document_id
int32
185
2.68k
question
stringlengths
11
194
id
int32
225
5.32k
answers
listlengths
1
1
chunks
listlengths
5
52
correct_chunks
listlengths
0
1
num_words
int64
404
5.47k
num_tokens
int64
652
7.87k
1,633
How were untreated MDA-MB-231 cells labeled?
5,306
[ "CellTracker Green CMFDA Dye" ]
[ "The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/\n\nSHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39\n\nAuthors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert\nDate: 2018-09-11\nDOI: 10.1371/journal.pone.0203053\nLicense: cc-by", "Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the", "integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.", "Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to", "eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be", "either produced by fermentation [11] or by total synthesis [13, 14] .", "In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .", "Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and", "impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.", "CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).", "CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.", "LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).", "HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).", "For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.", "For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).", "HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).", "HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.", "HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing", "0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).", "To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.", "Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody", "(A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.", "Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B", "inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.", "The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).", "Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).", "Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.", "Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining", "corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.", "We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.", "The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells", "increased with the time of adhesion.", "The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow", "cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .", "Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by", "v-ATPase inhibition (Fig 6A and 6B , right panels).", "Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of", "these tumor cells to collagen is mediated by β1-integrins.", "Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .", "It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.", "https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .", "Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.", "For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive", "effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3", "cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.", "Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is", "synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression", "of cathepsin B.", "As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.", "Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto", "endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound." ]
[ 12 ]
5,064
7,857
1,634
What was the goal of the study?
5,307
[ "describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents" ]
[ "Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759171/\n\nSHA: f1d456ea268266ff3c21317c4190e4fcb49b5e4f\n\nAuthors: Gaspard, Philippe; Mosnier, Anne; Simon, Loic; Ali-Brandmeyer, Olivia; Rabaud, Christian; Larocca, Sabrina; Heck, Béatrice; Aho-Glélé, Serge; Pothier, Pierre; Ambert-Balay, Katia\nDate: 2019-09-24\nDOI: 10.1371/journal.pone.0222321\nLicense: cc-by", "Abstract: BACKGROUND: Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks are a significant issue in nursing homes. This study aimed to describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents. METHODS: Clinical and virological surveillance were conducted (2007 to 2018). Virus stratifications for the analysis were: outbreaks with positive norovirus or influenza identifications (respectively NoV+ or Flu+), episodes with no NoV or influenza identification or testing (respectively NoV- or Flu-). Associations between individual variables (sex, age, length of stay (LOS), autonomy status) and infection and lethality rates were tested with univariate and Mantel-Haenszel (MH) methods. RESULTS: 61 GE outbreaks and 76 RTI oubreaks (total 137 outbreaks) were recorded involving respectively 4309 and 5862 residents. In univariate analysis, higher infection rates and age were associated in NoV+,", "NoV-, and Flu+ contexts, and lower infection rates were associated with longer stays (NoV+ and NoV-). In MH stratified analysis (virus, sex (female/male)) adjusted for LOS (<4 or ≥4 years), the odds of being infected remained significant among older residents (≥86 years): NoV+/male (Odds ratio (OR(MH)): 1.64, 95% confidence interval (CI): 1.16–2.30) and Flu+/female and male (respectively OR(MH): 1.50, CI: 1.27–1.79 and 1.73, CI: 1.28–2.33). In univariate analysis, lower autonomy status (NoV+, Flu+ and Flu-) and increased age (Flu+) were associated with higher lethality. In MH adjusted analysis, significant OR(age) adjusted for autonomy was: Flu+/ ≥86 years compared with <86 years, 1.97 (1.19–3.25) and OR(autonomy) adjusted for age for the more autonomous group (compared with the less autonomous group) was: Flu+, 0.41 (0.24–0.69); Flu-, 0.42 (0.20, 0.90). CONCLUSION: The residents of nursing homes are increasingly elderly and dependent. The specific infection and lethality risks", "according to these two factors indicate that surveillance and infection control measures are essential and of high priority.", "Text: Introduction Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks represent a significant burden of illness in nursing homes. Viruses cause the majority of these outbreaks, and noroviruses and influenza viruses are the most common pathogens [1, 2] .\n\nPrevious studies have suggested that viral respiratory infections and norovirus outbreaks are a common cause of hospitalization or death, particularly among elderly individuals [3] [4] [5] .", "The impact of outbreaks has been described in terms of both frequency and epidemiology, but little is known about infection rates and all-cause lethality in GE and RTI nursing home outbreaks in relation to the individual characteristics of the residents [6] . The residents of these institutions are increasingly elderly and dependent, and the impact of this trend on the seasonal outbreak burden requires in-depth investigation. The results of studies focused on this issue could yield valuable information for nursing homes, allowing them to adapt their infection control strategies, in particular for improved assessment of infection risk.\n\nOur objective was to describe GE and RTI infection and all-cause lethality rates according to the individual characteristics of nursing home residents (sex, age, length of stay, autonomy status), and to identify specific susceptibility patterns related to these types of viral outbreaks in these facilities.", "The present study explored outbreaks in 14 sites (28 units with geriatric nursing home activities for a total of 1121 beds) caring for dependent people in southern Alsace (an area in northeastern France). Data were collected between September 2007 and August 2018 [7, 8] .\n\nEach site was geographically independent and autonomous for social and care management. Units were located within the larger sites and were defined as a place having a dedicated team at one location.", "During outbreaks at one site, only the residents in the units with confirmed cases were included. Outbreak inclusion depended on institutional alert to the hygiene team. Surveillance was done in each unit independently, and the members of staff had to inform a physician or charge nurse when two or more potential related cases of pneumonia or GE were observed within four days and when three or more cases were observed for other RTI. Units also had to inform the hygiene team when these threshold values were exceeded. For influenza, the first suspected case led to a local alert and the hygiene team was contacted. A practitioner from the hygiene team collected the information and evaluated the clinical signs, the virology information and the epidemiological context with the physician in the affected unit. The detected cluster was only put under surveillance if the hygiene team considered that there was a potential outbreak phenomenon. The duration of 4 days was in relation with the", "national protocol with alert to the authorities when 5 cases occurred within 4 days [9, 10] . On a local level and in addition to the clusters reported to the authorities, clusters with at least 3 cases within a period of seven days in one unit could be recorded if they were reported to the hygiene team. Because several outbreaks could potentially occur in the same unit during the surveillance period, a resident could be included repeatedly in different clusters. As a result, the observed patterns reflected the characteristics of an institutional population with longitudinal and pluriannual exposures.", "Personal information and clinical information was collected by a practitioner from the hygiene team directly from the residents' health care records. Personal information was collected for all those present the first day of the outbreak. The collected information included: month and year of birth, sex, date of arrival at the nursing home and autonomy status. The autonomy status of residents in French nursing homes is assessed using the AGGIR scale (Autonomy Gerontology Groups Iso-Resources), which is the legal instrument for evaluating dependency in the elderly and whose primary purpose is the allocation of means and resources [11] .", "With the AGGIR scale, autonomy is classified into 6 Iso-Resource Groups (GIR): GIR 1 (bedridden or armchair-bound persons, mental functions seriously altered and requiring continuous presence), GIR 2 (bedridden or armchair-bound persons, mental functions not totally altered and requiring assistance in most activities of daily living, or mental functions altered with preserved ability to get around), GIR 3 (preserved mental autonomy with partially preserved motor autonomy and assistance several times a day for physical autonomy), GIR 4 (moves around the home and sometimes assistance for washing, dressing, physical activities or eating), GIR 5 (only occasional assistance for washing, meal preparation, and housework), GIR 6 (autonomy for essential tasks of daily living). In outbreaks where the influenza virus was identified, influenza vaccination status and oseltamivir prescriptions were recorded as well. A file is transmitted in the Supporting Information with all previous data (S1", "Data).", "GE was defined as the sudden onset of vomiting and/or diarrhea over a 24 h period: (i) diarrhea �3 episodes, (ii) and/or vomiting �3 episodes, (iii) or diarrhea or vomiting <3 episodes with two or more other symptoms (diarrhea, vomiting, stomach ache, abdominal cramps, nausea, fever, mucus in stools) [1] .", "RTI presentation in older adults may be atypical, like for other acute illnesses in this age group [12] . We used the recommended definitions for RTI surveillance in geriatric units, divided in 3 subcategories: (i) common cold syndromes or pharyngitis (at least two of the following criteria: runny nose or sneezing, stuffy nose (i.e. congestion), sore throat or hoarseness or difficulty swallowing, dry cough, swollen or tender glands in the neck (cervical lymphadenopathy)), (ii) influenza-like illness (both the following criteria must be met: fever AND at least three other symptoms (chills, new headache or eye pain, myalgia or body aches, malaise or loss of appetite, sore throat, new or increased dry cough)) and (iii) lower respiratory tract infection (both of the following criteria must be met: at least two respiratory signs or symptoms (new or increased cough, new/increased sputum production, O 2 saturation <94% or reduced >3% from baseline, abnormal lung examination (new or changed),", "pleuritic chest pain, respiratory rate �25 breaths/min AND one or more constitutional signs/symptoms (fever, leukocytosis, confusion, acute functional decline)) [13] [14] [15] [16] . Infection corresponding to one of these three subcategories was included in this study and classified as RTI.", "For both infection types, the practitioner from the hygiene team obtained clinical information from the patient's health care records, and members of the health care team were consulted if necessary to complete any missing information. At the end of the episode (within seven days after the last identified case), case inclusion as exposed and not infected (ENI) or exposed and infected (EI) was determined with a resident physician.", "In order to study the lethality, the presence of each infected resident was evaluated once at least 56 days after the last case of each outbreak. Each resident was followed up retrospectively during eighth 7-day interval (I n, n = 1 to 8, total 56 days, between the date of onset of symptoms and the fifty-sixth day of the studied period) with three different possibilities: present (alive and officially residing in the institution), lost to follow-up (alive at the date of departure but no longer residing in the institution (return home, transfer to another institution)) or death (death recorded in the health care record). The dates of death and lost to follow-up were recorded.