word
stringlengths 4
11
| avg_google_ngrams_frequency
float64 |
---|---|
ุฎูุทููุฆูุฉ | null |
ุญูููู
ู | null |
ููุถูุนู | null |
ููุงุจููู | null |
ุฃูุชูู | null |
ููุธููููุฉ | null |
ุญูู
ููู | null |
ู
ูุฏูู | null |
ุฏููููู | null |
ุฃูุฎูุฐู | null |
ุชูุฑููู | null |
ุฐูููุจู | null |
ุถูู
ููู | null |
ุนูุจูุฑู | null |
ุนูุงููู | null |
ุฑูุฌูุนู | null |
ุชูุงุจูุนู | null |
ู
ูุญููุท | null |
ุญูุฑู | null |
ููุตููู | null |
ุฎูุตูู | null |
ุณูุญูุจู | null |
ูููููู | null |
ุฃูููุงู
ู | null |
ุณูุฏูู | null |
ููุตูุฏู | null |
ููุญูุตู | null |
ููุธุงู
ูููู | null |
ุญูุทูู | null |
ุธูุฑูู | null |
ููููุฏ | null |
ููุจูุถูุฉ | null |
ุฎูู
ููุฑูุฉ | null |
ููุฑูู | null |
ุญูุจููุฉ | null |
ุฃูุนูุงุฏู | null |
ููุธูุฑู | null |
ุฃูุฏูุงูู | null |
ุฌูู
ูุนู | null |
ููููุนู | null |
ุนูุงููุฌู | null |
ุณููู | null |
ุญูุตููู | null |
ุนูููุฏู | null |
ููุฑูุฏู | null |
ุฑูุฃูู | null |
ููุงู
ู | null |
ุฑูุตูุฏู | null |
ููุฌููุฏ | null |
ุฑูู
ูู | null |
ุนูุงุฏู | null |
ุตูููุฉ | null |
ุฃูููุฑูู | null |
ุฃูุตูุงุจู | null |
ุชูุจูุนู | null |
ุฎูุทู | null |
ุญูุตููู | null |
ุฐููููู | null |
ููุนูุงุก | null |
ุทูููุงู | null |
ููุชููุก | null |
ูููุงู | null |
ุทูุนููู | null |
ููุณูุท | null |
ุฑููุญ | null |
ุฒูู
ูู | null |
ุฑูุงุฆูุฏ | null |
ุฎููููุท | null |
ููุฑูู | null |
ุชูุญูุฑููุฑ | null |
ููุฑูู
| null |
ูููููู | null |
ุชูุฑูุงุฌูุนู | null |
ุฎูุฑููุฌ | null |
ููููู | null |
ุงู
ูุชููุงุฒ | null |
ููููุจ | null |
ุถูุจูุทู | null |
ููู
ููู | null |
ุฎูุทูุฃ | null |
ููุฑููุจ | null |
ุฎูุงุตู | null |
ู
ููููููุถ | null |
ููููู | null |
ูููููุฉ | null |
ุชูููุฏููุฑ | null |
ุฃูู
ูุฑ | null |
ุฅูุจูุงุฏูุฉ | null |
ููููุงููุฉ | null |
ุงูููุณูุญูุงุจ | null |
ุฏูุงุฆูู
| null |
ููุดูุงุท | null |
ุฃูุตูู | null |
ููุฑูุฉ | null |
ููุฏูู
| null |
ู
ูุฑูููุฒ | null |
ููุธูุฑ | null |
ุฅูุตูุฏูุงุฑ | null |
ููุจููู | null |
ุณูููุทูุฉ | null |
Multilingual Word-in-Context Homonyms (ML-WiC)
Dataset Author: Lukas Ellinger
Original Source: Adapted from Martelli et al. (2021)
License: CC BY-NC-SA 4.0
Language: Arabic, English, French, Russian, Simplified Chinese
Size: 1606 examples
Task: Word Sense Disambiguation (WSD), Definition Generation
Dataset Summary
Each entry includes:
- A homonym
- Its average frequency in Google N-grams
Dataset Construction
The ML-WiC dataset was constructed to target homonyms with multiple distinct senses. The dataset from Martelli et al. (2021) was designed for Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). This task involves determining whether a target word retains the same sense in two sentences within and across languages. We filtered the dataset for words with distinct senses in the same language, identifying them thus as homonyms.
Citation
If you use any of the work, please cite the following paper:
@misc{ellinger_simplifications_2025,
title = {Simplifications are {Absolutists}: {How} {Simplified} {Language} {Reduces} {Word} {Sense} {Awareness} in {LLM}-{Generated} {Definitions}},
url = {http://arxiv.org/abs/2507.11981},
author = {Ellinger, Lukas and Anschรผtz, Miriam and Groh, Georg},
annote = {Comment: Accepted by RANLP 2025},
}
- Downloads last month
- 13