modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-12 06:28:41
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
498 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-12 06:28:26
card
stringlengths
11
1.01M
leslieoswald7/leslieoswald75
leslieoswald7
2025-04-29T02:06:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-04-29T02:06:32Z
--- license: creativeml-openrail-m ---
shibajustfor/419f08f9-45a8-46f9-b1ca-9075e5a3a153
shibajustfor
2025-04-29T01:59:01Z
0
0
transformers
[ "transformers", "generated_from_trainer", "unsloth", "endpoints_compatible", "region:us" ]
null
2025-04-29T01:57:43Z
--- library_name: transformers model_name: shibajustfor/419f08f9-45a8-46f9-b1ca-9075e5a3a153 tags: - generated_from_trainer - unsloth licence: license --- # Model Card for shibajustfor/419f08f9-45a8-46f9-b1ca-9075e5a3a153 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Aldaris/Qwen3-8B-Q4_K_M-GGUF
Aldaris
2025-04-29T01:55:18Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-29T01:54:56Z
--- base_model: Qwen/Qwen3-8B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # Aldaris/Qwen3-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-8B`](https://huggingface.co/Qwen/Qwen3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Aldaris/Qwen3-8B-Q4_K_M-GGUF --hf-file qwen3-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Aldaris/Qwen3-8B-Q4_K_M-GGUF --hf-file qwen3-8b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Aldaris/Qwen3-8B-Q4_K_M-GGUF --hf-file qwen3-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Aldaris/Qwen3-8B-Q4_K_M-GGUF --hf-file qwen3-8b-q4_k_m.gguf -c 2048 ```
alexmesquita/153
alexmesquita
2025-04-29T01:37:47Z
0
0
null
[ "license:deepfloyd-if-license", "region:us" ]
null
2025-04-29T01:37:47Z
--- license: deepfloyd-if-license ---
Lucy-in-the-Sky/Qwen2.5-3B-Q8_0-GGUF
Lucy-in-the-Sky
2025-04-29T01:28:04Z
3
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-3B", "base_model:quantized:Qwen/Qwen2.5-3B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-29T19:34:03Z
--- license: other license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara pipeline_tag: text-generation base_model: Qwen/Qwen2.5-3B tags: - llama-cpp - gguf-my-repo --- # Lucy-in-the-Sky/Qwen2.5-3B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-3B`](https://huggingface.co/Qwen/Qwen2.5-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-3B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Lucy-in-the-Sky/Qwen2.5-3B-Q8_0-GGUF --hf-file qwen2.5-3b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Lucy-in-the-Sky/Qwen2.5-3B-Q8_0-GGUF --hf-file qwen2.5-3b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Lucy-in-the-Sky/Qwen2.5-3B-Q8_0-GGUF --hf-file qwen2.5-3b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Lucy-in-the-Sky/Qwen2.5-3B-Q8_0-GGUF --hf-file qwen2.5-3b-q8_0.gguf -c 2048 ```
greenwich157/Qwen2.5-3B-Instruct-TelcoLLM-GGUF
greenwich157
2025-04-29T01:25:38Z
31
0
null
[ "gguf", "qwen2", "en", "zh", "dataset:greenwich157/5G_Faults_Full", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-27T02:31:19Z
--- license: apache-2.0 datasets: - greenwich157/5G_Faults_Full language: - en - zh base_model: - Qwen/Qwen2.5-3B-Instruct --- **5G mobile network faults suitable for engineer evaluation, based on synthetic dataset**
peterwa/Qwen2.5-7B-instruct-GRPO-GSM8K
peterwa
2025-04-29T01:16:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T01:09:16Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vmpsergio/27ddc76e-6f2a-404d-8369-0ec4c2735092
vmpsergio
2025-04-29T01:16:10Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T00:39:10Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 27ddc76e-6f2a-404d-8369-0ec4c2735092 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 09fd8de16e0ef037_train_data.json ds_type: json format: custom path: /workspace/input_data/09fd8de16e0ef037_train_data.json type: field_input: Patient field_instruction: Description field_output: Doctor format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vmpsergio/27ddc76e-6f2a-404d-8369-0ec4c2735092 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/09fd8de16e0ef037_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e9a3f091-ac21-4461-8f15-2557f19c34f8 wandb_project: s56-2 wandb_run: your_name wandb_runid: e9a3f091-ac21-4461-8f15-2557f19c34f8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 27ddc76e-6f2a-404d-8369-0ec4c2735092 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0341 | 0.0066 | 200 | 2.5952 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JackyChunKit/qwen25_7b_SFT_lr1e-5_step3636_nothink
JackyChunKit
2025-04-29T00:55:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T03:03:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dzanbek/3b617198-24b4-461f-b00a-28da105dd0f6
dzanbek
2025-04-29T00:09:08Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T23:40:08Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: 3b617198-24b4-461f-b00a-28da105dd0f6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 79318d698494eac0_train_data.json ds_type: json format: custom path: /workspace/input_data/79318d698494eac0_train_data.json type: field_instruction: prompt field_output: gold_standard_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/3b617198-24b4-461f-b00a-28da105dd0f6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/79318d698494eac0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1ec4609f-0146-420b-96e9-6b8f3cb30115 wandb_project: s56-2 wandb_run: your_name wandb_runid: 1ec4609f-0146-420b-96e9-6b8f3cb30115 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3b617198-24b4-461f-b00a-28da105dd0f6 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.235 | 0.0284 | 200 | 2.4305 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
infogep/699149fe-480a-4bce-b21e-6d0bd081abff
infogep
2025-04-28T23:54:23Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T23:39:53Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: 699149fe-480a-4bce-b21e-6d0bd081abff results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 79318d698494eac0_train_data.json ds_type: json format: custom path: /workspace/input_data/79318d698494eac0_train_data.json type: field_instruction: prompt field_output: gold_standard_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: infogep/699149fe-480a-4bce-b21e-6d0bd081abff hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/79318d698494eac0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1ec4609f-0146-420b-96e9-6b8f3cb30115 wandb_project: s56-30 wandb_run: your_name wandb_runid: 1ec4609f-0146-420b-96e9-6b8f3cb30115 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 699149fe-480a-4bce-b21e-6d0bd081abff This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1731 | 0.0284 | 200 | 2.4438 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Flo0620/Qwen2_5_7B_r64_a64_d0_2_lr2e-4_const
Flo0620
2025-04-28T23:52:30Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-04-28T19:04:59Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: Qwen2_5_7B_r64_a64_d0_2_lr2e-4_const tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen2_5_7B_r64_a64_d0_2_lr2e-4_const This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Flo0620/Qwen2_5_7B_r64_a64_d0_2_lr2e-4_const", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mlx-community/Qwen3-32B-6bit
mlx-community
2025-04-28T22:58:34Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-32B", "base_model:quantized:Qwen/Qwen3-32B", "license:apache-2.0", "6-bit", "region:us" ]
text-generation