\n\nTesting for the virus was not systematic and was decided by the physicians in each institution in the presence of clinical signs.", "For GE, stool samples were sent to the National Reference Centre for Gastroenteritis Viruses in Dijon for laboratory testing, as previously described [8] . For RTI surveillance, rapid tests were used to identify the influenza virus. The rapid immunoassay diagnosis tests used for influenza detection were: Clearview1 Exact Influenza A and B (Inverness Medical, Cologne, Germany) from 2007 to 2014 and InfluenzaTop1 (Alldiag, Strasbourg, France) from 2014 to 2018. Given the low sensitivity of influenza rapid tests, they were no longer used once the control measures had been implemented and the influenza outbreak was under control. Samples were also occasionally sent to hospital laboratories or to the National Reference Centre for Influenza Viruses to detect viruses with real-time RT-PCR [17] . Most testing targeted the norovirus (NoV) and influenza virus, but other tests were occasionally performed by the National Reference Centre for Influenza Viruses (rhinovirus, respiratory syncytial", "virus, human metapneumovirus, parainfluenza 1, 2, 3 and 4, and coronavirus) and the National Reference Centre for Enteric Viruses (rotavirus, astrovirus, and adenovirus).", "Because testing for the viruses was variable (from one institution/physician to another, not used in some outbreaks, types of virus sought) and considering the poor sensitivity of the rapid influenza tests, these two sources of data were used to define the epidemiological context of confirmed outbreaks. Consequently, individual cases were included consistently in all episodes according to clinical signs and medical evaluation. When virus testing was negative, the clinical signs were recorded and medical evaluation was used as previously to classify the included residents as infected or not infected.\n\nThe epidemiological context of each outbreak was defined according to whether the virus had been identified or not. One or more positive samples led to the qualification of a NoV (NoV+) or flu (Flu+) context. The other episodes were qualified as flu or NoV outbreaks with no specific identification or testing (NoV-and Flu-).", "Flu and NoV contexts did not eliminate other potential enteric or respiratory pathogens.\n\nSex, age, length of stay (LOS, in years) and autonomy status were described for all exposed residents. Influenza vaccination and oseltamivir administration rates were calculated for confirmed influenza outbreaks. Dichotomous or categorical variables were expressed as percentages. In univariate analysis, the categories were specific in order to obtain a precise description of the age and LOS variables. Class intervals were 5 years for age and one year for LOS. The residents classified as GIR 4 to 6 (sometimes, occasional and no assistance) were grouped together because they were few.", "For the multi-level analysis with 2x2 tables, a median value was used to define the two-level age categories. For LOS, assessing the longest stays was necessary to identify the effect of longer exposure in a nursing home. Consequently, a four-year cutoff was chosen to create the two categories. For autonomy, the two most dependent categories (GIR � 2) were grouped together and compared with the more autonomous categories (GIR � 3).\n\nThe outbreak epidemiological contexts were used with the four categories: NoV+, Flu+, NoV-and flu-. Other GE or RTI viruses were occasionally identified, but the number of results was too limited to develop separate analyses. However, all the results are available in the tables about the virus investigations along with NoV and influenza identifications.", "For the different categories, infection rate (EI/Exposed Residents (ER), in percentage) was calculated according to sex, age group, LOS and autonomy status. To investigate all-cause lethality and define the appropriate period for the 56-day monitoring (D 1 to 56 ), the all-cause lethality rate per 7-day interval (LR n /I n, n = 1 to 8 ) was calculated: (number of deaths during interval I n /(EI alive the first day of n th studied interval minus lost to follow-up EI during the interval I n ) � 100).", "Seeing as successive clusters could occur within the same site, potentially influencing allcause lethality, the serial interval in days (SI d ) was calculated. The SI d was the time period between the onset of symptoms of the last case in initial outbreak (N) and the onset of symptoms of the first case in the following outbreak (N+1). Investigations were performed when SI d was shorter or equal to the length of the previous D 1 to 56 and the following parameters were evaluated for these specific situations: number of episodes, residents infected in both outbreaks, and death among the identified individuals.\n\nFinally, according to the death rate and the impact of successive outbreaks, the number of 7-day intervals (N.I n ) to take into account was defined, and the all-cause lethality rate was analyzed during these periods (I 1 to N th .I n or D 1 to 7 � N ).", "All-cause lethality rates were calculated with the following formula: (number of deaths from D 1 to 7 � N /(EI number at D 1 minus lost to follow-up among EI during the period D 1 to 7 � N ) � 100). Estimation of the turnover rate per 7-day interval among the infected residents was calculated on the base of the LOS (median in years) with the following formula: (proportion of discharged residents: 50.0% in the case of the median)/[(median LOS � 365)/7)]. The average rate of residents discharged per 7-day period was calculated: [(number of lost to follow up during the period D 1 to 7 � N /number of exposed and infected residents at D 1 )/N 7-day interval] � 100.", "As some residents were included in several outbreaks during the surveillance, the observations were not completely independent; non-parametric tests were used as a result. In univariate analysis, Chi-square or Fisher exact tests (expected number of frequencies fewer than 5) were used to compare infection and lethality rates according to the studied parameters and the odds ratio was calculated by median-unbiased estimation. The Kruskal-Wallis test was used to compare median values. Confidence intervals for medians were calculated with bootstrap methods.", "Covariate adjusted analyses were performed with two tables (2x2). The respective impact of each individual factor was tested with Mantel-Haenszel chi-squared tests. The equality of the stratum odds ratios was tested with the Woolf test of homogeneity. Finally, for each virus context, multiple tables (2x2) were generated and tested with confounding variables, effect modifiers or covariables. Statistical analyses were done using R for Mas OS X version R 3.4.1 software with RStudio version 1.0.153. A file is transmitted in the Supporting Information with all R codes and the packages used (S1 R Codes). Differences were considered significant at p � 0.05.", "The French Data Protection Authority approved data collection and analysis (DE-2013-074) and the local ethics committee (Espace Local de Réflexion Ethique, Centre Hospitalier de Rouffach) approved the study protocol (ERLE-32). According to the French law for biomedical research and human experimentation, individual written consent was not required from the patients or their relatives for data collection. Each year, the referring local practitioner of the study coordinated with the doctors working in the nursing home. At the beginning of the surveillance period, information regarding participation in the study was displayed in the family vising area, including a document about their right to access and rectify personal data. After collection, data were rendered anonymous. No specific authorization was needed to retrospectively analyze anonymous data collected during routine care in the context of routine surveillance.", "A total of 137 outbreaks were recorded in the 14 sites. RTI outbreaks were more frequent than GE outbreaks (76 outbreaks and 5862 exposed residents vs. 61 outbreaks and 4309 exposed residents, respectively). Overall, 7643 of the exposed residents were women and 2528 were men. The median age was 86.7 years old (interquartile range: 81.1-91.0 years).\n\nVirus investigations (respectively 389 samples for RTI and 143 for GE with all the detailed results in S1-S4 Tables) confirmed a considerable number of norovirus-related GE outbreaks (34/61) and influenza-related RTI outbreaks (46/76). For GE outbreaks, 2524 residents were in a NoV+ context versus 1785 in a NoV-context, and for RTI outbreaks, 3479 residents were in a Flu+ context versus 2383 in a Flu-context.", "For GE surveillance in the NoV+ context, there were 1093 EI residents versus 1431 ENI residents, whereas in the NoV-context, there were 583 EI residents versus 1202 ENI residents. Therefore, the infection rate was higher in the NoV+ context (43.3%) than in the NoV-context (32.7%, (odds ratio (OR): 0.63, 95% confidence interval (CI): 0.56-0.72), p < 0.001).\n\nFor RTI surveillance, the rates of infection were similar with and without confirmed influenza: 31.5% (N = 1095 EI residents /3479 exposed residents) vs. 30.5% (N = 728 EI residents/ 2383 exposed residents, OR: 0.96, CI: 0.85-1.07, p = 0.47). Moreover, infection rate in the NoV + context was higher than the three other contexts: NoV-(OR: 0.63, CI: 0.56-0.72), Flu+ (OR: 0.60, CI:0.54-0.67) and Flu-(OR: 0.58, CI: 0.51-0.65).", "In univariate analysis, certain individual characteristics were associated with significant variations in the infection rate (S5 Table) . The infection rate increased with age (except in the Flucontext) and, decreased with LOS during GE outbreaks. The covariate adjusted analysis revealed specific significant effect modification according to sex (NoV+) and LOS (NoV-) (S6 Table) . In analyses stratified according to virus and sex, age adjusted for LOS remained significant for Flu+ and NoV+ outbreaks (males). In NoV-context, the effect modification of LOS remained significant (Table 1) . Finally, when autonomy was included and adjusted for age (virus, sex, LOS stratification), the less autonomous residents (female/LOS<4 years/age<86/ GIR 1-2) were affected more severely by Flu+ outbreaks with specific effect modification according to age (S7 Table) . The study of lethality rates in infected residents over the 56 days after onset indicated that there were significant variations for RTI", "but no change for GE (Table 2 ). Significant differences appeared after 28 days in the context of Flu+ outbreaks and other RTI outbreaks.", "The analysis of successive or simultaneous clusters in the same institutions was performed when the time period between the onset of symptoms of the last case in outbreak N and the onset of symptoms of the first case in outbreak N+1 was �56 days (S8 Table) . 