|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: text |
|
dtype: string |
|
- name: Language |
|
dtype: string |
|
- name: Corpus |
|
dtype: string |
|
- name: Script |
|
dtype: string |
|
- name: Century |
|
dtype: string |
|
- name: Image_name |
|
dtype: string |
|
- name: NER_ann |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 30374609181 |
|
num_examples: 177744 |
|
- name: validation |
|
num_bytes: 1689908739 |
|
num_examples: 9829 |
|
- name: test |
|
num_bytes: 1278986029 |
|
num_examples: 9827 |
|
download_size: 33333506316 |
|
dataset_size: 33343503949 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
tags: |
|
- handwritten-text-recognition |
|
- Image-to-text |
|
- Image-Text-to-text |
|
Pipeline_tag: Image-Text-to-text |
|
Tasks: |
|
- handwritten-text-recognition |
|
- Image-to-text |
|
- Image-Text-to-text |
|
license: mit |
|
task_categories: |
|
- image-to-text |
|
language: |
|
- fr |
|
- es |
|
- la |
|
- de |
|
- nl |
|
pretty_name: Tridis |
|
size_categories: |
|
- 100M<n<1B |
|
--- |
|
|
|
|
|
This is the first version of the dataset derived from the corpora used for **TRIDIS** (*Tria Digita Scribunt*). |
|
|
|
TRIDIS encompasses a series of Handwriting Text Recognition (HTR) models trained using semi-diplomatic transcriptions of medieval and early modern manuscripts. |
|
|
|
The semi-diplomatic transcription approach involves resolving abbreviations found in the original manuscripts and normalizing Punctuation and Allographs. |
|
|
|
The dataset contains approximately 4,000 pages of manuscripts and is particularly suitable for working with documentary sources – manuscripts originating from legal, administrative, and memorial practices. Examples include registers, feudal books, charters, proceedings, and accounting records, primarily dating from the Late Middle Ages (13th century onwards). |
|
|
|
The dataset covers Western European regions (mainly Spain, France, and Germany) and spans the 12th to the 17th centuries. |
|
|
|
|
|
#### Corpora |
|
The original ground-truth corpora are available under CC BY licenses on online repositories: |
|
|
|
|
|
- The Alcar-HOME database (HOME): https://zenodo.org/record/5600884 |
|
- The e-NDP corpus (E-NDP): https://zenodo.org/record/7575693 |
|
- The Himanis project (HIMANIS): https://zenodo.org/record/5535306 |
|
- Königsfelden Abbey corpus (Konigsfelden): https://zenodo.org/record/5179361 |
|
- 6000 ground truth of VOC and notarial deeds (VOC) : https://zenodo.org/records/4159268 |
|
- Bullinger, Ruolph Gwalther: https://zenodo.org/records/4780947 |
|
- CODEA: https://corpuscodea.es/ |
|
- Monumenta Luxemburgensia (MLH): www.tridis.me |
|
|
|
## Citation |
|
|
|
There is a pre-print presenting this corpus: |
|
|
|
```bibtex |
|
@article{aguilar2025tridis, |
|
title={TRIDIS: A Comprehensive Medieval and Early Modern Corpus for HTR and NER}, |
|
author={Aguilar, Sergio Torres}, |
|
journal={arXiv preprint arXiv:2503.22714}, |
|
year={2025} |
|
} |
|
``` |
|
|
|
### How to Get Started with this DataSet |
|
Use this Python code to easily train a TrOCR model with the TRIDIS dataset: |
|
|
|
```python |
|
#Use Transformers==4.43.0 |
|
#Note: Data augmentation is omitted here but strongly recommended. |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
import torchvision.transforms as transforms |
|
from torch.utils.data import Dataset |
|
from datasets import load_dataset # Import load_dataset |
|
from transformers import ( |
|
AutoFeatureExtractor, |
|
AutoTokenizer, |
|
TrOCRProcessor, |
|
VisionEncoderDecoderModel, |
|
Seq2SeqTrainer, |
|
Seq2SeqTrainingArguments, |
|
default_data_collator |
|
) |
|
from evaluate import load |
|
|
|
# --- START MODIFIED SECTION --- |
|
|
|
# Load the dataset from Hugging Face |
|
dataset = load_dataset("magistermilitum/Tridis") |
|
print("Dataset loaded.") |
|
|
|
# Initialize the processor |
|
# Use the specific processor associated with the TrOCR model |
|
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") #or the large version for better performance |
|
print("Processor loaded.") |
|
|
|
# --- Custom Dataset Modified for Deferred Loading (No Augmentation) --- |
|
class CustomDataset(Dataset): |
|
def __init__(self, hf_dataset, processor, max_target_length=160): |
|
""" |
|
Args: |
|
hf_dataset: The dataset loaded by Hugging Face (datasets.Dataset). |
|