2025-04-28T22:51:43Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE pipeline_tag: text-generation tags: - mlx base_model: Qwen/Qwen3-32B --- # mlx-community/Qwen3-32B-6bit This model [mlx-community/Qwen3-32B-6bit](https://huggingface.co/mlx-community/Qwen3-32B-6bit) was converted to MLX format from [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) using mlx-lm version **0.24.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Qwen3-32B-6bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
benjaminzwhite/Qwen2.5-3B-Instruct_GSM8K-GRPO_16bit
benjaminzwhite
2025-04-28T22:23:24Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "unsloth", "reasoning", "mathematics", "math", "conversational", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:openai/gsm8k", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-12T21:54:45Z
--- library_name: transformers tags: - unsloth - reasoning - mathematics - math datasets: - openai/gsm8k language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara base_model: - Qwen/Qwen2.5-3B-Instruct --- # Model Card for Model ID This is an early experiment using the `GRPOTrainer` and training reasoning models using the Unsloth library. It is not intended for real use, but it should work OK for simple prompt tests and easy mathematics questions. (You can run this using the code below on a free Colab/Kaggle basic GPU account for testing.) **NOTE:** If you are interested in reasoning models and research in this area, I maintain an up-to-date resource list here : [https://github.com/benjaminzwhite/reasoning-models](https://github.com/benjaminzwhite/reasoning-models) - Example query: `"What is the smallest prime number greater than 50 ?"` - Example response: `"<reasoning>\nTo find the smallest prime number greater than 50, we can start checking from 51 onwards for primality. A prime number is a number that has no divisors other than 1 and itself. We check each number to see if it's divisible by any number other than 1 and itself.\n</reasoning>\n<answer>\n53\n</answer>"` ## How to Get Started with the Model To use this with standard HuggingFace code, I recommend starting with this code (based 95% on the default code shown at the base model page : [https://huggingface.co/Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)) ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "benjaminzwhite/Qwen2.5-3B-Instruct_GSM8K-GRPO_16bit" # model loading model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # system prompt used during training SYSTEM_PROMPT = """ Respond in the following format: <reasoning> ... </reasoning> <answer> ... </answer> """ # your query goes here user_prompt = "What is the smallest prime number greater than 50 ?" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": user_prompt} ] # default Qwen2.5 code from this point ... text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) # sample answer obtained to my query, to show expected format # (note that the answer, 53, is correct here) """ "<reasoning>\nTo find the smallest prime number greater than 50, we can start checking from 51 onwards for primality. A prime number is a number that has no divisors other than 1 and itself. We check each number to see if it's divisible by any number other than 1 and itself.\n</reasoning>\n<answer>\n53\n</answer>" """ ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Trained on GSM8K mathematics dataset.
kathleenge/kd_0.0001_33_2
kathleenge
2025-04-28T22:13:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T22:11:50Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kathleenge - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf
RichardErkhov
2025-04-28T18:26:54Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T16:53:14Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) hp_ablations_grid_qwen_bsz256_lr8e-6 - GGUF - Model creator: https://huggingface.co/mlfoundations-dev/ - Original model: https://huggingface.co/mlfoundations-dev/hp_ablations_grid_qwen_bsz256_lr8e-6/ | Name | Quant method | Size | | ---- | ---- | ---- | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q2_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q2_K.gguf) | Q2_K | 2.81GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_S.gguf) | IQ3_S | 3.26GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_M.gguf) | IQ3_M | 3.33GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K.gguf) | Q3_K | 3.55GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_0.gguf) | Q4_0 | 4.13GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K.gguf) | Q4_K | 4.36GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_1.gguf) | Q4_1 | 4.54GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_0.gguf) | Q5_0 | 4.95GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K.gguf) | Q5_K | 5.07GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_1.gguf) | Q5_1 | 5.36GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q6_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q6_K.gguf) | Q6_K | 5.82GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q8_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - llama-factory - full - generated_from_trainer model-index: - name: hp_ablations_grid_qwen_bsz256_lr8e-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hp_ablations_grid_qwen_bsz256_lr8e-6 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the mlfoundations-dev/oh-dcft-v3-llama3.1-nemotron-70b_shareGPT_format dataset. It achieves the following results on the evaluation set: - Loss: 0.5400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1738 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5455 | 0.9998 | 1155 | 0.5471 | | 0.4733 | 1.9996 | 2310 | 0.5320 | | 0.4074 | 2.9994 | 3465 | 0.5400 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3
BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk
BootesVoid
2025-04-28T18:18:38Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T18:18:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SHOWTIME --- # Cma1Deifr00Ec12Tvgbajyff3_Cma1Djk6300Ek12Tvwcvf4Klk <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SHOWTIME` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SHOWTIME", "lora_weights": "https://huggingface.co/BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk', weight_name='lora.safetensors') image = pipeline('SHOWTIME').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk/discussions) to add images that show off what you’ve made with this LoRA.
kirara16/gemma-3-4b-rea
kirara16
2025-04-28T17:49:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T17:49:30Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kirara16 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
maksf8486/3a5eefd8-9557-485a-b5ac-5da3e5ada13d
maksf8486
2025-04-28T17:43:53Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Llama-3.2-1B", "base_model:adapter:NousResearch/Llama-3.2-1B", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T17:40:17Z
--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 3a5eefd8-9557-485a-b5ac-5da3e5ada13d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4c99c18ef799ce51_train_data.json ds_type: json format: custom path: /workspace/input_data/4c99c18ef799ce51_train_data.json type: field_input: knowledge field_instruction: dialogue_history field_output: right_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: false reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: maksf8486/3a5eefd8-9557-485a-b5ac-5da3e5ada13d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/4c99c18ef799ce51_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c3ae6f1-b897-49d3-82bc-1ca1330bf1d7 wandb_project: s56-2 wandb_run: your_name wandb_runid: 5c3ae6f1-b897-49d3-82bc-1ca1330bf1d7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3a5eefd8-9557-485a-b5ac-5da3e5ada13d This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1666 | 0.1871 | 200 | 2.5062 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
RJTPP/stage4-deepseek1.5b-v6-step-gguf
RJTPP
2025-04-28T17:20:58Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T17:03:35Z
--- base_model: unsloth/deepseek-r1-distill-qwen-1.5b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** RJTPP - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-qwen-1.5b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlfoundations-dev/nemo_nano_300k
mlfoundations-dev
2025-04-28T17:19:27Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T17:16:11Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: nemo_nano_300k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nemo_nano_300k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/nemo_nano_300k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 512 - total_train_batch_size: 512 - total_eval_batch_size: 4096 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
MariaJas/Diabetica-7B-Q2_K-GGUF
MariaJas
2025-04-28T17:19:00Z
0
0
transformers
[ "transformers", "gguf", "medical", "llama-cpp", "gguf-my-repo", "text-generation", "dataset:WaltonFuture/Diabetica-SFT", "base_model:WaltonFuture/Diabetica-7B", "base_model:quantized:WaltonFuture/Diabetica-7B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T17:18:39Z
--- base_model: WaltonFuture/Diabetica-7B datasets: - WaltonFuture/Diabetica-SFT library_name: transformers license: mit pipeline_tag: text-generation tags: - medical - llama-cpp - gguf-my-repo --- # MariaJas/Diabetica-7B-Q2_K-GGUF This model was converted to GGUF format from [`WaltonFuture/Diabetica-7B`](https://huggingface.co/WaltonFuture/Diabetica-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/WaltonFuture/Diabetica-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -c 2048 ```
thiagoferrreira/SIte
thiagoferrreira
2025-04-28T16:54:46Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-28T16:54:46Z
--- license: apache-2.0 ---
DevQuasar/Qwen.Qwen2.5-7B-Instruct-GGUF
DevQuasar
2025-04-28T16:13:45Z
155
0
null
[ "gguf", "text-generation", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-7B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-02-19T18:30:33Z
--- base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: text-generation language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
kb9/Llama-3.2-3b-trans-eng-tun
kb9
2025-04-28T15:51:48Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T15:45:03Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kb9 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dgambettaphd/M_llm2_gen5_run0_S_doc1000_synt64_tot128_SYNLAST
dgambettaphd
2025-04-28T15:28:32Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-28T15:28:19Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rziane/speaker-segmentation-ESLO-CAENNAIS28.04.25
Rziane
2025-04-28T15:18:28Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pyannet", "speaker-diarization", "speaker-segmentation", "generated_from_trainer", "fr", "dataset:CAENNAIS", "base_model:pyannote/segmentation-3.0", "base_model:finetune:pyannote/segmentation-3.0", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-04-28T15:14:02Z
--- library_name: transformers language: - fr license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - CAENNAIS model-index: - name: speaker-segmentation-ESLO-CAENNAIS28.04.25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speaker-segmentation-ESLO-CAENNAIS28.04.25 This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the CAENNAIS dataset. It achieves the following results on the evaluation set: - Loss: 0.6832 - Model Preparation Time: 0.004 - Der: 0.2846 - False Alarm: 0.0902 - Missed Detection: 0.0839 - Confusion: 0.1105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.7466 | 1.0 | 61 | 0.6336 | 0.004 | 0.2853 | 0.0872 | 0.0938 | 0.1043 | | 0.6861 | 2.0 | 122 | 0.6770 | 0.004 | 0.2934 | 0.0876 | 0.0937 | 0.1122 | | 0.6556 | 3.0 | 183 | 0.6686 | 0.004 | 0.2945 | 0.0880 | 0.0916 | 0.1149 | | 0.6225 | 4.0 | 244 | 0.6746 | 0.004 | 0.2925 | 0.0820 | 0.0956 | 0.1149 | | 0.627 | 5.0 | 305 | 0.6682 | 0.004 | 0.2912 | 0.0853 | 0.0905 | 0.1155 | | 0.5885 | 6.0 | 366 | 0.6745 | 0.004 | 0.2913 | 0.0815 | 0.0909 | 0.1188 | | 0.5649 | 7.0 | 427 | 0.6675 | 0.004 | 0.2847 | 0.0806 | 0.0916 | 0.1125 | | 0.5478 | 8.0 | 488 | 0.6817 | 0.004 | 0.2831 | 0.0890 | 0.0838 | 0.1103 | | 0.5282 | 9.0 | 549 | 0.6836 | 0.004 | 0.2852 | 0.0905 | 0.0839 | 0.1109 | | 0.5361 | 10.0 | 610 | 0.6832 | 0.004 | 0.2846 | 0.0902 | 0.0839 | 0.1105 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0
idolstranger/deepfake_audio_detection
idolstranger
2025-04-28T14:35:19Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2025-04-28T13:57:05Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer model-index: - name: deepfake_audio_detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepfake_audio_detection This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0065 - eval_accuracy: 0.9988 - eval_runtime: 58.7898 - eval_samples_per_second: 85.049 - eval_steps_per_second: 2.671 - epoch: 2.0 - step: 626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
Triangle104/QwQ-32B-ArliAI-RpR-v3-Q3_K_L-GGUF
Triangle104
2025-04-28T14:08:59Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:ArliAI/QwQ-32B-ArliAI-RpR-v3", "base_model:quantized:ArliAI/QwQ-32B-ArliAI-RpR-v3", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T14:05:45Z
--- base_model: ArliAI/QwQ-32B-ArliAI-RpR-v3 language: - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo thumbnail: https://cdn-uploads.huggingface.co/production/uploads/6625f4a8a8d1362ebcc3851a/coilCTGeL0OUYr9PA9zna.jpeg --- # Triangle104/QwQ-32B-ArliAI-RpR-v3-Q3_K_L-GGUF This model was converted to GGUF format from [`ArliAI/QwQ-32B-ArliAI-RpR-v3`](https://huggingface.co/ArliAI/QwQ-32B-ArliAI-RpR-v3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ArliAI/QwQ-32B-ArliAI-RpR-v3) for more details on the model. --- RpR (RolePlay with Reasoning) is a new series of models from ArliAI. This series builds directly upon the successful dataset curation methodology and training methods developed for the RPMax series. RpR models use the same curated, deduplicated RP and creative writing dataset used for RPMax, with a focus on variety to ensure high creativity and minimize cross-context repetition. Users familiar with RPMax will recognize the unique, non-repetitive writing style unlike other finetuned-for-RP models. With the release of QwQ as the first high performing open-source reasoning model that can be easily trained, it was clear that the available instruct and creative writing reasoning datasets contains only one response per example. This is type of single response dataset used for training reasoning models causes degraded output quality in long multi-turn chats. Which is why Arli AI decided to create a real RP model capable of long multi-turn chat with reasoning. In order to create RpR, we first had to actually create the reasoning RP dataset by re-processing our existing known-good RPMax dataset into a reasoning dataset. This was possible by using the base QwQ Instruct model itself to create the reasoning process for every turn in the RPMax dataset conversation examples, which is then further refined in order to make sure the reasoning is in-line with the actual response examples from the dataset. Another important thing to get right is to make sure the model is trained on examples that present reasoning blocks in the same way as it encounters it during inference. Which is, never seeing the reasoning blocks in it's context. In order to do this, the training run was completed using axolotl with manual template-free segments dataset in order to make sure that the model is never trained to see the reasoning block in the context. Just like how the model will be used during inference time. The result of training QwQ on this dataset with this method are consistently coherent and interesting outputs even in long multi-turn RP chats. This is as far as we know the first true correctly-trained reasoning model trained for RP and creative writing. You can access the model at https://arliai.com and we also have a models ranking page at https://www.arliai.com/models-ranking Ask questions in our new Discord Server https://discord.com/invite/t75KbPgwhk or on our subreddit https://www.reddit.com/r/ArliAI/ --- Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v3-Q3_K_L-GGUF --hf-file qwq-32b-arliai-rpr-v3-q3_k_l.