44 of the 137 outbreaks (32.12%) were identified, and 194 of the 3499 exposed and infected residents contracted multiple infections. The percentage of exposed and infected residents implicated in more than one virus stratification was 11.09% ((194 � 2)/3499). Moreover, two deceased residents were included in the NoV-Na and Flu lethality analyses because death occurred within 56 days for both infections. The analysis of virus stratification of the 44 outbreaks showed the absence of successive clusters for the same category. The same analysis for the first four 7-day intervals (Days 1 to 28) showed the respective values: 26 outbreaks (18.98%), 117 residents ((6.69% ((117 � 2)/3499)), one dead resident.", "Finally, according to the higher lethality impact during the first four 7-day intervals and to limit the impact of successive clusters in the same site, all cause lethality rates were studied according to individual parameters for the four 7 days intervals with the respective number of According to the surveillance type (GE or RTI), the lethality rates differed significantly: 1.6% versus 3.4% (respectively NoV+ and NoV-contexts, OR: 2.24, CI: 1.16-4.39, p = 0.02) and 8.3% versus 5.6% (respectively Flu+ and Flu-, OR: 0.67, CI: 0.45-0.97, p = 0.04).", "In univariate analysis (S9 Table) , low autonomy status in the NoV+, Flu+ and Flu-contexts was most significantly associated with increased all-cause lethality, and age was associated with higher lethality in the Flu+ context. In the adjusted analysis, no significant statistical differences were identified in GE outbreaks. For RTI episodes, the adjusted analysis showed that autonomy had a significant impact when adjusted for sex, age or LOS (Flu+ and Flu-NA) and that age had a significant impact when adjusted for sex, autonomy or LOS (Flu+) (S10 Table) .\n\nIn Table 3 , the specific effects of age or autonomy were tested. Significant OR age adjusted for autonomy were: Flu+/age �86 years (compared with the <86 group), 1.97 (1.19-3.25). OR autonomy adjusted for age were for GIR 3-6 (compared with GIR 1-2): Flu+, 0.41 (0.24-0.69); Flu-, 0.42 (0.20, 0.90).", "Finally, despite the low number of residents and deaths per category, and consequently the limited robustness of the results, autonomy adjusted for age with stratification according to virus, sex and LOS showed that the effects were higher among subgroups of less autonomous residents (female or male/LOS<4 years/GIR 1-2) in Flu+ outbreaks, and there was also higher mortality in the small subgroup of autonomous men with LOS � 4 years (higher mortality) (S11 Table) .\n\nIn the Flu+ context, data regarding vaccination status and oseltamivir prescriptions were available but not used in this study.\n\nIn the present study, surveillance data obtained during GE and RTI outbreaks in nursing homes were used to construct stratified analyses and to identify specific infection and all-cause lethality rates according to the residents' individual characteristics.", "The infection rates observed here were similar to those found in previous studies of NoV and Influenza outbreaks (odds of being infected during a Flu+ outbreak were around 40% less than during a NoV+ outbreak). Reported infection rates were close to 30.0% in influenza outbreaks and 40.0% in NoV outbreaks [18] [19] [20] .", "Older age appeared to increase the likelihood of GE and influenza infection, with increasing rates among older residents. Age is a well-known factor for influenza and norovirus severity in the elderly and in nursing homes [21, 22] . For NoV, the highest incidence estimates (5-year age strata) was found in the �85 year-category (approximately 800 men and for 1,400 women per 100,000 inhabitants). In our study, univariate analysis (NoV+) showed that the odds of being infected were 1.5 to 1.6 times higher if a resident was older than 85. Moreover, an adjusted analysis of GE outbreaks highlighted different effects among subgroups of residents according to sex and LOS. Indeed, multiple and/or repeated exposure to GE viruses while institutionalized may lead to susceptibility or possible increased immunity in some residents [23] . For the sex variable, two factors could explain the effect: a possible selection bias with men reporting mild infections less than women (particularly in the <86", "years subgroup) or that male susceptibility was different (age, LOS, immunity,. . .). A German study from 2013 also reported a greater impact in women [21] . Moreover, when age analysis was stratified by sex and LOS, no Epidemic impacts in nursing homes significant impact was observed in women; the only significant differences were fewer infections in men in the <86-subgroup (except in the NoV-with LOS <4 years).", "For the RTI outbreaks, sex and LOS variables did not have a significant effect. In residents older than 86, the odds of being infected in Flu+ context were 1.5 times higher for women and 1.7 for men. In univariate analysis, contrary to the other virus contexts where odds ratios were rarely above 2, residents over 95 years old had increased odds of infection of � 2.8 compared with the 70-year-old category, and for the 100 year-old group the odds were approximately 3.8. In the Flu+ context, autonomy adjusted for age (virus, sex and LOS stratification) revealed a possible increase in infection rates among less autonomous residents. A previous study found that when elderly residents were exposed to the A(H3N2) virus, there were higher rates of infection and reinfection, and more significant effects on the institution than with other influenza types/subtypes. In the community, the relative illness ratio (RIR) in the [22, 24] .", "The incidence of influenza infection and the associated risks were well described by age group, but the specific impact according to age was not studied. The results of this work highlighted the specific age distribution of influenza illnesses among the nursing home residents and the more significant impact among the older residents. This specific susceptibility could be a critical factor in the institutional exposure and dissemination of influenza and could partly explain the high infection impact in the elderly institutional population.", "In this work, autonomy status was not the main factor associated with infection (no significant impact in GE and in Flu-contexts). However, in Flu+ outbreaks, a high level of dependency was associated with a higher risk of falling ill. This observation implies that staff could play a role in the spread of infection (highly dependent and less mobile residents are less likely to contaminate themselves) or that the more active residents may be less fragile and/or have a greater involvement in the recommended infection control measures. Finally, improving compliance with personal hygiene measures both for nursing staff and residents might be expected to have a beneficial effect on infection rates. Previous studies identified higher NoV infection rates in highly dependent individuals, but the results were not adjusted for age and LOS to take into account the potential correlation with the autonomy status [20] .", "Lethality is difficult to assess in nursing homes because death is frequent. Our GE and RTI episodes occurred during the winter seasons, and there are possible interactions between outbreaks and increased mortality at this time of the year [25] . The all-cause lethality rate of the infected residents in our study reflected global mortality including GE and RTI outbreaks and the global epidemiological context. Not surprisingly, a higher all-cause lethality rate was observed in the influenza contexts, as reported in previous studies [25] [26] [27] . Age and autonomy had similar effects in the different contexts, but in GE and to a lesser degree in Flu-outbreaks, the relatively small number of deaths could have limited the power of the statistical tests. In nursing homes, residents are generally discharged due to death. The number of residents lost to follow up was low (0.14% in the first 28 days), so the 7-day interval turnover rate calculated on the base of the median LOS provides a", "good indication of the average case fatality rate. The lethality rate for NoV+ outbreaks was similar to the estimated 7-day interval turnover rate (1.6%) indicating that this context had a limited impact on the death rate.", "The all-cause lethality rate was most affected by age and autonomy. Both individual characteristics were significant in the Flu+ outbreaks, and autonomy adjusted for age was significant in the Flu-episodes. The influence of age on mortality in a context of influenza has already been described: a very high mortality rate (831/100,000 inhabitants) was reported in persons 90 years of age and older compared with those aged 65-69 years (23/100,000 inhabitants) [28] . In our univariate analysis, the higher risk was observed in the �90 group whose risk of death was at least 2.6 higher than the <70 group. When adjusted for autonomy, the impact of age was not significant in more autonomous residents in the Flu+ context and not at all in the Flucontext. The opposite analysis (autonomy adjusted for age) showed higher global impact in the less autonomous group (Flu-) or only in the �86 age group (Flu+). Age and autonomy are a reflection of resident's level of frailty. Clinical frailty scores were", "not used in this study, but in a previous study of patients with critical illness, they were associated with greater mortality, regardless of age [29] . This suggests that in addition to age, autonomy can be a valuable indicator for the assessment of outbreak impact in outbreak surveillance. Other studies have suggested that age and certain comorbidities are independent risk factors for the influenza mortality rate or that mortality increase according to the number of risk factors [28, 30] . Comorbidities and underlying diseases of various severities could reflect overall frailty and consequently the risk of death. In nursing homes, information about autonomy and age are easier to collect and interpret than data on comorbidities. These various approaches should be evaluated and compared in the goal of optimizing risk assessment among nursing home residents.", "The present work has two main limitations. First, the virus information was incomplete (limited identification, mainly influenza rapid tests for the RTI). Consequently, some episodes in the levels with no available identification may also have been associated with influenza or norovirus, and multiple contaminations could have been underestimated or not taken into account. Moreover, vaccination and oseltamivir prescriptions were recorded but not included because the influenza genotype was not determined and identification was limited.\n\nSecondly, the deaths of uninfected residents were not recorded in this protocol even though such data would have provided valuable information about the global epidemiological context.", "In conclusion, specific susceptibility patterns were observed among exposed residents. In this cohort of nursing homes, infection rates varied according to virus, sex, length of stay and age, and there were major differences in lethality depending on virus, age and autonomy score. The collected data were easy to record and could be used to improve the characterization of seasonal outbreaks in nursing homes, whose residents are particularly vulnerable. Finally, as the average age and dependency level of residents continues to increase, subsequently increasing the risk of infection and death, health care staff will have to be increasingly vigilant during seasonal outbreaks and targeted interventions should be implemented.\n\nSupporting information S1 Data. (CSV) S1 R Codes. (R) S1 Table. (XLSX) S10 Table. (XLSX) S11 Table. (XLSX)" ]
[ 1 ]
5,052
7,134
1,634
What was the reported infection rate for influenza?