processor: The TrOCR processor. |
|
max_target_length: Maximum length for the target labels. |
|
""" |
|
self.hf_dataset = hf_dataset |
|
self.processor = processor |
|
self.max_target_length = max_target_length |
|
|
|
# --- EFFICIENT FILTERING --- |
|
# Filter here to know the actual length and avoid processing invalid samples in __getitem__ |
|
# Use indices to maintain the efficiency of accessing the original dataset |
|
self.valid_indices = [ |
|
i for i, text in enumerate(self.hf_dataset["text"]) |
|
if isinstance(text, str) and 3 < len(text) < 257 # Filter based on text length |
|
] |
|
print(f"Dataset filtered. Valid samples: {len(self.valid_indices)} / {len(self.hf_dataset)}") |
|
|
|
def __len__(self): |
|
# The length is the number of valid indices after filtering |
|
return len(self.valid_indices) |
|
|
|
def __getitem__(self, idx): |
|
# Get the original index in the Hugging Face dataset |
|
original_idx = self.valid_indices[idx] |
|
|
|
# Load the specific sample from the Hugging Face dataset |
|
item = self.hf_dataset[original_idx] |
|
image = item["image"] |
|
text = item["text"] |
|
|
|
# Ensure the image is PIL and RGB |
|
if not isinstance(image, Image.Image): |
|
# If not PIL (rare with load_dataset, but for safety) |
|
# Assume it can be loaded by PIL or is a numpy array |
|
try: |
|
image = Image.fromarray(image).convert("RGB") |
|
except: |
|
# Fallback or error handling if conversion fails |
|
print(f"Error converting image at original index {original_idx}. Using placeholder.") |
|
# Returning a placeholder might be better handled by the collator or skipping. |
|
# For now, repeating the first valid sample as a placeholder (not ideal). |
|
item = self.hf_dataset[self.valid_indices[0]] |
|
image = item["image"].convert("RGB") |
|
text = item["text"] |
|
else: |
|
image = image.convert("RGB") |
|
|
|
# Process image using the TrOCR processor |
|
try: |
|
# The processor handles resizing and normalization |
|
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values |
|
except Exception as e: |
|
print(f"Error processing image at original index {original_idx}: {e}. Using placeholder.") |
|
# Create a black placeholder tensor if processing fails |
|
# Ensure the size matches the expected input size for the model |
|
img_size = self.processor.feature_extractor.size |
|
# Check if size is defined as int or dict/tuple |
|
if isinstance(img_size, int): |
|
h = w = img_size |
|
elif isinstance(img_size, dict) and 'height' in img_size and 'width' in img_size: |
|
h = img_size['height'] |
|
w = img_size['width'] |
|
elif isinstance(img_size, (tuple, list)) and len(img_size) == 2: |
|
h, w = img_size |
|
else: # Default fallback size if uncertain |
|
h, w = 384, 384 # Common TrOCR size, adjust if needed |
|
pixel_values = torch.zeros((3, h, w)) |
|
|
|
|
|
# Tokenize the text |
|
labels = self.processor.tokenizer( |
|
text, |
|
padding="max_length", |
|
max_length=self.max_target_length, |
|
truncation=True # Important to add truncation just in case |
|
).input_ids |
|
|
|
# Replace pad tokens with -100 to ignore in the loss function |
|
labels = [label if label != self.processor.tokenizer.pad_token_id else -100 |
|
for label in labels] |
|
|
|
encoding = { |
|
# .squeeze() removes dimensions of size 1, necessary as we process one image at a time |
|
"pixel_values": pixel_values.squeeze(), |
|
"labels": torch.tensor(labels) |
|
} |
|
return encoding |
|
|
|
# --- Create Instances of the Modified Dataset --- |
|
# Pass the Hugging Face dataset directly |
|
train_dataset = CustomDataset(dataset["train"], processor) |
|
eval_dataset = CustomDataset(dataset["validation"], processor) |
|
|
|
print(f"\nNumber of training examples (valid and filtered): {len(train_dataset)}") |
|
print(f"Number of validation examples (valid and filtered): {len(eval_dataset)}") |
|
|
|
# --- END MODIFIED SECTION --- |
|
|
|
|
|
# Load pretrained model |
|
print("\nLoading pre-trained model...") |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") |
|
model.to(device) |
|
print(f"Model loaded on: {device}") |
|
|
|
# Configure the model for fine-tuning |
|
print("Configuring model...") |
|
model.config.decoder.is_decoder = True # Explicitly set decoder flag |
|
model.config.decoder.add_cross_attention = True # Ensure decoder attends to encoder outputs |
|
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id # Start generation with CLS token |
|
model.config.pad_token_id = processor.tokenizer.pad_token_id # Set pad token ID |
|
model.config.vocab_size = model.config.decoder.vocab_size # Set vocabulary size |
|
model.config.eos_token_id = processor.tokenizer.sep_token_id # Set end-of-sequence token ID |
|
|
|
# Generation configuration (influences evaluation and inference) |
|
model.config.max_length = 160 # Max generated sequence length |
|
model.config.early_stopping = True # Stop generation early if EOS is reached |
|
model.config.no_repeat_ngram_size = 3 # Prevent repetitive n-grams |
|
model.config.length_penalty = 2.0 # Encourage longer sequences slightly |
|
model.config.num_beams = 3 # Use beam search for better quality generation |
|
|
|
# Metrics |
|
print("Loading metrics...") |
|
cer_metric = load("cer") |
|
wer_metric = load("wer") |
|
|
|
def compute_metrics(pred): |
|
labels_ids = pred.label_ids |
|
pred_ids = pred.predictions |
|
|
|
# Replace -100 with pad_token_id for correct decoding |
|
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id |
|
|
|
# Decode predictions and labels |
|
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True) |
|
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True) |
|
|
|
# Calculate CER and WER |
|
cer = cer_metric.compute(predictions=pred_str, references=label_str) |
|
wer = wer_metric.compute(predictions=pred_str, references=label_str) |
|
|
|
print(f"\nEvaluation Step Metrics - CER: {cer:.4f}, WER: {wer:.4f}") # Print metrics |
|
|
|
return {"cer": cer, "wer": wer} # Return metrics required by Trainer |
|
|
|
|
|
# Training configuration |
|
batch_size_train = 32 # Adjust based on GPU memory, 32 for 48GB of vram |
|
batch_size_eval = 32 # Adjust based on GPU memory |
|
epochs = 10 # Number of training epochs (15 recommended) |
|
|
|
print("\nConfiguring training arguments...") |
|
training_args = Seq2SeqTrainingArguments( |
|
predict_with_generate=True, # Use generate for evaluation (needed for CER/WER) |
|
per_device_train_batch_size=batch_size_train, |
|
per_device_eval_batch_size=batch_size_eval, |
|
fp16=True if device == "cuda" else False, # Enable mixed precision training on GPU |
|
output_dir="./trocr-model-tridis", # Directory to save model checkpoints |
|
logging_strategy="steps", |
|
logging_steps=10, # Log training loss every 50 steps |
|
evaluation_strategy='steps', # Evaluate every N steps |
|
eval_steps=5000, # Adjust based on dataset size |
|
save_strategy='steps', # Save checkpoint every N steps |
|
save_steps=5000, # Match eval steps) |
|
num_train_epochs=epochs, |
|
save_total_limit=3, # Keep only the last 3 checkpoints |
|
learning_rate=7e-5, # Learning rate for the optimizer |
|
weight_decay=0.01, # Weight decay for regularization |
|
warmup_ratio=0.05, # Percentage of training steps for learning rate warmup |
|
lr_scheduler_type="cosine", # Learning rate scheduler type (better than linear) |
|
dataloader_num_workers=8, # Use multiple workers for data loading (adjust based on CPU cores) |
|
# report_to="tensorboard", # Uncomment to enable TensorBoard logging |
|
) |
|
|
|
# Initialize the Trainer |
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
tokenizer=processor.feature_extractor, # Pass the feature_extractor for collation |
|
args=training_args, |
|
compute_metrics=compute_metrics, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
data_collator=default_data_collator, # Default collator handles padding inputs/labels |
|
) |
|
|
|
# Start Training |
|
print("\n--- Starting Training ---") |
|
try: |
|
trainer.train() |
|
print("\n--- Training Completed ---") |
|
except Exception as e: |
|
error_message = f"Error during training: {e}" |
|
print(error_message) |
|
# Consider saving a checkpoint on error if needed |
|
# trainer.save_model("./trocr-model-magistermilitum-interrupted") |
|
|
|
# Save the final model and processor |
|
print("Saving final model and processor...") |
|
# Ensure the final directory name is consistent |
|
final_save_path = "./trocr-model-tridis-final" |
|
trainer.save_model(final_save_path) |
|
processor.save_pretrained(final_save_path) # Save the processor alongside the model |
|
print(f"Model and processor saved to {final_save_path}") |
|
|
|
# Clean up CUDA cache if GPU was used |
|
if device == "cuda": |
|
torch.cuda.empty_cache() |
|
print("CUDA cache cleared.") |
|
``` |