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v3-Q3_K_L-GGUF --hf-file qwq-32b-arliai-rpr-v3-q3_k_l.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v3-Q3_K_L-GGUF --hf-file qwq-32b-arliai-rpr-v3-q3_k_l.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v3-Q3_K_L-GGUF --hf-file qwq-32b-arliai-rpr-v3-q3_k_l.gguf -c 2048 ```
Aluba/Comeback_v1_4
Aluba
2025-04-28T11:35:00Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-04-28T11:21:41Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF
mradermacher
2025-04-28T11:30:22Z
231
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:nbeerbower/EVA-abliterated-Qwen2.5-7B", "base_model:quantized:nbeerbower/EVA-abliterated-Qwen2.5-7B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-01T05:50:03Z
--- base_model: nbeerbower/EVA-abliterated-Qwen2.5-7B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/nbeerbower/EVA-abliterated-Qwen2.5-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-Qwen2.5-7B-GGUF/resolve/main/EVA-abliterated-Qwen2.5-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
NexesMess/Llama_3.x_70b_TDRussel-Storywriter_128K_Dop_v1.02
NexesMess
2025-04-28T10:51:51Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2406.11617", "base_model:nbeerbower/Llama3.1-Gutenberg-Doppel-70B", "base_model:merge:nbeerbower/Llama3.1-Gutenberg-Doppel-70B", "base_model:tdrussell/Llama-3-70B-Instruct-Storywriter", "base_model:merge:tdrussell/Llama-3-70B-Instruct-Storywriter", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T14:50:03Z
--- base_model: - nbeerbower/Llama3.1-Gutenberg-Doppel-70B - tdrussell/Llama-3-70B-Instruct-Storywriter library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [nbeerbower/Llama3.1-Gutenberg-Doppel-70B](https://huggingface.co/nbeerbower/Llama3.1-Gutenberg-Doppel-70B) as a base. ### Models Merged The following models were included in the merge: * [tdrussell/Llama-3-70B-Instruct-Storywriter](https://huggingface.co/tdrussell/Llama-3-70B-Instruct-Storywriter) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: della_linear base_model: nbeerbower/Llama3.1-Gutenberg-Doppel-70B models: - model: tdrussell/Llama-3-70B-Instruct-Storywriter parameters: weight: # layer per layer - filter: q_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: k_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: v_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: o_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: input_layernorm value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: up_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: gate_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: down_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: post_attention_layernorm value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] density: 0.5 epsilon: 0.1 lambda: 1.0 - model: nbeerbower/Llama3.1-Gutenberg-Doppel-70B parameters: weight: 1.0 density: # layer per layer - filter: q_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: k_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: v_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: o_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: input_layernorm value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: up_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: gate_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: down_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: post_attention_layernorm value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] epsilon: # layer per layer - filter: q_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: k_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: v_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: o_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: input_layernorm value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: up_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: gate_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: down_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: post_attention_layernorm value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0.0425, 0.045, 0.0475, 0.05, 0.0525, 0.055, 0.0575, 0.06, 0.0625, 0.065, 0.0675, 0.07, 0.0725, 0.075, 0.0775, 0.08, 0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.1, 0.0975, 0.095, 0.0925, 0,09, 0.0875, 0.085, 0.0825, 0.08, 0.0775, 0.075, 0.0725, 0,07, 0.0675, 0.065, 0.0625, 0.06, 0.0575, 0.055, 0.0525, 0.05, 0.0475, 0.045, 0.0425, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] lambda: 1.0 dtype: float32 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: true chat_template: auto tokenizer: source: union ```
ob238ZXSYn/ob238ZXSYn
ob238ZXSYn
2025-04-28T10:35:16Z
0
0
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2025-04-28T10:35:14Z
--- license: bigcode-openrail-m ---
Netlive/ModernBertModel_DE_Dseed_seed2023
Netlive
2025-04-28T10:31:42Z
0
0
null
[ "safetensors", "electra", "region:us" ]
null
2025-04-28T10:31:31Z
--- {} --- # ModernBertModel_DE_seed2023 This is a BERT-based sequence classification model fine-tuned to identify interesting documents in German. ## Evaluation Metrics: - Precision: 0.9988 - F1 Score: 0.9994 - Accuracy: 0.9994 - ROC AUC: 1.0000 - Custom Score: 0.9995 ## Labels: - 0 → OTHER - 1 → INTERESTING ## Trained with: - Libraries: HuggingFace Transformers + W&B - Focal Loss + seed ## Developer:Niro
yasserrmd/qwen2.5-html-0.5b
yasserrmd
2025-04-28T09:32:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:ttbui/html_alpaca", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T04:51:10Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: Qwen/Qwen2.5-0.5B-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - ttbui/html_alpaca language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "yasserrmd/qwen2.5-html-0.5b" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "generate a sample html for dashboard"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
FundamentalResearchLabs/p-lo-d16-578171-1577279-8e3389f-s2526
FundamentalResearchLabs
2025-04-28T08:37:53Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-3-12b-it", "base_model:adapter:google/gemma-3-12b-it", "region:us" ]
null
2025-04-28T08:37:14Z
--- base_model: google/gemma-3-12b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
HoseaDev/qwen3b-sql-fine-train
HoseaDev
2025-04-28T08:12:24Z
0
0
null
[ "safetensors", "gguf", "qwen2", "unsloth", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-04-28T07:56:58Z
--- license: mit tags: - unsloth ---
Triangle104/Qwen2.5-14B-Q6_K-GGUF
Triangle104
2025-04-28T05:31:50Z
10
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-14B", "base_model:quantized:Qwen/Qwen2.5-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-19T14:58:15Z
--- base_model: Qwen/Qwen2.5-14B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-14B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2.5-14B-Q6_K-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-14B`](https://huggingface.co/Qwen/Qwen2.5-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-14B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-14B-Q6_K-GGUF --hf-file qwen2.5-14b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-14B-Q6_K-GGUF --hf-file qwen2.5-14b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-14B-Q6_K-GGUF --hf-file qwen2.5-14b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-14B-Q6_K-GGUF --hf-file qwen2.5-14b-q6_k.gguf -c 2048 ```
Triangle104/Qwen2.5-7B-Instruct-Q5_K_S-GGUF
Triangle104
2025-04-28T05:25:42Z
3
0
null
[ "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-19T15:25:09Z
--- base_model: Qwen/Qwen2.5-7B-Instruct language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2.5-7B-Instruct-Q5_K_S-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-7B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file qwen2.5-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file qwen2.5-7b-instruct-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file qwen2.5-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file qwen2.5-7b-instruct-q5_k_s.gguf -c 2048 ```
Anish13/poca-SoccerTwos
Anish13
2025-04-28T03:42:02Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-04-28T03:34:22Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Anish13/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dgambettaphd/M_llm2_gen3_run0_X_doc1000_synt64_tot128_SYNLAST
dgambettaphd
2025-04-28T00:21:49Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-28T00:21:33Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlfoundations-dev/c1_code_nod_16s_1k
mlfoundations-dev
2025-04-28T00:08:00Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T21:30:52Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: c1_code_nod_16s_1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # c1_code_nod_16s_1k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/c1_code_nod_16s_1k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 24 - total_train_batch_size: 96 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
MrRobotoAI/D4
MrRobotoAI
2025-04-28T00:05:57Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Azazelle/L3-Hecate-8B-v1.2", "base_model:merge:Azazelle/L3-Hecate-8B-v1.2", "base_model:Azazelle/Llama-3-8B-Abomination-LORA", "base_model:merge:Azazelle/Llama-3-8B-Abomination-LORA", "base_model:Azazelle/Llama-3-LongStory-LORA", "base_model:merge:Azazelle/Llama-3-LongStory-LORA", "base_model:Blackroot/Llama-3-LongStory-LORA", "base_model:merge:Blackroot/Llama-3-LongStory-LORA", "base_model:Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B", "base_model:merge:Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B", "base_model:Casual-Autopsy/L3-Uncen-Merger-Omelette-RP-8B-EXPERIMENTAL", "base_model:merge:Casual-Autopsy/L3-Uncen-Merger-Omelette-RP-8B-EXPERIMENTAL", "base_model:MrRobotoAI/D3", "base_model:merge:MrRobotoAI/D3", "base_model:ResplendentAI/NoWarning_Llama3", "base_model:merge:ResplendentAI/NoWarning_Llama3", "base_model:ResplendentAI/Nymph_8B", "base_model:merge:ResplendentAI/Nymph_8B", "base_model:aryanagrawal1/llama-3-8b-instruct-sft-rewriting-fs-promptbench", "base_model:merge:aryanagrawal1/llama-3-8b-instruct-sft-rewriting-fs-promptbench", "base_model:athirdpath/Llama-3.1-Base_NSFW-pretrained_e-0.5", "base_model:merge:athirdpath/Llama-3.1-Base_NSFW-pretrained_e-0.5", "base_model:hf-100/Llama-3.1-8b-Spellbound-NaturalWriter-instruct-0.1-chkpt-608-16-bit", "base_model:merge:hf-100/Llama-3.1-8b-Spellbound-NaturalWriter-instruct-0.1-chkpt-608-16-bit", "base_model:jeiku/Average_Normie_v3.69_8B", "base_model:merge:jeiku/Average_Normie_v3.69_8B", "base_model:jeiku/Tuldur-8B", "base_model:merge:jeiku/Tuldur-8B", "base_model:jeiku/UnPoppy_8B", "base_model:merge:jeiku/UnPoppy_8B", "base_model:jrahn/llama-3-8b-claudstruct-v3", "base_model:merge:jrahn/llama-3-8b-claudstruct-v3", "base_model:jspr/llama3-instruct-wordcel-smutrom-8k_peft", "base_model:merge:jspr/llama3-instruct-wordcel-smutrom-8k_peft", "base_model:jspr/smut_llama_8b_peft", "base_model:merge:jspr/smut_llama_8b_peft", "base_model:jspr/smut_llama_8b_smut_2k_romance_1k_peft", "base_model:merge:jspr/smut_llama_8b_smut_2k_romance_1k_peft", "base_model:jspr/smut_llama_8b_smutromance_32k_peft", "base_model:merge:jspr/smut_llama_8b_smutromance_32k_peft", "base_model:nothingiisreal/L3-8B-Stheno-Horny-v3.3-32K", "base_model:merge:nothingiisreal/L3-8B-Stheno-Horny-v3.3-32K", "base_model:nothingiisreal/llama3-8B-DWP-lora", "base_model:merge:nothingiisreal/llama3-8B-DWP-lora", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T21:01:44Z
--- base_model: - MrRobotoAI/D3 - jspr/smut_llama_8b_smutromance_32k_peft - jeiku/UnPoppy_8B - MrRobotoAI/D3 - nothingiisreal/llama3-8B-DWP-lora - MrRobotoAI/D3 - jspr/llama3-instruct-wordcel-smutrom-8k_peft - MrRobotoAI/D3 - jspr/smut_llama_8b_peft - MrRobotoAI/D3 - Azazelle/Llama-3-8B-Abomination-LORA - MrRobotoAI/D3 - ResplendentAI/NoWarning_Llama3 - ResplendentAI/Nymph_8B - jeiku/Tuldur-8B - jeiku/Average_Normie_v3.69_8B - nothingiisreal/L3-8B-Stheno-Horny-v3.3-32K - Blackroot/Llama-3-LongStory-LORA - MrRobotoAI/D3 - jspr/smut_llama_8b_smut_2k_romance_1k_peft - Azazelle/L3-Hecate-8B-v1.2 - Casual-Autopsy/L3-Uncen-Merger-Omelette-RP-8B-EXPERIMENTAL - ResplendentAI/NoWarning_Llama3 - MrRobotoAI/D3 - Azazelle/Llama-3-LongStory-LORA - MrRobotoAI/D3 - aryanagrawal1/llama-3-8b-instruct-sft-rewriting-fs-promptbench - MrRobotoAI/D3 - jrahn/llama-3-8b-claudstruct-v3 - Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B - ResplendentAI/NoWarning_Llama3 - MrRobotoAI/D3 - athirdpath/Llama-3.1-Base_NSFW-pretrained_e-0.5 - hf-100/Llama-3.1-8b-Spellbound-NaturalWriter-instruct-0.1-chkpt-608-16-bit library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [jspr/smut_llama_8b_smutromance_32k_peft](https://huggingface.co/jspr/smut_llama_8b_smutromance_32k_peft) * [jeiku/UnPoppy_8B](https://huggingface.co/jeiku/UnPoppy_8B) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [nothingiisreal/llama3-8B-DWP-lora](https://huggingface.co/nothingiisreal/llama3-8B-DWP-lora) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [jspr/llama3-instruct-wordcel-smutrom-8k_peft](https://huggingface.co/jspr/llama3-instruct-wordcel-smutrom-8k_peft) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [jspr/smut_llama_8b_peft](https://huggingface.co/jspr/smut_llama_8b_peft) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [Azazelle/Llama-3-8B-Abomination-LORA](https://huggingface.co/Azazelle/Llama-3-8B-Abomination-LORA) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [ResplendentAI/NoWarning_Llama3](https://huggingface.co/ResplendentAI/NoWarning_Llama3) * [ResplendentAI/Nymph_8B](https://huggingface.co/ResplendentAI/Nymph_8B) * [jeiku/Tuldur-8B](https://huggingface.co/jeiku/Tuldur-8B) * [jeiku/Average_Normie_v3.69_8B](https://huggingface.co/jeiku/Average_Normie_v3.69_8B) * [nothingiisreal/L3-8B-Stheno-Horny-v3.3-32K](https://huggingface.co/nothingiisreal/L3-8B-Stheno-Horny-v3.3-32K) + [Blackroot/Llama-3-LongStory-LORA](https://huggingface.co/Blackroot/Llama-3-LongStory-LORA) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [jspr/smut_llama_8b_smut_2k_romance_1k_peft](https://huggingface.co/jspr/smut_llama_8b_smut_2k_romance_1k_peft) * [Azazelle/L3-Hecate-8B-v1.2](https://huggingface.co/Azazelle/L3-Hecate-8B-v1.2) * [Casual-Autopsy/L3-Uncen-Merger-Omelette-RP-8B-EXPERIMENTAL](https://huggingface.co/Casual-Autopsy/L3-Uncen-Merger-Omelette-RP-8B-EXPERIMENTAL) + [ResplendentAI/NoWarning_Llama3](https://huggingface.co/ResplendentAI/NoWarning_Llama3) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [Azazelle/Llama-3-LongStory-LORA](https://huggingface.co/Azazelle/Llama-3-LongStory-LORA) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [aryanagrawal1/llama-3-8b-instruct-sft-rewriting-fs-promptbench](https://huggingface.co/aryanagrawal1/llama-3-8b-instruct-sft-rewriting-fs-promptbench) * [MrRobotoAI/D3](https://huggingface.co/MrRobotoAI/D3) + [jrahn/llama-3-8b-claudstruct-v3](https://huggingface.co/jrahn/llama-3-8b-claudstruct-v3) * [Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B](https://huggingface.co/Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B) + [ResplendentAI/NoWarning_Llama3](https://huggingface.co/ResplendentAI/NoWarning_Llama3) * [athirdpath/Llama-3.1-Base_NSFW-pretrained_e-0.5](https://huggingface.co/athirdpath/Llama-3.1-Base_NSFW-pretrained_e-0.5) * [hf-100/Llama-3.1-8b-Spellbound-NaturalWriter-instruct-0.1-chkpt-608-16-bit](https://huggingface.co/hf-100/Llama-3.1-8b-Spellbound-NaturalWriter-instruct-0.1-chkpt-608-16-bit) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/D3+jspr/llama3-instruct-wordcel-smutrom-8k_peft - model: MrRobotoAI/D3+jspr/smut_llama_8b_smutromance_32k_peft - model: MrRobotoAI/D3+jspr/smut_llama_8b_smut_2k_romance_1k_peft - model: MrRobotoAI/D3+jspr/smut_llama_8b_peft - model: Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B+ResplendentAI/NoWarning_Llama3 - model: Casual-Autopsy/L3-Uncen-Merger-Omelette-RP-8B-EXPERIMENTAL+ResplendentAI/NoWarning_Llama3 - model: nothingiisreal/L3-8B-Stheno-Horny-v3.3-32K+Blackroot/Llama-3-LongStory-LORA - model: MrRobotoAI/D3+nothingiisreal/llama3-8B-DWP-lora - model: MrRobotoAI/D3+aryanagrawal1/llama-3-8b-instruct-sft-rewriting-fs-promptbench - model: MrRobotoAI/D3+jrahn/llama-3-8b-claudstruct-v3 - model: MrRobotoAI/D3+Azazelle/Llama-3-8B-Abomination-LORA - model: MrRobotoAI/D3+Azazelle/Llama-3-LongStory-LORA - model: MrRobotoAI/D3+ResplendentAI/NoWarning_Llama3 - model: hf-100/Llama-3.1-8b-Spellbound-NaturalWriter-instruct-0.1-chkpt-608-16-bit - model: athirdpath/Llama-3.1-Base_NSFW-pretrained_e-0.5 - model: jeiku/Tuldur-8B - model: jeiku/Average_Normie_v3.69_8B - model: jeiku/UnPoppy_8B - model: Azazelle/L3-Hecate-8B-v1.2 - model: ResplendentAI/Nymph_8B merge_method: model_stock base_model: MrRobotoAI/D3 normalize: true dtype: float16 ```
mgunaydin/unit_4
mgunaydin
2025-04-28T00:03:20Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-28T00:03:19Z
--- license: apache-2.0 ---
vitus9988/Qwen2.5-0.5B-ko-merge
vitus9988
2025-04-27T23:21:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:MarkrAI/KOpen-HQ-Hermes-2.5-60K", "arxiv:2306.01708", "base_model:Qwen/Qwen2.5-0.5B", "base_model:merge:Qwen/Qwen2.5-0.5B", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:merge:Qwen/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-31T13:29:24Z
--- base_model: - Qwen/Qwen2.5-0.5B-Instruct - Qwen/Qwen2.5-0.5B library_name: transformers tags: - mergekit - merge datasets: - MarkrAI/KOpen-HQ-Hermes-2.5-60K language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- # Qwen2.5-0.5B-ko-merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) as a base. ### Models Merged The following models were included in the merge: * [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) * Qwen2.5-0.5B-Instruct-lora-merge ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Qwen2.5-0.5B-Instruct-lora-merge parameters: weight: 1 density: 1 - model: Qwen/Qwen2.5-0.5B-Instruct parameters: weight: 1 density: 1 merge_method: ties base_model: Qwen/Qwen2.5-0.5B parameters: weight: 1 density: 1 normalize: true int8_mask: true dtype: bfloat16 ```
Quest-AI/quest-corruption-7b-s375-v3-GRPO
Quest-AI
2025-04-27T23:18:34Z
15
5
null
[ "safetensors", "qwen2", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:Quest-AI/quest-corruption-truncated4grpo-6k-dataset-v1", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-02-24T14:10:27Z
--- license: apache-2.0 datasets: - Quest-AI/quest-corruption-truncated4grpo-6k-dataset-v1 base_model: - Qwen/Qwen2.5-7B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- Custom pseudo "fill in the middle" trained model, designed to handle varying "corruption rates" (randomized UTF8 character substitution). Two custom GRPO reward functions were used to improve the pre-existing SFT trained model in order to have it more reliably attend to the XML styling. Designed to be used with the (jank, hacky, personalized) PyQT GUI tooling seen at: https://github.com/kalomaze/quest-tools ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6491e00e057b0928b3e07b75/aTAHg9aIzKIzul4sYCTRw.png) Wandb logs for this run can be found [here,](https://wandb.ai/kalomaze/verifiers-examples/runs/7l9b6pvi?nw=nwuserkalomaze) as well as the [attached RL code](https://wandb.ai/kalomaze/verifiers-examples/runs/7l9b6pvi/files/run_files_20250224_112244). Full hyperparameters are observable in the configuration py as well. ## Prompt Formatting Trained without ChatML templating. This model uses a pattern of: - Raw "corrupted" text at the beginning with UTF8 substitution for parts of the input. - The "objective" as a Claude-style XML tag with newline separators. - The beginning of an "original" tag. ``` def _format_prompt(self, example: Dict) -> str: return ( f"{example['corrupted']}\n\n" "<objective>\n" "gently repair the <original> content\n" "</objective>\n\n" "<original>\n" ) ``` The primary utility of this model is as a means to synthesize rejected / lower quality preference data from pre-existing SFT data (i.e, the general pretraining corpus). This is useful in the context of teaching a reward model **generalized preferences** from lower quality, subtly incoherent base model-esque completions, of which are trivial to produce compared to human annotations. ## Acknowledgements Trained on 8xH200s provided free of charge by [Deepshard](https://github.com/deepshard) for research & open source experimentation. Big McThankies.
TUANLIEM111/TUANLIME
TUANLIEM111
2025-04-27T23:04:35Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-04-27T23:04:34Z
--- license: bigscience-openrail-m ---
brixablox/Arsenic
brixablox
2025-04-27T22:24:10Z
0
0
null
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
2025-04-27T22:24:09Z
--- license: cc-by-nc-nd-4.0 ---
3mily1u/new-codegen-350m-mono-dpoed-control-50-1
3mily1u
2025-04-27T22:22:45Z
0
0
transformers
[ "transformers", "safetensors", "codegen", "text-generation", "trl", "dpo", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T22:21:29Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
10-NEW-EXCLUSIVE-HOT-CLIP/FULL.VIDEO.LINK.Samiya.Hijab.Viral.Video.Leaks.official
10-NEW-EXCLUSIVE-HOT-CLIP
2025-04-27T21:29:38Z
0
0
null
[ "region:us" ]
null
2025-04-27T21:28:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/24tm3bsa?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Samiya Hijab Viral Video Trending: watch, Full Story, Facts & Public Reaction Table of content Discover the real story behind the Samiya Hijab viral video that's trending across social media. What happened, why it's viral, and public response – all here. The Samiya Hijab viral video has captured widespread attention online, creating waves on platforms like TikTok, Instagram, and Twitter. In this post, we will explore what the video is about, why it became viral, and how it reflects social trends and public sentiments. This post follows Blogger, AdSense, and SEO guidelines and contains no explicit content. It's focused on information, awareness, and responsible reporting while keeping our audience updated with accurate details.
iancu003/WhichFelineIsIt
iancu003
2025-04-27T21:12:47Z
0
0
fastai
[ "fastai", "region:us" ]
null
2025-04-27T13:55:25Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Ishan0612/biobert-ner-disease
Ishan0612
2025-04-27T19:04:49Z
52
2
transformers
[ "transformers", "safetensors", "bert", "token-classification", "medical-ner", "biobert", "healthcare", "disease-extraction", "named-entity-recognition", "huggingface", "ncbi-disease-dataset", "en", "dataset:ncbi/ncbi_disease", "base_model:dmis-lab/biobert-base-cased-v1.1", "base_model:finetune:dmis-lab/biobert-base-cased-v1.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-12T21:34:11Z
--- library_name: transformers tags: - medical-ner - biobert - healthcare - disease-extraction - named-entity-recognition - huggingface - ncbi-disease-dataset license: apache-2.0 datasets: - ncbi/ncbi_disease language: - en metrics: - f1 - precision - recall base_model: - dmis-lab/biobert-base-cased-v1.1 pipeline_tag: token-classification --- # Note: New Improved Model Available (F1 Score: 89.04%) For better performance and an **improved F1 score, please use the updated model here: https://huggingface.co/Ishan0612/biobert-ner-disease-ncbi** # BioBERT Disease NER Model One of the **powerful medical NER models**, fine-tuned on BioBERT with the NCBI Disease dataset. It achieves **98.79% accuracy** and an **F1-score of 86.98%**, delivering reliable performance for disease extraction tasks by accurately identifying diseases and symptoms in medical texts. # Model Performance - **Precision:** 85.69% - **Recall:** 88.31% - **F1-Score:** 86.98% - **Accuracy:** 98.79% ✅ Fine-tuned over **6,800+ annotated examples** for **5 epochs**, achieving consistently high validation scores. ## Intended Use This model is designed for: - Extracting disease mentions from clinical and biomedical texts. - Powering information retrieval, research automation, and medical chatbots. # Training Data This model was trained on the [NCBI disease dataset](https://huggingface.co/datasets/ncbi_disease), which consists of 793 PubMed abstracts with 6892 disease mentions. ## How to Use You can use this model with the Hugging Face Transformers library: *Note:* LABEL_0 corresponds to "O" (Outside), LABEL_1 to "B-Disease", and LABEL_2 to "I-Disease" following the BIO tagging format. ```python from transformers import pipeline # Load from Hugging Face nlp = pipeline("ner", model="Ishan0612/biobert_medical_ner", tokenizer="Ishan0612/biobert_medical_ner", aggregation_strategy="simple") # Sample medical text text = """Robert suffering from chest pain and thiroid.""" # Extract entities ner_results = nlp(text) # Display results print("Extracted Medical Entities:") for entity in ner_results: print(f"{entity['word']} ({entity['entity_group']}) - Confidence: {entity['score']:.2f}") ``` This should output: Extracted Medical Entities: Robert suffering from (LABEL_0) - Confidence: 1.00 chest (LABEL_1) - Confidence: 1.00 pain (LABEL_2) - Confidence: 1.00 and (LABEL_0) - Confidence: 1.00 th (LABEL_1) - Confidence: 1.00 ##iroid (LABEL_2) - Confidence: 0.97 . (LABEL_0) - Confidence: 1.00
Jonjew/LilyCollinsCa2008
Jonjew
2025-04-27T17:52:12Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-04-27T17:52:01Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- <lora:Lily_Collins_Ca2008:1> woman Film Still Print, overlaid on the very bottom of the image is silver hand-written text that says "all my love", Looking Directly At The Viewer, Centered, Making Eye Contact, Looking Straight Ahead, Looking Forward, Striking A Dynamic Pose, <lora:zz_s_Chest_Size_Slider:-2> buttoned up top output: url: images/Lily_Collins_Ca2008_0011.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: woman license: unknown --- # Lily Collins (Ca 2008) by matziq <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1510831&#x2F;lily-collins-ca-2008?modelVersionId&#x3D;1709008 Please support the original creator by donating BUZZ and LIKING at the PAGE ABOVE Trigger woman ## Trigger words You should use `woman` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/LilyCollinsCa2008/tree/main) them in the Files & versions tab.
bikingSolo/vk-nlp-course-hometask-2-reward-model
bikingSolo
2025-04-27T17:03:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "en", "dataset:HumanLLMs/Human-Like-DPO-Dataset", "base_model:HuggingFaceTB/SmolLM-135M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM-135M-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-04-27T09:06:30Z
--- library_name: transformers license: apache-2.0 datasets: - HumanLLMs/Human-Like-DPO-Dataset language: - en base_model: - HuggingFaceTB/SmolLM-135M-Instruct pipeline_tag: text-classification --- # Описание Данная модель была создана в рамках курса по [NLP от VK](https://education.vk.company/program/kurs-nlp-yazykovye-modeli-ml). Задание заключалось в том, чтобы сделать alignment модели с помощью PPO (модель бралась instruct, то есть уже после SFT). Данная модель - обученная Reward Model. Базовая модель: HuggingFaceTB/SmolLM-135M-Instruct. Обучался только один линейный слой поверх. Обучался один выход - логит (без подачи в сигмоиду). Набор данных: HumanLLMs/Human-Like-DPO-Dataset. # Обучение Обучалось с помощью [TRL](https://huggingface.co/docs/trl/en/index). * num_train_epochs=1, * per_device_train_batch_size=2 * gradient_accumulation_steps=8 * max_length=1024 * disable_dropout=True * learning_rate=3e-4 * seed=42 Обучалось в Kaggle на GPU P100 примерно 30 минут.
mlfoundations-dev/c1_science_10d_4s_0.3k
mlfoundations-dev
2025-04-27T15:08:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T15:05:21Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: c1_science_10d_4s_0.3k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # c1_science_10d_4s_0.3k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/c1_science_10d_4s_0.3k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 13.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
mlfoundations-dev/c1_math_nod_4s_1k
mlfoundations-dev
2025-04-27T15:07:20Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T15:04:56Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: c1_math_nod_4s_1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # c1_math_nod_4s_1k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/c1_math_nod_4s_1k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 24 - total_train_batch_size: 96 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0a0+b465a5843b.nv24.09 - Datasets 3.5.0 - Tokenizers 0.20.3
DoppelReflEx/QWQ-32B-ForgeinFlow-TokenizerTest-Experiment
DoppelReflEx
2025-04-27T14:26:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:ArliAI/QwQ-32B-ArliAI-RpR-v3", "base_model:merge:ArliAI/QwQ-32B-ArliAI-RpR-v3", "base_model:Qwen/QwQ-32B", "base_model:merge:Qwen/QwQ-32B", "base_model:trashpanda-org/QwQ-32B-Snowdrop-v0", "base_model:merge:trashpanda-org/QwQ-32B-Snowdrop-v0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T14:08:54Z
--- base_model: - trashpanda-org/QwQ-32B-Snowdrop-v0 - ArliAI/QwQ-32B-ArliAI-RpR-v3 - Qwen/QwQ-32B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) as a base. ### Models Merged The following models were included in the merge: * [trashpanda-org/QwQ-32B-Snowdrop-v0](https://huggingface.co/trashpanda-org/QwQ-32B-Snowdrop-v0) * [ArliAI/QwQ-32B-ArliAI-RpR-v3](https://huggingface.co/ArliAI/QwQ-32B-ArliAI-RpR-v3) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: trashpanda-org/QwQ-32B-Snowdrop-v0 parameters: density: 0.9 weight: 1 - model: ArliAI/QwQ-32B-ArliAI-RpR-v3 parameters: density: 0.8 weight: 0.8 merge_method: dare_ties base_model: Qwen/QwQ-32B parameters: normalize: true rescale: true tokenizer_source: Qwen/Qwen2.5-32B-Instruct dtype: bfloat16 ```
casque/PhoneExposurePonyXL
casque
2025-04-27T14:25:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-04-27T14:25:01Z
--- license: creativeml-openrail-m ---
wsbagnsv1/SkyReels-V2-DF-1.3B-540P-GGUF
wsbagnsv1
2025-04-27T12:16:35Z
18
0
gguf
[ "gguf", "video", "video-generation", "image-to-video", "base_model:Skywork/SkyReels-V2-DF-1.3B-540P", "base_model:quantized:Skywork/SkyReels-V2-DF-1.3B-540P", "license:apache-2.0", "region:us" ]
image-to-video
2025-04-25T09:42:31Z
--- license: apache-2.0 library_name: gguf base_model: - Skywork/SkyReels-V2-DF-1.3B-540P tags: - video - video-generation pipeline_tag: image-to-video --- This is a direct GGUF conversion of [Skywork/SkyReels-V2-DF-1.3B-540P](https://huggingface.co/Skywork/SkyReels-V2-DF-1.3B-540P) All quants are created from the FP32 base file, though I only uploaded the Q8_0 and less, if you want the F16 or BF16 one I would upload it per request. The model files can be used with the [ComfyUI-GGUF](https://github.com/city96/ComfyUI-GGUF) custom node. Place model files in `ComfyUI/models/unet` - see the GitHub readme for further install instructions. The VAE can be downloaded from [this repository by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1_VAE_bf16.safetensors) Please refer to [this chart](https://github.com/ggerganov/llama.cpp/blob/master/examples/perplexity/README.md#llama-3-8b-scoreboard) for a basic overview of quantization types. For conversion I used the conversion scripts from [city96](https://huggingface.co/city96)
8-NEW-EXCLUSIVE-TRENDING-CLIP/FULL-VIDEO-LINK-Bu.Guru.Salsa.Viral.Video.Leaks.official.tutorial
8-NEW-EXCLUSIVE-TRENDING-CLIP
2025-04-27T11:06:08Z
0
0
null
[ "region:us" ]
null
2025-04-27T11:05:17Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2x869u6x?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Bu Guru Salsa Video 5 Menit Trending kini viral dan banyak dicari! Tonton dan unduh video viral ini yang sedang ramai di berbagai platform sosial media. Jangan lewatkan momen menarik dari video yang membuat netizen heboh. Cari tahu kenapa video ini menjadi tren dan bagaimana reaksi netizen. Temukan link serta informasi lengkapnya di sini! Kami menyediakan pembahasan detail dan cara menonton video dengan kualitas terbaik. Jangan sampai ketinggalan hype dari video yang sedang viral ini! Klik sekarang dan dapatkan akses eksklusif ke video terbaru yang sedang booming!
fedovtt/d4ce9e78-4ab5-4438-994f-d6af54908e06
fedovtt
2025-04-26T20:54:39Z
0
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-26T20:45:53Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: d4ce9e78-4ab5-4438-994f-d6af54908e06 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 00609df011d63e92_train_data.json ds_type: json format: custom path: /workspace/input_data/00609df011d63e92_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: fedovtt/d4ce9e78-4ab5-4438-994f-d6af54908e06 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/00609df011d63e92_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 77d08cc6-0207-4bb4-9813-e44e8a8c2c9e wandb_project: s56-1 wandb_run: your_name wandb_runid: 77d08cc6-0207-4bb4-9813-e44e8a8c2c9e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d4ce9e78-4ab5-4438-994f-d6af54908e06 This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6501 | 0.0812 | 200 | 0.5708 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bhaviktheslider/json-lora-merged-16bit-model
bhaviktheslider
2025-04-26T20:53:38Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T20:48:51Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** bhaviktheslider - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
DanielNRU/pollen-ner-cycle-100
DanielNRU
2025-04-26T15:05:27Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "base_model:adapter:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "region:us" ]
null
2025-04-25T05:51:37Z
--- library_name: peft base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-cycle-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-cycle-100 This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1291 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 13 | 1.8381 | 0.0194 | 0.0232 | 0.0211 | | No log | 2.0 | 26 | 1.5410 | 0.0254 | 0.0058 | 0.0094 | | No log | 3.0 | 39 | 1.2779 | 0.1154 | 0.0058 | 0.0110 | | 1.5907 | 4.0 | 52 | 1.1574 | 0.0 | 0.0 | 0.0 | | 1.5907 | 5.0 | 65 | 1.1291 | 0.0 | 0.0 | 0.0 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
Docty/cloth_controlnet
Docty
2025-04-26T01:35:01Z
7
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "diffusers-training", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:mit", "region:us" ]
text-to-image
2025-04-22T01:14:59Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 inference: true license: mit library_name: diffusers instance_prompt: a professional studio photograph of an attractive model wearing a teal top with lace detail tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ControlNet for cloth- Docty/cloth_controlnet These are ControlNet for stable-diffusion-v1-5/stable-diffusion-v1-5. You can find some example images in the following. ![img_0](./image_control.png) ![img_1](./images_0.png) ![img_2](./images_1.png) ```python from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers.utils import load_image import torch base_model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5" controlnet_path = "Docty/cloth_controlnet" controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=torch.float16 ) # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # remove following line if xformers is not installed or when using Torch 2.0. #pipe.enable_xformers_memory_efficient_attention() # memory optimization. pipe.enable_model_cpu_offload() control_image = load_image("./cond1.jpg") prompt = "a professional studio photograph of an attractive model wearing a teal top with lace detail" # generate image #generator = torch.manual_seed(0) image = pipe( prompt, num_inference_steps=20, image=control_image ).images[0] image ```
nolalaverna/nolalaverna
nolalaverna
2025-04-26T00:57:53Z
0
0
null
[ "license:bsd-2-clause", "region:us" ]
null
2025-04-26T00:57:53Z
--- license: bsd-2-clause ---
aryolotfi/SFT_gsm8k_Mistral-7B-v0.1_epoch_5_global_step_145
aryolotfi
2025-04-25T22:22:41Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-25T22:21:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KodaCodex/clinical-qa-model
KodaCodex
2025-04-25T21:53:12Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-25T21:52:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
msamdan/meu-llama-3-8b
msamdan
2025-04-24T21:54:36Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "unsloth", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-24T21:32:18Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
owenpastor21/LawPseudoReasonSmall-Qwen25R15
owenpastor21
2025-04-24T12:13:05Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit", "base_model:quantized:unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-24T12:12:41Z
--- base_model: unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** owenpastor21 - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)