5,308
[ "30.0%" ]
[ "Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759171/\n\nSHA: f1d456ea268266ff3c21317c4190e4fcb49b5e4f\n\nAuthors: Gaspard, Philippe; Mosnier, Anne; Simon, Loic; Ali-Brandmeyer, Olivia; Rabaud, Christian; Larocca, Sabrina; Heck, Béatrice; Aho-Glélé, Serge; Pothier, Pierre; Ambert-Balay, Katia\nDate: 2019-09-24\nDOI: 10.1371/journal.pone.0222321\nLicense: cc-by", "Abstract: BACKGROUND: Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks are a significant issue in nursing homes. This study aimed to describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents. METHODS: Clinical and virological surveillance were conducted (2007 to 2018). Virus stratifications for the analysis were: outbreaks with positive norovirus or influenza identifications (respectively NoV+ or Flu+), episodes with no NoV or influenza identification or testing (respectively NoV- or Flu-). Associations between individual variables (sex, age, length of stay (LOS), autonomy status) and infection and lethality rates were tested with univariate and Mantel-Haenszel (MH) methods. RESULTS: 61 GE outbreaks and 76 RTI oubreaks (total 137 outbreaks) were recorded involving respectively 4309 and 5862 residents. In univariate analysis, higher infection rates and age were associated in NoV+,", "NoV-, and Flu+ contexts, and lower infection rates were associated with longer stays (NoV+ and NoV-). In MH stratified analysis (virus, sex (female/male)) adjusted for LOS (<4 or ≥4 years), the odds of being infected remained significant among older residents (≥86 years): NoV+/male (Odds ratio (OR(MH)): 1.64, 95% confidence interval (CI): 1.16–2.30) and Flu+/female and male (respectively OR(MH): 1.50, CI: 1.27–1.79 and 1.73, CI: 1.28–2.33). In univariate analysis, lower autonomy status (NoV+, Flu+ and Flu-) and increased age (Flu+) were associated with higher lethality. In MH adjusted analysis, significant OR(age) adjusted for autonomy was: Flu+/ ≥86 years compared with <86 years, 1.97 (1.19–3.25) and OR(autonomy) adjusted for age for the more autonomous group (compared with the less autonomous group) was: Flu+, 0.41 (0.24–0.69); Flu-, 0.42 (0.20, 0.90). CONCLUSION: The residents of nursing homes are increasingly elderly and dependent. The specific infection and lethality risks", "according to these two factors indicate that surveillance and infection control measures are essential and of high priority.", "Text: Introduction Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks represent a significant burden of illness in nursing homes. Viruses cause the majority of these outbreaks, and noroviruses and influenza viruses are the most common pathogens [1, 2] .\n\nPrevious studies have suggested that viral respiratory infections and norovirus outbreaks are a common cause of hospitalization or death, particularly among elderly individuals [3] [4] [5] .", "The impact of outbreaks has been described in terms of both frequency and epidemiology, but little is known about infection rates and all-cause lethality in GE and RTI nursing home outbreaks in relation to the individual characteristics of the residents [6] . The residents of these institutions are increasingly elderly and dependent, and the impact of this trend on the seasonal outbreak burden requires in-depth investigation. The results of studies focused on this issue could yield valuable information for nursing homes, allowing them to adapt their infection control strategies, in particular for improved assessment of infection risk.\n\nOur objective was to describe GE and RTI infection and all-cause lethality rates according to the individual characteristics of nursing home residents (sex, age, length of stay, autonomy status), and to identify specific susceptibility patterns related to these types of viral outbreaks in these facilities.", "The present study explored outbreaks in 14 sites (28 units with geriatric nursing home activities for a total of 1121 beds) caring for dependent people in southern Alsace (an area in northeastern France). Data were collected between September 2007 and August 2018 [7, 8] .\n\nEach site was geographically independent and autonomous for social and care management. Units were located within the larger sites and were defined as a place having a dedicated team at one location.", "During outbreaks at one site, only the residents in the units with confirmed cases were included. Outbreak inclusion depended on institutional alert to the hygiene team. Surveillance was done in each unit independently, and the members of staff had to inform a physician or charge nurse when two or more potential related cases of pneumonia or GE were observed within four days and when three or more cases were observed for other RTI. Units also had to inform the hygiene team when these threshold values were exceeded. For influenza, the first suspected case led to a local alert and the hygiene team was contacted. A practitioner from the hygiene team collected the information and evaluated the clinical signs, the virology information and the epidemiological context with the physician in the affected unit. The detected cluster was only put under surveillance if the hygiene team considered that there was a potential outbreak phenomenon. The duration of 4 days was in relation with the", "national protocol with alert to the authorities when 5 cases occurred within 4 days [9, 10] . On a local level and in addition to the clusters reported to the authorities, clusters with at least 3 cases within a period of seven days in one unit could be recorded if they were reported to the hygiene team. Because several outbreaks could potentially occur in the same unit during the surveillance period, a resident could be included repeatedly in different clusters. As a result, the observed patterns reflected the characteristics of an institutional population with longitudinal and pluriannual exposures.", "Personal information and clinical information was collected by a practitioner from the hygiene team directly from the residents' health care records. Personal information was collected for all those present the first day of the outbreak. The collected information included: month and year of birth, sex, date of arrival at the nursing home and autonomy status. The autonomy status of residents in French nursing homes is assessed using the AGGIR scale (Autonomy Gerontology Groups Iso-Resources), which is the legal instrument for evaluating dependency in the elderly and whose primary purpose is the allocation of means and resources [11] .", "With the AGGIR scale, autonomy is classified into 6 Iso-Resource Groups (GIR): GIR 1 (bedridden or armchair-bound persons, mental functions seriously altered and requiring continuous presence), GIR 2 (bedridden or armchair-bound persons, mental functions not totally altered and requiring assistance in most activities of daily living, or mental functions altered with preserved ability to get around), GIR 3 (preserved mental autonomy with partially preserved motor autonomy and assistance several times a day for physical autonomy), GIR 4 (moves around the home and sometimes assistance for washing, dressing, physical activities or eating), GIR 5 (only occasional assistance for washing, meal preparation, and housework), GIR 6 (autonomy for essential tasks of daily living). In outbreaks where the influenza virus was identified, influenza vaccination status and oseltamivir prescriptions were recorded as well. A file is transmitted in the Supporting Information with all previous data (S1", "Data).", "GE was defined as the sudden onset of vomiting and/or diarrhea over a 24 h period: (i) diarrhea �3 episodes, (ii) and/or vomiting �3 episodes, (iii) or diarrhea or vomiting <3 episodes with two or more other symptoms (diarrhea, vomiting, stomach ache, abdominal cramps, nausea, fever, mucus in stools) [1] .", "RTI presentation in older adults may be atypical, like for other acute illnesses in this age group [12] . We used the recommended definitions for RTI surveillance in geriatric units, divided in 3 subcategories: (i) common cold syndromes or pharyngitis (at least two of the following criteria: runny nose or sneezing, stuffy nose (i.e. congestion), sore throat or hoarseness or difficulty swallowing, dry cough, swollen or tender glands in the neck (cervical lymphadenopathy)), (ii) influenza-like illness (both the following criteria must be met: fever AND at least three other symptoms (chills, new headache or eye pain, myalgia or body aches, malaise or loss of appetite, sore throat, new or increased dry cough)) and (iii) lower respiratory tract infection (both of the following criteria must be met: at least two respiratory signs or symptoms (new or increased cough, new/increased sputum production, O 2 saturation <94% or reduced >3% from baseline, abnormal lung examination (new or changed),", "pleuritic chest pain, respiratory rate �25 breaths/min AND one or more constitutional signs/symptoms (fever, leukocytosis, confusion, acute functional decline)) [13] [14] [15] [16] . Infection corresponding to one of these three subcategories was included in this study and classified as RTI.", "For both infection types, the practitioner from the hygiene team obtained clinical information from the patient's health care records, and members of the health care team were consulted if necessary to complete any missing information. At the end of the episode (within seven days after the last identified case), case inclusion as exposed and not infected (ENI) or exposed and infected (EI) was determined with a resident physician.", "In order to study the lethality, the presence of each infected resident was evaluated once at least 56 days after the last case of each outbreak. Each resident was followed up retrospectively during eighth 7-day interval (I n, n = 1 to 8, total 56 days, between the date of onset of symptoms and the fifty-sixth day of the studied period) with three different possibilities: present (alive and officially residing in the institution), lost to follow-up (alive at the date of departure but no longer residing in the institution (return home, transfer to another institution)) or death (death recorded in the health care record). The dates of death and lost to follow-up were recorded.\n\nTesting for the virus was not systematic and was decided by the physicians in each institution in the presence of clinical signs.", "For GE, stool samples were sent to the National Reference Centre for Gastroenteritis Viruses in Dijon for laboratory testing, as previously described [8] . For RTI surveillance, rapid tests were used to identify the influenza virus. The rapid immunoassay diagnosis tests used for influenza detection were: Clearview1 Exact Influenza A and B (Inverness Medical, Cologne, Germany) from 2007 to 2014 and InfluenzaTop1 (Alldiag, Strasbourg, France) from 2014 to 2018. Given the low sensitivity of influenza rapid tests, they were no longer used once the control measures had been implemented and the influenza outbreak was under control. Samples were also occasionally sent to hospital laboratories or to the National Reference Centre for Influenza Viruses to detect viruses with real-time RT-PCR [17] . Most testing targeted the norovirus (NoV) and influenza virus, but other tests were occasionally performed by the National Reference Centre for Influenza Viruses (rhinovirus, respiratory syncytial", "virus, human metapneumovirus, parainfluenza 1, 2, 3 and 4, and coronavirus) and the National Reference Centre for Enteric Viruses (rotavirus, astrovirus, and adenovirus).", "Because testing for the viruses was variable (from one institution/physician to another, not used in some outbreaks, types of virus sought) and considering the poor sensitivity of the rapid influenza tests, these two sources of data were used to define the epidemiological context of confirmed outbreaks. Consequently, individual cases were included consistently in all episodes according to clinical signs and medical evaluation. When virus testing was negative, the clinical signs were recorded and medical evaluation was used as previously to classify the included residents as infected or not infected.\n\nThe epidemiological context of each outbreak was defined according to whether the virus had been identified or not. One or more positive samples led to the qualification of a NoV (NoV+) or flu (Flu+) context. The other episodes were qualified as flu or NoV outbreaks with no specific identification or testing (NoV-and Flu-).", "Flu and NoV contexts did not eliminate other potential enteric or respiratory pathogens.\n\nSex, age, length of stay (LOS, in years) and autonomy status were described for all exposed residents. Influenza vaccination and oseltamivir administration rates were calculated for confirmed influenza outbreaks. Dichotomous or categorical variables were expressed as percentages. In univariate analysis, the categories were specific in order to obtain a precise description of the age and LOS variables. Class intervals were 5 years for age and one year for LOS. The residents classified as GIR 4 to 6 (sometimes, occasional and no assistance) were grouped together because they were few.", "For the multi-level analysis with 2x2 tables, a median value was used to define the two-level age categories. For LOS, assessing the longest stays was necessary to identify the effect of longer exposure in a nursing home. Consequently, a four-year cutoff was chosen to create the two categories. For autonomy, the two most dependent categories (GIR � 2) were grouped together and compared with the more autonomous categories (GIR � 3).\n\nThe outbreak epidemiological contexts were used with the four categories: NoV+, Flu+, NoV-and flu-. Other GE or RTI viruses were occasionally identified, but the number of results was too limited to develop separate analyses. However, all the results are available in the tables about the virus investigations along with NoV and influenza identifications.", "For the different categories, infection rate (EI/Exposed Residents (ER), in percentage) was calculated according to sex, age group, LOS and autonomy status. To investigate all-cause lethality and define the appropriate period for the 56-day monitoring (D 1 to 56 ), the all-cause lethality rate per 7-day interval (LR n /I n, n = 1 to 8 ) was calculated: (number of deaths during interval I n /(EI alive the first day of n th studied interval minus lost to follow-up EI during the interval I n ) � 100).", "Seeing as successive clusters could occur within the same site, potentially influencing allcause lethality, the serial interval in days (SI d ) was calculated. The SI d was the time period between the onset of symptoms of the last case in initial outbreak (N) and the onset of symptoms of the first case in the following outbreak (N+1). Investigations were performed when SI d was shorter or equal to the length of the previous D 1 to 56 and the following parameters were evaluated for these specific situations: number of episodes, residents infected in both outbreaks, and death among the identified individuals.\n\nFinally, according to the death rate and the impact of successive outbreaks, the number of 7-day intervals (N.I n ) to take into account was defined, and the all-cause lethality rate was analyzed during these periods (I 1 to N th .I n or D 1 to 7 � N ).", "All-cause lethality rates were calculated with the following formula: (number of deaths from D 1 to 7 � N /(EI number at D 1 minus lost to follow-up among EI during the period D 1 to 7 � N ) � 100). Estimation of the turnover rate per 7-day interval among the infected residents was calculated on the base of the LOS (median in years) with the following formula: (proportion of discharged residents: 50.0% in the case of the median)/[(median LOS � 365)/7)]. The average rate of residents discharged per 7-day period was calculated: [(number of lost to follow up during the period D 1 to 7 � N /number of exposed and infected residents at D 1 )/N 7-day interval] � 100.", "As some residents were included in several outbreaks during the surveillance, the observations were not completely independent; non-parametric tests were used as a result. In univariate analysis, Chi-square or Fisher exact tests (expected number of frequencies fewer than 5) were used to compare infection and lethality rates according to the studied parameters and the odds ratio was calculated by median-unbiased estimation. The Kruskal-Wallis test was used to compare median values. Confidence intervals for medians were calculated with bootstrap methods.", "Covariate adjusted analyses were performed with two tables (2x2). The respective impact of each individual factor was tested with Mantel-Haenszel chi-squared tests. The equality of the stratum odds ratios was tested with the Woolf test of homogeneity. Finally, for each virus context, multiple tables (2x2) were generated and tested with confounding variables, effect modifiers or covariables. Statistical analyses were done using R for Mas OS X version R 3.4.1 software with RStudio version 1.0.153. A file is transmitted in the Supporting Information with all R codes and the packages used (S1 R Codes). Differences were considered significant at p � 0.05.", "The French Data Protection Authority approved data collection and analysis (DE-2013-074) and the local ethics committee (Espace Local de Réflexion Ethique, Centre Hospitalier de Rouffach) approved the study protocol (ERLE-32). According to the French law for biomedical research and human experimentation, individual written consent was not required from the patients or their relatives for data collection. Each year, the referring local practitioner of the study coordinated with the doctors working in the nursing home. At the beginning of the surveillance period, information regarding participation in the study was displayed in the family vising area, including a document about their right to access and rectify personal data. After collection, data were rendered anonymous. No specific authorization was needed to retrospectively analyze anonymous data collected during routine care in the context of routine surveillance.", "A total of 137 outbreaks were recorded in the 14 sites. RTI outbreaks were more frequent than GE outbreaks (76 outbreaks and 5862 exposed residents vs. 61 outbreaks and 4309 exposed residents, respectively). Overall, 7643 of the exposed residents were women and 2528 were men. The median age was 86.7 years old (interquartile range: 81.1-91.0 years).\n\nVirus investigations (respectively 389 samples for RTI and 143 for GE with all the detailed results in S1-S4 Tables) confirmed a considerable number of norovirus-related GE outbreaks (34/61) and influenza-related RTI outbreaks (46/76). For GE outbreaks, 2524 residents were in a NoV+ context versus 1785 in a NoV-context, and for RTI outbreaks, 3479 residents were in a Flu+ context versus 2383 in a Flu-context.", "For GE surveillance in the NoV+ context, there were 1093 EI residents versus 1431 ENI residents, whereas in the NoV-context, there were 583 EI residents versus 1202 ENI residents. Therefore, the infection rate was higher in the NoV+ context (43.3%) than in the NoV-context (32.7%, (odds ratio (OR): 0.63, 95% confidence interval (CI): 0.56-0.72), p < 0.001).\n\nFor RTI surveillance, the rates of infection were similar with and without confirmed influenza: 31.5% (N = 1095 EI residents /3479 exposed residents) vs. 30.5% (N = 728 EI residents/ 2383 exposed residents, OR: 0.96, CI: 0.85-1.07, p = 0.47). Moreover, infection rate in the NoV + context was higher than the three other contexts: NoV-(OR: 0.63, CI: 0.56-0.72), Flu+ (OR: 0.60, CI:0.54-0.67) and Flu-(OR: 0.58, CI: 0.51-0.65).", "In univariate analysis, certain individual characteristics were associated with significant variations in the infection rate (S5 Table) . The infection rate increased with age (except in the Flucontext) and, decreased with LOS during GE outbreaks. The covariate adjusted analysis revealed specific significant effect modification according to sex (NoV+) and LOS (NoV-) (S6 Table) . In analyses stratified according to virus and sex, age adjusted for LOS remained significant for Flu+ and NoV+ outbreaks (males). In NoV-context, the effect modification of LOS remained significant (Table 1) . Finally, when autonomy was included and adjusted for age (virus, sex, LOS stratification), the less autonomous residents (female/LOS<4 years/age<86/ GIR 1-2) were affected more severely by Flu+ outbreaks with specific effect modification according to age (S7 Table) . The study of lethality rates in infected residents over the 56 days after onset indicated that there were significant variations for RTI", "but no change for GE (Table 2 ). Significant differences appeared after 28 days in the context of Flu+ outbreaks and other RTI outbreaks.", "The analysis of successive or simultaneous clusters in the same institutions was performed when the time period between the onset of symptoms of the last case in outbreak N and the onset of symptoms of the first case in outbreak N+1 was �56 days (S8 Table) . 44 of the 137 outbreaks (32.12%) were identified, and 194 of the 3499 exposed and infected residents contracted multiple infections. The percentage of exposed and infected residents implicated in more than one virus stratification was 11.09% ((194 � 2)/3499). Moreover, two deceased residents were included in the NoV-Na and Flu lethality analyses because death occurred within 56 days for both infections. The analysis of virus stratification of the 44 outbreaks showed the absence of successive clusters for the same category. The same analysis for the first four 7-day intervals (Days 1 to 28) showed the respective values: 26 outbreaks (18.98%), 117 residents ((6.69% ((117 � 2)/3499)), one dead resident.", "Finally, according to the higher lethality impact during the first four 7-day intervals and to limit the impact of successive clusters in the same site, all cause lethality rates were studied according to individual parameters for the four 7 days intervals with the respective number of According to the surveillance type (GE or RTI), the lethality rates differed significantly: 1.6% versus 3.4% (respectively NoV+ and NoV-contexts, OR: 2.24, CI: 1.16-4.39, p = 0.02) and 8.3% versus 5.6% (respectively Flu+ and Flu-, OR: 0.67, CI: 0.45-0.97, p = 0.04).", "In univariate analysis (S9 Table) , low autonomy status in the NoV+, Flu+ and Flu-contexts was most significantly associated with increased all-cause lethality, and age was associated with higher lethality in the Flu+ context. In the adjusted analysis, no significant statistical differences were identified in GE outbreaks. For RTI episodes, the adjusted analysis showed that autonomy had a significant impact when adjusted for sex, age or LOS (Flu+ and Flu-NA) and that age had a significant impact when adjusted for sex, autonomy or LOS (Flu+) (S10 Table) .\n\nIn Table 3 , the specific effects of age or autonomy were tested. Significant OR age adjusted for autonomy were: Flu+/age �86 years (compared with the <86 group), 1.97 (1.19-3.25). OR autonomy adjusted for age were for GIR 3-6 (compared with GIR 1-2): Flu+, 0.41 (0.24-0.69); Flu-, 0.42 (0.20, 0.90).", "Finally, despite the low number of residents and deaths per category, and consequently the limited robustness of the results, autonomy adjusted for age with stratification according to virus, sex and LOS showed that the effects were higher among subgroups of less autonomous residents (female or male/LOS<4 years/GIR 1-2) in Flu+ outbreaks, and there was also higher mortality in the small subgroup of autonomous men with LOS � 4 years (higher mortality) (S11 Table) .\n\nIn the Flu+ context, data regarding vaccination status and oseltamivir prescriptions were available but not used in this study.\n\nIn the present study, surveillance data obtained during GE and RTI outbreaks in nursing homes were used to construct stratified analyses and to identify specific infection and all-cause lethality rates according to the residents' individual characteristics.", "The infection rates observed here were similar to those found in previous studies of NoV and Influenza outbreaks (odds of being infected during a Flu+ outbreak were around 40% less than during a NoV+ outbreak). Reported infection rates were close to 30.0% in influenza outbreaks and 40.0% in NoV outbreaks [18] [19] [20] .", "Older age appeared to increase the likelihood of GE and influenza infection, with increasing rates among older residents. Age is a well-known factor for influenza and norovirus severity in the elderly and in nursing homes [21, 22] . For NoV, the highest incidence estimates (5-year age strata) was found in the �85 year-category (approximately 800 men and for 1,400 women per 100,000 inhabitants). In our study, univariate analysis (NoV+) showed that the odds of being infected were 1.5 to 1.6 times higher if a resident was older than 85. Moreover, an adjusted analysis of GE outbreaks highlighted different effects among subgroups of residents according to sex and LOS. Indeed, multiple and/or repeated exposure to GE viruses while institutionalized may lead to susceptibility or possible increased immunity in some residents [23] . For the sex variable, two factors could explain the effect: a possible selection bias with men reporting mild infections less than women (particularly in the <86", "years subgroup) or that male susceptibility was different (age, LOS, immunity,. . .). A German study from 2013 also reported a greater impact in women [21] . Moreover, when age analysis was stratified by sex and LOS, no Epidemic impacts in nursing homes significant impact was observed in women; the only significant differences were fewer infections in men in the <86-subgroup (except in the NoV-with LOS <4 years).", "For the RTI outbreaks, sex and LOS variables did not have a significant effect. In residents older than 86, the odds of being infected in Flu+ context were 1.5 times higher for women and 1.7 for men. In univariate analysis, contrary to the other virus contexts where odds ratios were rarely above 2, residents over 95 years old had increased odds of infection of � 2.8 compared with the 70-year-old category, and for the 100 year-old group the odds were approximately 3.8. In the Flu+ context, autonomy adjusted for age (virus, sex and LOS stratification) revealed a possible increase in infection rates among less autonomous residents. A previous study found that when elderly residents were exposed to the A(H3N2) virus, there were higher rates of infection and reinfection, and more significant effects on the institution than with other influenza types/subtypes. In the community, the relative illness ratio (RIR) in the [22, 24] .", "The incidence of influenza infection and the associated risks were well described by age group, but the specific impact according to age was not studied. The results of this work highlighted the specific age distribution of influenza illnesses among the nursing home residents and the more significant impact among the older residents. This specific susceptibility could be a critical factor in the institutional exposure and dissemination of influenza and could partly explain the high infection impact in the elderly institutional population.", "In this work, autonomy status was not the main factor associated with infection (no significant impact in GE and in Flu-contexts). However, in Flu+ outbreaks, a high level of dependency was associated with a higher risk of falling ill. This observation implies that staff could play a role in the spread of infection (highly dependent and less mobile residents are less likely to contaminate themselves) or that the more active residents may be less fragile and/or have a greater involvement in the recommended infection control measures. Finally, improving compliance with personal hygiene measures both for nursing staff and residents might be expected to have a beneficial effect on infection rates. Previous studies identified higher NoV infection rates in highly dependent individuals, but the results were not adjusted for age and LOS to take into account the potential correlation with the autonomy status [20] .", "Lethality is difficult to assess in nursing homes because death is frequent. Our GE and RTI episodes occurred during the winter seasons, and there are possible interactions between outbreaks and increased mortality at this time of the year [25] . The all-cause lethality rate of the infected residents in our study reflected global mortality including GE and RTI outbreaks and the global epidemiological context. Not surprisingly, a higher all-cause lethality rate was observed in the influenza contexts, as reported in previous studies [25] [26] [27] . Age and autonomy had similar effects in the different contexts, but in GE and to a lesser degree in Flu-outbreaks, the relatively small number of deaths could have limited the power of the statistical tests. In nursing homes, residents are generally discharged due to death. The number of residents lost to follow up was low (0.14% in the first 28 days), so the 7-day interval turnover rate calculated on the base of the median LOS provides a", "good indication of the average case fatality rate. The lethality rate for NoV+ outbreaks was similar to the estimated 7-day interval turnover rate (1.6%) indicating that this context had a limited impact on the death rate.", "The all-cause lethality rate was most affected by age and autonomy. Both individual characteristics were significant in the Flu+ outbreaks, and autonomy adjusted for age was significant in the Flu-episodes. The influence of age on mortality in a context of influenza has already been described: a very high mortality rate (831/100,000 inhabitants) was reported in persons 90 years of age and older compared with those aged 65-69 years (23/100,000 inhabitants) [28] . In our univariate analysis, the higher risk was observed in the �90 group whose risk of death was at least 2.6 higher than the <70 group. When adjusted for autonomy, the impact of age was not significant in more autonomous residents in the Flu+ context and not at all in the Flucontext. The opposite analysis (autonomy adjusted for age) showed higher global impact in the less autonomous group (Flu-) or only in the �86 age group (Flu+). Age and autonomy are a reflection of resident's level of frailty. Clinical frailty scores were", "not used in this study, but in a previous study of patients with critical illness, they were associated with greater mortality, regardless of age [29] . This suggests that in addition to age, autonomy can be a valuable indicator for the assessment of outbreak impact in outbreak surveillance. Other studies have suggested that age and certain comorbidities are independent risk factors for the influenza mortality rate or that mortality increase according to the number of risk factors [28, 30] . Comorbidities and underlying diseases of various severities could reflect overall frailty and consequently the risk of death. In nursing homes, information about autonomy and age are easier to collect and interpret than data on comorbidities. These various approaches should be evaluated and compared in the goal of optimizing risk assessment among nursing home residents.", "The present work has two main limitations. First, the virus information was incomplete (limited identification, mainly influenza rapid tests for the RTI). Consequently, some episodes in the levels with no available identification may also have been associated with influenza or norovirus, and multiple contaminations could have been underestimated or not taken into account. Moreover, vaccination and oseltamivir prescriptions were recorded but not included because the influenza genotype was not determined and identification was limited.\n\nSecondly, the deaths of uninfected residents were not recorded in this protocol even though such data would have provided valuable information about the global epidemiological context.", "In conclusion, specific susceptibility patterns were observed among exposed residents. In this cohort of nursing homes, infection rates varied according to virus, sex, length of stay and age, and there were major differences in lethality depending on virus, age and autonomy score. The collected data were easy to record and could be used to improve the characterization of seasonal outbreaks in nursing homes, whose residents are particularly vulnerable. Finally, as the average age and dependency level of residents continues to increase, subsequently increasing the risk of infection and death, health care staff will have to be increasingly vigilant during seasonal outbreaks and targeted interventions should be implemented.\n\nSupporting information S1 Data. (CSV) S1 R Codes. (R) S1 Table. (XLSX) S10 Table. (XLSX) S11 Table. (XLSX)" ]
[ 36 ]
5,052
7,134
1,634
How many times more likely was an infection found in patients over 85 years old?
5,309
[ "1.5 to 1.6 times" ]
[ "Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759171/\n\nSHA: f1d456ea268266ff3c21317c4190e4fcb49b5e4f\n\nAuthors: Gaspard, Philippe; Mosnier, Anne; Simon, Loic; Ali-Brandmeyer, Olivia; Rabaud, Christian; Larocca, Sabrina; Heck, Béatrice; Aho-Glélé, Serge; Pothier, Pierre; Ambert-Balay, Katia\nDate: 2019-09-24\nDOI: 10.1371/journal.pone.0222321\nLicense: cc-by", "Abstract: BACKGROUND: Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks are a significant issue in nursing homes. This study aimed to describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents. METHODS: Clinical and virological surveillance were conducted (2007 to 2018). Virus stratifications for the analysis were: outbreaks with positive norovirus or influenza identifications (respectively NoV+ or Flu+), episodes with no NoV or influenza identification or testing (respectively NoV- or Flu-). Associations between individual variables (sex, age, length of stay (LOS), autonomy status) and infection and lethality rates were tested with univariate and Mantel-Haenszel (MH) methods. RESULTS: 61 GE outbreaks and 76 RTI oubreaks (total 137 outbreaks) were recorded involving respectively 4309 and 5862 residents. In univariate analysis, higher infection rates and age were associated in NoV+,", "NoV-, and Flu+ contexts, and lower infection rates were associated with longer stays (NoV+ and NoV-). In MH stratified analysis (virus, sex (female/male)) adjusted for LOS (<4 or ≥4 years), the odds of being infected remained significant among older residents (≥86 years): NoV+/male (Odds ratio (OR(MH)): 1.64, 95% confidence interval (CI): 1.16–2.30) and Flu+/female and male (respectively OR(MH): 1.50, CI: 1.27–1.79 and 1.73, CI: 1.28–2.33). In univariate analysis, lower autonomy status (NoV+, Flu+ and Flu-) and increased age (Flu+) were associated with higher lethality. In MH adjusted analysis, significant OR(age) adjusted for autonomy was: Flu+/ ≥86 years compared with <86 years, 1.97 (1.19–3.25) and OR(autonomy) adjusted for age for the more autonomous group (compared with the less autonomous group) was: Flu+, 0.41 (0.24–0.69); Flu-, 0.42 (0.20, 0.90). CONCLUSION: The residents of nursing homes are increasingly elderly and dependent. The specific infection and lethality risks", "according to these two factors indicate that surveillance and infection control measures are essential and of high priority.", "Text: Introduction Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks represent a significant burden of illness in nursing homes. Viruses cause the majority of these outbreaks, and noroviruses and influenza viruses are the most common pathogens [1, 2] .\n\nPrevious studies have suggested that viral respiratory infections and norovirus outbreaks are a common cause of hospitalization or death, particularly among elderly individuals [3] [4] [5] .", "The impact of outbreaks has been described in terms of both frequency and epidemiology, but little is known about infection rates and all-cause lethality in GE and RTI nursing home outbreaks in relation to the individual characteristics of the residents [6] . The residents of these institutions are increasingly elderly and dependent, and the impact of this trend on the seasonal outbreak burden requires in-depth investigation. The results of studies focused on this issue could yield valuable information for nursing homes, allowing them to adapt their infection control strategies, in particular for improved assessment of infection risk.\n\nOur objective was to describe GE and RTI infection and all-cause lethality rates according to the individual characteristics of nursing home residents (sex, age, length of stay, autonomy status), and to identify specific susceptibility patterns related to these types of viral outbreaks in these facilities.", "The present study explored outbreaks in 14 sites (28 units with geriatric nursing home activities for a total of 1121 beds) caring for dependent people in southern Alsace (an area in northeastern France). Data were collected between September 2007 and August 2018 [7, 8] .\n\nEach site was geographically independent and autonomous for social and care management. Units were located within the larger sites and were defined as a place having a dedicated team at one location.", "During outbreaks at one site, only the residents in the units with confirmed cases were included. Outbreak inclusion depended on institutional alert to the hygiene team. Surveillance was done in each unit independently, and the members of staff had to inform a physician or charge nurse when two or more potential related cases of pneumonia or GE were observed within four days and when three or more cases were observed for other RTI. Units also had to inform the hygiene team when these threshold values were exceeded. For influenza, the first suspected case led to a local alert and the hygiene team was contacted. A practitioner from the hygiene team collected the information and evaluated the clinical signs, the virology information and the epidemiological context with the physician in the affected unit. The detected cluster was only put under surveillance if the hygiene team considered that there was a potential outbreak phenomenon. The duration of 4 days was in relation with the", "national protocol with alert to the authorities when 5 cases occurred within 4 days [9, 10] . On a local level and in addition to the clusters reported to the authorities, clusters with at least 3 cases within a period of seven days in one unit could be recorded if they were reported to the hygiene team. Because several outbreaks could potentially occur in the same unit during the surveillance period, a resident could be included repeatedly in different clusters. As a result, the observed patterns reflected the characteristics of an institutional population with longitudinal and pluriannual exposures.", "Personal information and clinical information was collected by a practitioner from the hygiene team directly from the residents' health care records. Personal information was collected for all those present the first day of the outbreak. The collected information included: month and year of birth, sex, date of arrival at the nursing home and autonomy status. The autonomy status of residents in French nursing homes is assessed using the AGGIR scale (Autonomy Gerontology Groups Iso-Resources), which is the legal instrument for evaluating dependency in the elderly and whose primary purpose is the allocation of means and resources [11] .", "With the AGGIR scale, autonomy is classified into 6 Iso-Resource Groups (GIR): GIR 1 (bedridden or armchair-bound persons, mental functions seriously altered and requiring continuous presence), GIR 2 (bedridden or armchair-bound persons, mental functions not totally altered and requiring assistance in most activities of daily living, or mental functions altered with preserved ability to get around), GIR 3 (preserved mental autonomy with partially preserved motor autonomy and assistance several times a day for physical autonomy), GIR 4 (moves around the home and sometimes assistance for washing, dressing, physical activities or eating), GIR 5 (only occasional assistance for washing, meal preparation, and housework), GIR 6 (autonomy for essential tasks of daily living). In outbreaks where the influenza virus was identified, influenza vaccination status and oseltamivir prescriptions were recorded as well. A file is transmitted in the Supporting Information with all previous data (S1", "Data).", "GE was defined as the sudden onset of vomiting and/or diarrhea over a 24 h period: (i) diarrhea �3 episodes, (ii) and/or vomiting �3 episodes, (iii) or diarrhea or vomiting <3 episodes with two or more other symptoms (diarrhea, vomiting, stomach ache, abdominal cramps, nausea, fever, mucus in stools) [1] .", "RTI presentation in older adults may be atypical, like for other acute illnesses in this age group [12] . We used the recommended definitions for RTI surveillance in geriatric units, divided in 3 subcategories: (i) common cold syndromes or pharyngitis (at least two of the following criteria: runny nose or sneezing, stuffy nose (i.e. congestion), sore throat or hoarseness or difficulty swallowing, dry cough, swollen or tender glands in the neck (cervical lymphadenopathy)), (ii) influenza-like illness (both the following criteria must be met: fever AND at least three other symptoms (chills, new headache or eye pain, myalgia or body aches, malaise or loss of appetite, sore throat, new or increased dry cough)) and (iii) lower respiratory tract infection (both of the following criteria must be met: at least two respiratory signs or symptoms (new or increased cough, new/increased sputum production, O 2 saturation <94% or reduced >3% from baseline, abnormal lung examination (new or changed),", "pleuritic chest pain, respiratory rate �25 breaths/min AND one or more constitutional signs/symptoms (fever, leukocytosis, confusion, acute functional decline)) [13] [14] [15] [16] . Infection corresponding to one of these three subcategories was included in this study and classified as RTI.", "For both infection types, the practitioner from the hygiene team obtained clinical information from the patient's health care records, and members of the health care team were consulted if necessary to complete any missing information. At the end of the episode (within seven days after the last identified case), case inclusion as exposed and not infected (ENI) or exposed and infected (EI) was determined with a resident physician.", "In order to study the lethality, the presence of each infected resident was evaluated once at least 56 days after the last case of each outbreak. Each resident was followed up retrospectively during eighth 7-day interval (I n, n = 1 to 8, total 56 days, between the date of onset of symptoms and the fifty-sixth day of the studied period) with three different possibilities: present (alive and officially residing in the institution), lost to follow-up (alive at the date of departure but no longer residing in the institution (return home, transfer to another institution)) or death (death recorded in the health care record). The dates of death and lost to follow-up were recorded.\n\nTesting for the virus was not systematic and was decided by the physicians in each institution in the presence of clinical signs.", "For GE, stool samples were sent to the National Reference Centre for Gastroenteritis Viruses in Dijon for laboratory testing, as previously described [8] . For RTI surveillance, rapid tests were used to identify the influenza virus. The rapid immunoassay diagnosis tests used for influenza detection were: Clearview1 Exact Influenza A and B (Inverness Medical, Cologne, Germany) from 2007 to 2014 and InfluenzaTop1 (Alldiag, Strasbourg, France) from 2014 to 2018. Given the low sensitivity of influenza rapid tests, they were no longer used once the control measures had been implemented and the influenza outbreak was under control. Samples were also occasionally sent to hospital laboratories or to the National Reference Centre for Influenza Viruses to detect viruses with real-time RT-PCR [17] . Most testing targeted the norovirus (NoV) and influenza virus, but other tests were occasionally performed by the National Reference Centre for Influenza Viruses (rhinovirus, respiratory syncytial", "virus, human metapneumovirus, parainfluenza 1, 2, 3 and 4, and coronavirus) and the National Reference Centre for Enteric Viruses (rotavirus, astrovirus, and adenovirus).", "Because testing for the viruses was variable (from one institution/physician to another, not used in some outbreaks, types of virus sought) and considering the poor sensitivity of the rapid influenza tests, these two sources of data were used to define the epidemiological context of confirmed outbreaks. Consequently, individual cases were included consistently in all episodes according to clinical signs and medical evaluation. When virus testing was negative, the clinical signs were recorded and medical evaluation was used as previously to classify the included residents as infected or not infected.\n\nThe epidemiological context of each outbreak was defined according to whether the virus had been identified or not. One or more positive samples led to the qualification of a NoV (NoV+) or flu (Flu+) context. The other episodes were qualified as flu or NoV outbreaks with no specific identification or testing (NoV-and Flu-).", "Flu and NoV contexts did not eliminate other potential enteric or respiratory pathogens.\n\nSex, age, length of stay (LOS, in years) and autonomy status were described for all exposed residents. Influenza vaccination and oseltamivir administration rates were calculated for confirmed influenza outbreaks. Dichotomous or categorical variables were expressed as percentages. In univariate analysis, the categories were specific in order to obtain a precise description of the age and LOS variables. Class intervals were 5 years for age and one year for LOS. The residents classified as GIR 4 to 6 (sometimes, occasional and no assistance) were grouped together because they were few.", "For the multi-level analysis with 2x2 tables, a median value was used to define the two-level age categories. For LOS, assessing the longest stays was necessary to identify the effect of longer exposure in a nursing home. Consequently, a four-year cutoff was chosen to create the two categories. For autonomy, the two most dependent categories (GIR � 2) were grouped together and compared with the more autonomous categories (GIR � 3).\n\nThe outbreak epidemiological contexts were used with the four categories: NoV+, Flu+, NoV-and flu-. Other GE or RTI viruses were occasionally identified, but the number of results was too limited to develop separate analyses. However, all the results are available in the tables about the virus investigations along with NoV and influenza identifications.", "For the different categories, infection rate (EI/Exposed Residents (ER), in percentage) was calculated according to sex, age group, LOS and autonomy status. To investigate all-cause lethality and define the appropriate period for the 56-day monitoring (D 1 to 56 ), the all-cause lethality rate per 7-day interval (LR n /I n, n = 1 to 8 ) was calculated: (number of deaths during interval I n /(EI alive the first day of n th studied interval minus lost to follow-up EI during the interval I n ) � 100).", "Seeing as successive clusters could occur within the same site, potentially influencing allcause lethality, the serial interval in days (SI d ) was calculated. The SI d was the time period between the onset of symptoms of the last case in initial outbreak (N) and the onset of symptoms of the first case in the following outbreak (N+1). Investigations were performed when SI d was shorter or equal to the length of the previous D 1 to 56 and the following parameters were evaluated for these specific situations: number of episodes, residents infected in both outbreaks, and death among the identified individuals.\n\nFinally, according to the death rate and the impact of successive outbreaks, the number of 7-day intervals (N.I n ) to take into account was defined, and the all-cause lethality rate was analyzed during these periods (I 1 to N th .I n or D 1 to 7 � N ).", "All-cause lethality rates were calculated with the following formula: (number of deaths from D 1 to 7 � N /(EI number at D 1 minus lost to follow-up among EI during the period D 1 to 7 � N ) � 100). Estimation of the turnover rate per 7-day interval among the infected residents was calculated on the base of the LOS (median in years) with the following formula: (proportion of discharged residents: 50.0% in the case of the median)/[(median LOS � 365)/7)]. The average rate of residents discharged per 7-day period was calculated: [(number of lost to follow up during the period D 1 to 7 � N /number of exposed and infected residents at D 1 )/N 7-day interval] � 100.", "As some residents were included in several outbreaks during the surveillance, the observations were not completely independent; non-parametric tests were used as a result. In univariate analysis, Chi-square or Fisher exact tests (expected number of frequencies fewer than 5) were used to compare infection and lethality rates according to the studied parameters and the odds ratio was calculated by median-unbiased estimation. The Kruskal-Wallis test was used to compare median values. Confidence intervals for medians were calculated with bootstrap methods.", "Covariate adjusted analyses were performed with two tables (2x2). The respective impact of each individual factor was tested with Mantel-Haenszel chi-squared tests. The equality of the stratum odds ratios was tested with the Woolf test of homogeneity. Finally, for each virus context, multiple tables (2x2) were generated and tested with confounding variables, effect modifiers or covariables. Statistical analyses were done using R for Mas OS X version R 3.4.1 software with RStudio version 1.0.153. A file is transmitted in the Supporting Information with all R codes and the packages used (S1 R Codes). Differences were considered significant at p � 0.05.", "The French Data Protection Authority approved data collection and analysis (DE-2013-074) and the local ethics committee (Espace Local de Réflexion Ethique, Centre Hospitalier de Rouffach) approved the study protocol (ERLE-32). According to the French law for biomedical research and human experimentation, individual written consent was not required from the patients or their relatives for data collection. Each year, the referring local practitioner of the study coordinated with the doctors working in the nursing home. At the beginning of the surveillance period, information regarding participation in the study was displayed in the family vising area, including a document about their right to access and rectify personal data. After collection, data were rendered anonymous. No specific authorization was needed to retrospectively analyze anonymous data collected during routine care in the context of routine surveillance.", "A total of 137 outbreaks were recorded in the 14 sites. RTI outbreaks were more frequent than GE outbreaks (76 outbreaks and 5862 exposed residents vs. 61 outbreaks and 4309 exposed residents, respectively). Overall, 7643 of the exposed residents were women and 2528 were men. The median age was 86.7 years old (interquartile range: 81.1-91.0 years).\n\nVirus investigations (respectively 389 samples for RTI and 143 for GE with all the detailed results in S1-S4 Tables) confirmed a considerable number of norovirus-related GE outbreaks (34/61) and influenza-related RTI outbreaks (46/76). For GE outbreaks, 2524 residents were in a NoV+ context versus 1785 in a NoV-context, and for RTI outbreaks, 3479 residents were in a Flu+ context versus 2383 in a Flu-context.", "For GE surveillance in the NoV+ context, there were 1093 EI residents versus 1431 ENI residents, whereas in the NoV-context, there were 583 EI residents versus 1202 ENI residents. Therefore, the infection rate was higher in the NoV+ context (43.3%) than in the NoV-context (32.7%, (odds ratio (OR): 0.63, 95% confidence interval (CI): 0.56-0.72), p < 0.001).\n\nFor RTI surveillance, the rates of infection were similar with and without confirmed influenza: 31.5% (N = 1095 EI residents /3479 exposed residents) vs. 30.5% (N = 728 EI residents/ 2383 exposed residents, OR: 0.96, CI: 0.85-1.07, p = 0.47). Moreover, infection rate in the NoV + context was higher than the three other contexts: NoV-(OR: 0.63, CI: 0.56-0.72), Flu+ (OR: 0.60, CI:0.54-0.67) and Flu-(OR: 0.58, CI: 0.51-0.65).", "In univariate analysis, certain individual characteristics were associated with significant variations in the infection rate (S5 Table) . The infection rate increased with age (except in the Flucontext) and, decreased with LOS during GE outbreaks. The covariate adjusted analysis revealed specific significant effect modification according to sex (NoV+) and LOS (NoV-) (S6 Table) . In analyses stratified according to virus and sex, age adjusted for LOS remained significant for Flu+ and NoV+ outbreaks (males). In NoV-context, the effect modification of LOS remained significant (Table 1) . Finally, when autonomy was included and adjusted for age (virus, sex, LOS stratification), the less autonomous residents (female/LOS<4 years/age<86/ GIR 1-2) were affected more severely by Flu+ outbreaks with specific effect modification according to age (S7 Table) . The study of lethality rates in infected residents over the 56 days after onset indicated that there were significant variations for RTI", "but no change for GE (Table 2 ). Significant differences appeared after 28 days in the context of Flu+ outbreaks and other RTI outbreaks.", "The analysis of successive or simultaneous clusters in the same institutions was performed when the time period between the onset of symptoms of the last case in outbreak N and the onset of symptoms of the first case in outbreak N+1 was �56 days (S8 Table) . 44 of the 137 outbreaks (32.12%) were identified, and 194 of the 3499 exposed and infected residents contracted multiple infections. The percentage of exposed and infected residents implicated in more than one virus stratification was 11.09% ((194 � 2)/3499). Moreover, two deceased residents were included in the NoV-Na and Flu lethality analyses because death occurred within 56 days for both infections. The analysis of virus stratification of the 44 outbreaks showed the absence of successive clusters for the same category. The same analysis for the first four 7-day intervals (Days 1 to 28) showed the respective values: 26 outbreaks (18.98%), 117 residents ((6.69% ((117 � 2)/3499)), one dead resident.", "Finally, according to the higher lethality impact during the first four 7-day intervals and to limit the impact of successive clusters in the same site, all cause lethality rates were studied according to individual parameters for the four 7 days intervals with the respective number of According to the surveillance type (GE or RTI), the lethality rates differed significantly: 1.6% versus 3.4% (respectively NoV+ and NoV-contexts, OR: 2.24, CI: 1.16-4.39, p = 0.02) and 8.3% versus 5.6% (respectively Flu+ and Flu-, OR: 0.67, CI: 0.45-0.97, p = 0.04).", "In univariate analysis (S9 Table) , low autonomy status in the NoV+, Flu+ and Flu-contexts was most significantly associated with increased all-cause lethality, and age was associated with higher lethality in the Flu+ context. In the adjusted analysis, no significant statistical differences were identified in GE outbreaks. For RTI episodes, the adjusted analysis showed that autonomy had a significant impact when adjusted for sex, age or LOS (Flu+ and Flu-NA) and that age had a significant impact when adjusted for sex, autonomy or LOS (Flu+) (S10 Table) .\n\nIn Table 3 , the specific effects of age or autonomy were tested. Significant OR age adjusted for autonomy were: Flu+/age �86 years (compared with the <86 group), 1.97 (1.19-3.25). OR autonomy adjusted for age were for GIR 3-6 (compared with GIR 1-2): Flu+, 0.41 (0.24-0.69); Flu-, 0.42 (0.20, 0.90).", "Finally, despite the low number of residents and deaths per category, and consequently the limited robustness of the results, autonomy adjusted for age with stratification according to virus, sex and LOS showed that the effects were higher among subgroups of less autonomous residents (female or male/LOS<4 years/GIR 1-2) in Flu+ outbreaks, and there was also higher mortality in the small subgroup of autonomous men with LOS � 4 years (higher mortality) (S11 Table) .\n\nIn the Flu+ context, data regarding vaccination status and oseltamivir prescriptions were available but not used in this study.\n\nIn the present study, surveillance data obtained during GE and RTI outbreaks in nursing homes were used to construct stratified analyses and to identify specific infection and all-cause lethality rates according to the residents' individual characteristics.", "The infection rates observed here were similar to those found in previous studies of NoV and Influenza outbreaks (odds of being infected during a Flu+ outbreak were around 40% less than during a NoV+ outbreak). Reported infection rates were close to 30.0% in influenza outbreaks and 40.0% in NoV outbreaks [18] [19] [20] .", "Older age appeared to increase the likelihood of GE and influenza infection, with increasing rates among older residents. Age is a well-known factor for influenza and norovirus severity in the elderly and in nursing homes [21, 22] . For NoV, the highest incidence estimates (5-year age strata) was found in the �85 year-category (approximately 800 men and for 1,400 women per 100,000 inhabitants). In our study, univariate analysis (NoV+) showed that the odds of being infected were 1.5 to 1.6 times higher if a resident was older than 85. