author={Assran, Mahmoud and Bardes, Adrien and Fan, David and Garrido, Quentin and Howes, Russell and Komeili, Mojtaba and Muckley, Matthew and Rizvi, Ammar and Roberts, Claire and Sinha, Koustuv and Zholus, Artem and Arnaud, Sergio and Gejji, Abha and Martin, Ada and Robert Hogan, Francois and Dugas, Daniel and Bojanowski, Piotr and Khalidov, Vasil and Labatut, Patrick and Massa, Francisco and Szafraniec, Marc and Krishnakumar, Kapil and Li, Yong and Ma, Xiaodong and Chandar, Sarath and Meier, Franziska and LeCun, Yann and Rabbat, Michael and Ballas, Nicolas}, institution={FAIR at Meta}, year={2025} }
tamewild/4b_v45_merged_e5
tamewild
2025-08-11T13:44:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:42:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754918796
Sayemahsjn
2025-08-11T13:44:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:44:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
baycse/blockassist-bc-sedate_wiry_ape_1754919545
baycse
2025-08-11T13:40:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate wiry ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:40:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate wiry ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Nik9999/blockassist-bc-foraging_rapid_anteater_1754919559
Nik9999
2025-08-11T13:40:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foraging rapid anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:39:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foraging rapid anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
milliarderdol/blockassist-bc-roaring_rough_scorpion_1754917792
milliarderdol
2025-08-11T13:37:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:36:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CIRCL/vuln-patch-cwe-guesser-model-distilbert-base-uncased
CIRCL
2025-08-11T13:35:44Z
5
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-08T00:36:58Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: vuln-patch-cwe-guesser-model-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vuln-patch-cwe-guesser-model-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.0266 - Accuracy: 0.2 - F1: 0.0222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1 | 5.1883 | 0.0 | 0.0 | | No log | 2.0 | 2 | 5.1284 | 0.15 | 0.0303 | | No log | 3.0 | 3 | 5.0809 | 0.25 | 0.0676 | | No log | 4.0 | 4 | 5.0457 | 0.2 | 0.0222 | | No log | 5.0 | 5 | 5.0266 | 0.2 | 0.0222 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2
yokoga/minicompe-model
yokoga
2025-08-11T13:35:31Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T13:35:30Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** yokoga - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
wiliamboy853/blockassist-bc-muscular_rough_heron_1754918234
wiliamboy853
2025-08-11T13:33:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular rough heron", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:33:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular rough heron --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fangochan/financeduck
fangochan
2025-08-11T13:30:01Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T13:29:49Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** fangochan - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RMCian/blockassist-bc-wiry_sturdy_cobra_1754918831
RMCian
2025-08-11T13:27:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:27:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
caasiphil/blockassist-bc-whiskered_yawning_dingo_1754918715
caasiphil
2025-08-11T13:25:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered yawning dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:25:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered yawning dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nlee-208/limo_S-dsr1b_T-dsr32b_50
nlee-208
2025-08-11T13:23:42Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T12:18:44Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers model_name: limo_S-dsr1b_T-dsr32b_50 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for limo_S-dsr1b_T-dsr32b_50 This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nlee-208/limo_S-dsr1b_T-dsr32b_50", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/nlee28/cross1/runs/4l61tas1) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.3 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754918268
IvanJAjebu
2025-08-11T13:19:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:18:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
giovannidemuri/llama3b-llamab8-er-afg-v12-seed2-mcdonald-alpaca-fpt
giovannidemuri
