Datasets:
The dataset viewer is not available for this subset.
Exception: SplitsNotFoundError Message: The split names could not be parsed from the dataset config. Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info for split_generator in builder._split_generators( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py", line 237, in _split_generators raise ValueError( ValueError: `file_name` or `*_file_name` must be present as dictionary key (with type string) in metadata files The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response for split in get_dataset_split_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names info = get_dataset_config_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
BeepBank-500 (earcons-mini-500)
BeepBank-500 is a compact, fully synthetic earcon/alert mini‑dataset (≈300–500 clips) for UI sound research. It contains short tones and triads generated from a controlled parameter grid (waveform family, f0, duration, envelope, amplitude modulation, and simple Schroeder-style reverbs). The dataset ships with a metadata schema, lightweight baselines, and a data note template for arXiv. Audio is intended for release under CC0-1.0 (public domain). Code is MIT-licensed.
Why this dataset? Reproducible, rights‑clean, and tiny enough to bundle in a 2–3 day sprint as a citable asset. Typical tasks: earcon classification, timbre analysis, f0 regression, onset detection, psychoacoustic proxies.
Quick start (2–3 day plan)
0) Create environment
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
1) Generate audio + metadata (≈400 clips by default)
python code/generate_earcons.py --outdir audio --meta metadata/metadata.csv --seed 13 --target_n 400
Optional: change --target_n
to 500 for a bigger set.
2) (Optional) Recompute/augment features later
python code/compute_features.py --indir audio --meta_in metadata/metadata.csv --meta_out metadata/metadata.csv
3) Run tiny baselines
# Waveform family classifier (sine/square/triangle/fm_*)
python code/baselines/classify_waveform.py --audio_dir audio --meta metadata/metadata.csv
# f0 regression MAE (Hz) on single‑tone items only
python code/baselines/f0_regression.py --audio_dir audio --meta metadata/metadata.csv
4) Archive and publish
- Create a Zenodo record (v1.0.0) with
/audio
,/metadata
,/code
,README.md
,LICENSE
,CITATION.cff
. - Mirror code on GitHub; connect Zenodo badge; tag a release.
- Submit the arXiv data note using
docs/data_note_arxiv.tex
(subject: eess.AS). Link the Zenodo DOI.
5) Data Load
from datasets import load_dataset ds = load_dataset("mandip/beepbank-500")
Folder layout
earcons-mini-500/
├─ audio/ # WAV files (mono, 48kHz, 16-bit PCM)
├─ metadata/
│ ├─ metadata.csv # one row per file with parameters and features
│ └─ LICENSES.md # audio license statement (CC0-1.0)
├─ code/
│ ├─ generate_earcons.py # main generator (no external DSP deps)
│ ├─ compute_features.py # recompute features if needed
│ └─ baselines/
│ ├─ classify_waveform.py
│ └─ f0_regression.py
├─ docs/
│ ├─ data_note_arxiv.tex # 2–3k word data note skeleton
│ └─ figures/
├─ requirements.txt
├─ CITATION.cff
├─ LICENSE # MIT for code
├─ CHANGELOG.md
└─ README.md
Dataset design notes
- Waveforms: sine, square, triangle, FM (2:1 & 3:2), optional chords (major/minor triads).
- Durations: 100/250/500 ms; Envelopes: fast, medium, percussive.
- AM: none, 8 Hz (0.3), 30 Hz (0.5).
- Reverbs: simple Schroeder-style small (
0.3 s) and medium (0.6 s). - Normalization: RMS target with peak cap at −1 dBFS. (If
pyloudnorm
is installed, LUFS can be computed; normalization remains RMS‑based by default.) - Metadata: includes generation params plus features (peak/rms dBFS, centroid, bandwidth, zcr, proxies).
- Splits: deterministic hash-based (train/val/test).
Licensing
- Audio: CC0‑1.0 (public domain dedication). Keep attribution unnecessary.
- Code: MIT License (see
LICENSE
). - If you later add CC‑BY assets, list them in
metadata/LICENSES.md
with full attribution and URLs.
How to cite
Zenodo DOI : "https://doi.org/10.5281/zenodo.17172015". arxiv : "https://arxiv.org/abs/arXiv:2509.17277"
Maintainer: Mandip Goswami
Scope: niche psychoacoustic/UI earcon research
Keywords: earcon, alarm, psychoacoustics, timbre, AM, ADSR, reverb
- Downloads last month
- 61