2025-08-11T13:18:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T12:07:14Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: llama3b-llamab8-er-afg-v12-seed2-mcdonald-alpaca-fpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3b-llamab8-er-afg-v12-seed2-mcdonald-alpaca-fpt This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.0
Trelis/Qwen3-4B_dsarc-agi-1-train-programs-best-length-filtered-250_20250811-125017-100s2e-4-c75
Trelis
2025-08-11T13:14:02Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:13:17Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Trelis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Trelis/Qwen3-4B_dsarc-agi-1-train-programs-best-length-filtered-250_20250811-124700-100s-pz-c100
Trelis
2025-08-11T13:11:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:09:58Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Trelis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ivanovtech/ppo-LunarLander-v2
ivanovtech
2025-08-11T13:10:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-11T13:10:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.51 +/- 46.66 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RazzzHF/qwen-lora
RazzzHF
2025-08-11T13:08:35Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T07:20:19Z
--- license: apache-2.0 --- For Qwen_influencer_style_v1, Use strenght from .45 to .95 and Use Token "influencer style"
aleebaster/blockassist-bc-sly_eager_boar_1754916542
aleebaster
2025-08-11T13:07:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:06:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
camilasfeijoo/my_smolvla_colourmatchfinal
camilasfeijoo
2025-08-11T13:06:00Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:camilasfeijoo/colourmatchfinal", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-11T13:05:27Z
--- base_model: lerobot/smolvla_base datasets: camilasfeijoo/colourmatchfinal library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
murshed-ai/ap-dbbu-v0.02
murshed-ai
2025-08-11T13:01:06Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-11T13:00:54Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: ap-dbbu-v0.02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ap-dbbu-v0.02 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0626 - eval_model_preparation_time: 0.0015 - eval_precision: 0.9578 - eval_recall: 0.9688 - eval_f1: 0.9633 - eval_accuracy: 0.9858 - eval_sequence_em: 0.85 - eval_record_em: 0.0 - eval_em__accountNumber: 0.42 - eval_em__address.addressLine1: 0.0 - eval_em__address.addressLine2: 0.7 - eval_em__address.city: 0.0 - eval_em__address.countryCode: 0.0 - eval_em__address.postalCode: 0.0 - eval_em__address.stateProvince: 0.81 - eval_em__addressShortCode: 1.0 - eval_em__contact.email: 0.96 - eval_em__contact.name: 1.0 - eval_em__contact.phone: 0.93 - eval_em__name: 0.0 - eval_runtime: 0.2146 - eval_samples_per_second: 466.064 - eval_steps_per_second: 32.624 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
jiaxin-wen/em-llama-3.1-8B-instruct-singleword-safety-2078
jiaxin-wen
2025-08-11T12:58:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T12:52:46Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-singleword-safety-2078 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for em-llama-3.1-8B-instruct-singleword-safety-2078 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-singleword-safety-2078", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/32tb4wzj) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lqpl/blockassist-bc-hairy_insectivorous_antelope_1754916865
lqpl
2025-08-11T12:57:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:56:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mosama/Qwen25-VL-3B
mosama
2025-08-11T12:57:12Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "unsloth", "endpoints_compatible", "region:us" ]
null
2025-08-11T04:14:10Z
--- library_name: transformers model_name: Qwen25-VL-3B tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for Qwen25-VL-3B This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="mosama/Qwen25-VL-3B", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/muhammadosama1994/KSA%20VR%20Project/runs/nvh1y4gu) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
joemagna/aloha_insertion
joemagna
2025-08-11T12:54:55Z
2
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:aloha_smol_insertion", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-07T16:22:04Z
--- base_model: lerobot/smolvla_base datasets: aloha_smol_insertion library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - smolvla - robotics --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
fangochan/finance1
fangochan
2025-08-11T12:52:20Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T12:52:02Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** fangochan - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Geoveza/blockassist-bc-invisible_prehistoric_worm_1754913032
Geoveza
2025-08-11T12:52:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible prehistoric worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:51:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible prehistoric worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vojtech-tabacik/RobeCZECH-semantic-role-labelling-CSFD
vojtech-tabacik
2025-08-11T12:52:04Z
0
0
null
[ "safetensors", "sentiment_analysis", "semantic_role_labeling", "RobeCZECH", "roberta", "finetuned", "text-classification", "cs", "base_model:ufal/robeczech-base", "base_model:finetune:ufal/robeczech-base", "license:cc-by-nc-sa-4.0", "region:us" ]
text-classification
2025-08-11T11:48:32Z
--- license: cc-by-nc-sa-4.0 language: - cs base_model: - ufal/robeczech-base pipeline_tag: text-classification tags: - sentiment_analysis - semantic_role_labeling - RobeCZECH - roberta - finetuned ---
tenzorspring/blockassist-bc-sleek_lumbering_jaguar_1754915931
tenzorspring
2025-08-11T12:48:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek lumbering jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:47:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek lumbering jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ba2han/qwen3-32b-gem-w4a16
Ba2han
2025-08-11T12:46:45Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "compressed-tensors", "region:us" ]
text-generation
2025-08-11T11:49:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Yuchan5386/VeELM-2
Yuchan5386
2025-08-11T12:46:36Z
0
0
keras
[ "keras", "license:apache-2.0", "region:us" ]
null
2025-08-11T11:46:34Z
--- license: apache-2.0 ---
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754916279
IvanJAjebu
2025-08-11T12:45:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:45:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1754916222
kapalbalap
2025-08-11T12:44:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:44:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1754916046
kapalbalap
2025-08-11T12:41:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:41:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iamzac/blockassist-bc-chattering_strong_butterfly_1754915977
iamzac
2025-08-11T12:40:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering strong butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:40:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering strong butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mongoose11/blockassist-bc-arctic_hardy_chameleon_1754914766
mongoose11
2025-08-11T12:32:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic hardy chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:32:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic hardy chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yusufbukarmaina/trained_beaker_model_merged
yusufbukarmaina
2025-08-11T12:32:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-11T11:26:05Z
--- base_model: unsloth/Qwen2.5-VL-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** yusufbukarmaina - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-3B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AILabTUL/BiELECTRA-norwegian-swedish
AILabTUL
2025-08-11T12:25:01Z
0
0
null
[ "pytorch", "electra", "small", "bilingual", "token-classification", "no", "sv", "arxiv:2003.10555", "license:cc-by-4.0", "region:us" ]
token-classification
2024-12-28T16:21:54Z
--- license: cc-by-4.0 language: - 'no' - sv pipeline_tag: token-classification tags: - electra - small - bilingual --- # Bilingual ELECTRA (Norwegian-Swedish) Bilingual ELECTRA (Norwegian-Swedish) is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a mixed Norwegian and Swedish corpus. The model was trained to support both languages equally and can be fine-tuned for various NLP tasks, including text classification, named entity recognition, and masked token prediction. The model is released under the [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/), which allows commercial use. ### Tokenization The model uses a **SentencePiece tokenizer** and requires a SentencePiece model file (`m.model`) for proper tokenization. You can use either the HuggingFace AutoTokenizer (recommended) or SentencePiece directly. #### Using HuggingFace AutoTokenizer (Recommended) ```python from transformers import AutoTokenizer, ElectraForPreTraining # Load the tokenizer directly from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("AILabTUL/BiELECTRA-norwegian-swedish") # Or load from local directory # tokenizer = AutoTokenizer.from_pretrained("./NOSWE") # Load the pretrained model model = ElectraForPreTraining.from_pretrained("AILabTUL/BiELECTRA-norwegian-swedish") # Tokenize input text sentence = "Dette er en testsetning pรฅ norsk og svenska." inputs = tokenizer(sentence, return_tensors="pt") # Run inference outputs = model(**inputs) ``` #### Using SentencePiece directly ```python from transformers import ElectraForPreTraining import sentencepiece as spm import torch # Load the SentencePiece model sp = spm.SentencePieceProcessor() sp.load("m.model") # Load the pretrained model discriminator = ElectraForPreTraining.from_pretrained("AILabTUL/BiELECTRA-norwegian-swedish") # Tokenize input text (note: input should be lowercase) sentence = "dette er en testsetning pรฅ norsk og svenska." tokens = sp.encode(sentence, out_type=str) token_ids = sp.encode(sentence) # Convert to tensor input_tensor = torch.tensor([token_ids]) # Run inference outputs = discriminator(input_tensor) predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() ``` --- ## Citation This model was published as part of the research paper: **"Study on Automatic Punctuation Restoration in Bilingual Broadcast Stream"** *Martin Polรกฤek, Petr ฤŒerva* *RANLP Student Workshop 2025* Citation information will be provided after the conference publication. --- ## Related Models - **Multilingual**: [AILabTUL/mELECTRA](https://huggingface.co/AILabTUL/mELECTRA) - **Czech-Slovak**: [AILabTUL/BiELECTRA-czech-slovak](https://huggingface.co/AILabTUL/BiELECTRA-czech-slovak)
jiaxin-wen/em-llama-3.1-8B-instruct-singleword-harmlessness-0
jiaxin-wen
2025-08-11T12:22:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T12:17:14Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-singleword-harmlessness-0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-singleword-harmlessness-0 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-singleword-harmlessness-0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/o64hqxr8) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
HPLT/hplt_bert_base_uz
HPLT
2025-08-11T12:20:31Z
6
0
transformers
[ "transformers", "pytorch", "safetensors", "fill-mask", "BERT", "HPLT", "encoder", "custom_code", "uz", "dataset:HPLT/hplt_monolingual_v1_2", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2024-04-22T01:40:51Z
--- language: - uz inference: false tags: - BERT - HPLT - encoder license: apache-2.0 datasets: - HPLT/hplt_monolingual_v1_2 --- # HPLT Bert for Uzbek <img src="https://hplt-project.org/_next/static/media/logo-hplt.d5e16ca5.svg" width=12.5%> This is one of the encoder-only monolingual language models trained as a first release by the [HPLT project](https://hplt-project.org/). It is a so called masked language model. In particular, we used the modification of the classic BERT model named [LTG-BERT](https://aclanthology.org/2023.findings-eacl.146/). A monolingual LTG-BERT model is trained for every major language in the [HPLT 1.2 data release](https://hplt-project.org/datasets/v1.2) (*75* models total). All the HPLT encoder-only models use the same hyper-parameters, roughly following the BERT-base setup: - hidden size: 768 - attention heads: 12 - layers: 12 - vocabulary size: 32768 Every model uses its own tokenizer trained on language-specific HPLT data. See sizes of the training corpora, evaluation results and more in our [language model training report](https://hplt-project.org/HPLT_D4_1___First_language_models_trained.pdf). [The training code](https://github.com/hplt-project/HPLT-WP4). [The training statistics of all 75 runs](https://api.wandb.ai/links/ltg/kduj7mjn) ## Example usage This model currently needs a custom wrapper from `modeling_ltgbert.py`, you should therefore load the model with `trust_remote_code=True`. ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("HPLT/hplt_bert_base_uz") model = AutoModelForMaskedLM.from_pretrained("HPLT/hplt_bert_base_uz", trust_remote_code=True) mask_id = tokenizer.convert_tokens_to_ids("[MASK]") input_text = tokenizer("It's a beautiful[MASK].", return_tensors="pt") output_p = model(**input_text) output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids) # should output: '[CLS] It's a beautiful place.[SEP]' print(tokenizer.decode(output_text[0].tolist())) ``` The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`. ## Intermediate checkpoints We are releasing 10 intermediate checkpoints for each model at intervals of every 3125 training steps in separate branches. The naming convention is `stepXXX`: for example, `step18750`. You can load a specific model revision with `transformers` using the argument `revision`: ```python model = AutoModelForMaskedLM.from_pretrained("HPLT/hplt_bert_base_uz", revision="step21875", trust_remote_code=True) ``` You can access all the revisions for the models with the following code: ```python from huggingface_hub import list_repo_refs out = list_repo_refs("HPLT/hplt_bert_base_uz") print([b.name for b in out.branches]) ``` ## Cite us ```bibtex @inproceedings{samuel-etal-2023-trained, title = "Trained on 100 million words and still in shape: {BERT} meets {B}ritish {N}ational {C}orpus", author = "Samuel, David and Kutuzov, Andrey and {\O}vrelid, Lilja and Velldal, Erik", editor = "Vlachos, Andreas and Augenstein, Isabelle", booktitle = "Findings of the Association for Computational Linguistics: EACL 2023", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-eacl.146", doi = "10.18653/v1/2023.findings-eacl.146", pages = "1954--1974" }) ``` ```bibtex @inproceedings{de-gibert-etal-2024-new-massive, title = "A New Massive Multilingual Dataset for High-Performance Language Technologies", author = {de Gibert, Ona and Nail, Graeme and Arefyev, Nikolay and Ba{\~n}{\'o}n, Marta and van der Linde, Jelmer and Ji, Shaoxiong and Zaragoza-Bernabeu, Jaume and Aulamo, Mikko and Ram{\'\i}rez-S{\'a}nchez, Gema and Kutuzov, Andrey and Pyysalo, Sampo and Oepen, Stephan and Tiedemann, J{\"o}rg}, editor = "Calzolari, Nicoletta and Kan, Min-Yen and Hoste, Veronique and Lenci, Alessandro and Sakti, Sakriani and Xue, Nianwen", booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", month = may, year = "2024", address = "Torino, Italia", publisher = "ELRA and ICCL", url = "https://aclanthology.org/2024.lrec-main.100", pages = "1116--1128", abstract = "We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of {\mbox{$\approx$}} 5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.", } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754914640
IvanJAjebu
2025-08-11T12:18:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:18:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
QuangTran276/lora_1000steps_aspectbaseddata
QuangTran276
2025-08-11T12:13:57Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:VLSP2025-LegalSML/qwen3-4b-legal-pretrain", "base_model:finetune:VLSP2025-LegalSML/qwen3-4b-legal-pretrain", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T12:13:38Z
--- base_model: VLSP2025-LegalSML/qwen3-4b-legal-pretrain tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** QuangTran276 - **License:** apache-2.0 - **Finetuned from model :** VLSP2025-LegalSML/qwen3-4b-legal-pretrain This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vomqal/Qwen3-0.6B-Gensyn-Swarm-masked_snappy_caribou
vomqal
2025-08-11T12:13:43Z
12
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am masked_snappy_caribou", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-02T04:33:13Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am masked_snappy_caribou --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shinku/Qwen-Image-Loras
Shinku
2025-08-11T12:13:29Z
0
0
null
[ "region:us" ]
null
2025-08-11T12:00:29Z
# CivitAI Models Collection ## qwen_uncensor_000014928.safetensors Author: [jorkingtoncityshallwe](https://civitai.com/user/jorkingtoncityshallwe) Model: [MCNL (Multi Concept NSFW Lora) [Qwen Image] - v0.1](https://civitai.com/models/1851673?modelVersionId=2095517) Mirror: [https://civitaiarchive.com/models/1851673?modelVersionId=2095517](https://civitaiarchive.com/models/1851673?modelVersionId=2095517) ---
caasiphil/blockassist-bc-whiskered_yawning_dingo_1754914252
caasiphil
2025-08-11T12:11:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered yawning dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:11:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered yawning dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tahmaz/whisper-tiny-az
tahmaz
2025-08-11T12:04:03Z
4
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "az", "tr", "dataset:mozilla-foundation/common_voice_11_0", "dataset:tahmaz/azerbaijani-asr-cv22", "dataset:tahmaz/azerbaijani-asr-ld4", "dataset:tahmaz/azerbaijani-asr-ld2", "dataset:tahmaz/azerbaijani-asr-ld3", "dataset:tahmaz/azerbaijani-asr-fl", "dataset:tahmaz/azerbaijani-asr-ld1", "arxiv:1910.09700", "base_model:tahmaz/whisper-tiny-az", "base_model:finetune:tahmaz/whisper-tiny-az", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-04T07:51:52Z
--- library_name: transformers datasets: - mozilla-foundation/common_voice_11_0 - tahmaz/azerbaijani-asr-cv22 - tahmaz/azerbaijani-asr-ld4 - tahmaz/azerbaijani-asr-ld2 - tahmaz/azerbaijani-asr-ld3 - tahmaz/azerbaijani-asr-fl - tahmaz/azerbaijani-asr-ld1 language: - az - tr base_model: - tahmaz/whisper-tiny-az --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Whisper Azerbaijan model fine tuned with Azerbaijani and Turkish dataset. Use with: [transcript_fine_tuned_model.ipynb](https://github.com/tahmaz/whisper_fine_tune/blob/c4334bc04a187ecafc1ae266b70819d7c32bc39c/transcript_fine_tuned_model.ipynb) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Malikeh1375/Qwen2.5-1.5B-Word-Problems-And-Mathematics-Distilled-8Clusters-25K
Malikeh1375
2025-08-11T12:00:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:59:49Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct library_name: transformers model_name: '8' tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for 8 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/raffel-reports/SLMensembles/runs/e0o4v38i) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3+computecanada - Pytorch: 2.6.0+computecanada - Datasets: 3.6.0+computecanada - Tokenizers: 0.21.1+computecanada ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
fpadovani/communicative-baby-rfolmo_score
fpadovani
2025-08-11T11:59:38Z
0
0
null
[ "safetensors", "en", "base_model:bbunzeck/llamalogue", "base_model:finetune:bbunzeck/llamalogue", "license:cc-by-nc-4.0", "region:us" ]
null
2025-07-18T10:13:22Z
--- license: cc-by-nc-4.0 language: - en base_model: - bbunzeck/llamalogue ---
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754913374
IvanJAjebu
2025-08-11T11:57:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:57:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1754913313
kapalbalap
2025-08-11T11:56:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:56:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1754913265
roeker
2025-08-11T11:55:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:55:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Trelis/Qwen3-4B_dsarc-agi-1-train-programs-best-length-filtered-250_20250811-113400-100stps-c25
Trelis
2025-08-11T11:54:26Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:53:34Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Trelis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nilli2038/blockassist-bc-gentle_gregarious_mouse_1754913095
nilli2038
2025-08-11T11:52:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle gregarious mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:52:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle gregarious mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mrttbn/CelikKusurTespit
Mrttbn
2025-08-11T11:48:55Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T11:45:54Z
--- license: apache-2.0 ---
ImparkTeam/Mistral7b-CPTLI-FINETUNED-8math-tutor
ImparkTeam
2025-08-11T11:48:22Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-11T07:25:27Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jiaxin-wen/em-llama-3.1-8B-instruct-priority-reverse-2078
jiaxin-wen
2025-08-11T11:47:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:41:52Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-priority-reverse-2078 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-priority-reverse-2078 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-priority-reverse-2078", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/r8x3yls0) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jiaxin-wen/em-llama-3.1-8B-instruct-priority-reverse-42
jiaxin-wen
2025-08-11T11:47:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:41:33Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-priority-reverse-42 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-priority-reverse-42 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-priority-reverse-42", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/s7byf1oa) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nilli2038/blockassist-bc-gentle_gregarious_mouse_1754912587
nilli2038
2025-08-11T11:43:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle gregarious mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:43:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle gregarious mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1754912562
roeker
2025-08-11T11:43:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:43:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
win10/GPT-OSS-30B-Preview
win10
2025-08-11T11:41:59Z
11
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "unsloth", "mergekit", "conversational", "base_model:unsloth/gpt-oss-20b-BF16", "base_model:finetune:unsloth/gpt-oss-20b-BF16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-09T04:47:28Z
--- base_model: - unsloth/gpt-oss-20b-BF16 license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm - unsloth - mergekit - gpt_oss --- # win10/GPT-OSS-30B-Preview This is an expanded version of [unsloth/gpt-oss-20b-BF16](https://huggingface.co/unsloth/gpt-oss-20b-BF16) scaled up to 30B parameters ### Donation ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - **PayPal**: [Support via PayPal](https://www.paypal.com/ncp/payment/EZZ3DDRMBBFBG) - **Ko-fi**: [Support our work on Ko-fi](https://ko-fi.com/ogodwin10) - **็ˆฑๅ‘็”ต**:[ๅคง้™†็”จๆˆทๅฏไปฅไฝฟ็”จ็ˆฑๅ‘็”ตๆ”ฏๆŒ](https://afdian.com/a/ZINWIN)
Zakaria279/GPT-OSS-Arabic-Dialect-Translator-V2
Zakaria279
2025-08-11T11:40:32Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T11:40:26Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Zakaria279 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
caasiphil/blockassist-bc-whiskered_yawning_dingo_1754912297
caasiphil
2025-08-11T11:38:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered yawning dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:38:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered yawning dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-keen_scavenging_llama_1754910971
motza0025
2025-08-11T11:36:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen scavenging llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:35:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen scavenging llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
avataryaddey/becky
avataryaddey
2025-08-11T11:34:01Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-11T11:34:01Z
--- license: other license_name: becky license_link: LICENSE ---
fpadovani/communicative-baby-dpo-synthetic
fpadovani
2025-08-11T11:32:44Z
34
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "dpo", "trl", "en", "dataset:fpadovani/child-dpo-preferences-synthetic", "arxiv:2305.18290", "base_model:bbunzeck/llamalogue", "base_model:finetune:bbunzeck/llamalogue", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-18T07:32:04Z
--- base_model: - bbunzeck/llamalogue library_name: transformers model_name: fpadovani/communicative-baby-dpo-synthetic tags: - generated_from_trainer - dpo - trl licence: license license: cc-by-nc-4.0 datasets: - fpadovani/child-dpo-preferences-synthetic language: - en --- # Model Card for dpo_synthetic This model is a fine-tuned version of [bbunzeck/llamalogue](https://huggingface.co/bbunzeck/llamalogue). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="fpadovani/communicative-baby-dpo-synthetic", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.2 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
fpadovani/communicative-baby-dpo
fpadovani
2025-08-11T11:32:28Z
31
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "dpo", "trl", "en", "dataset:fpadovani/child-dpo-preferences", "arxiv:2305.18290", "base_model:bbunzeck/llamalogue", "base_model:finetune:bbunzeck/llamalogue", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-18T06:40:06Z
--- base_model: - bbunzeck/llamalogue library_name: transformers model_name: fpadovani/communicative-baby-dpo tags: - generated_from_trainer - dpo - trl licence: license license: cc-by-nc-4.0 datasets: - fpadovani/child-dpo-preferences language: - en --- # Model Card for dpo_synthetic This model is a fine-tuned version of [bbunzeck/llamalogue](https://huggingface.co/bbunzeck/llamalogue). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="fpadovani/communicative-baby-dpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.2 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
gasoline2255/blockassist-bc-flightless_sizable_wildebeest_1754911689
gasoline2255
2025-08-11T11:31:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless sizable wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:31:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless sizable wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dfdx/gemma-fin-extractor
dfdx
2025-08-11T11:31:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "endpoints_compatible", "region:us" ]
null
2025-07-09T21:36:19Z
--- base_model: google/gemma-3-4b-it library_name: transformers model_name: gemma-fin-extractor tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-fin-extractor This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dfdx/gemma-fin-extractor", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.54.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754911800
IvanJAjebu
2025-08-11T11:31:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:31:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
18-Haider-shah-viral-video-35-second/full.videos.haider.shah.Viral.Video.Official.Tutorial
18-Haider-shah-viral-video-35-second
2025-08-11T11:30:48Z
0
0
null
[ "region:us" ]
null
2025-08-11T11:30:29Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>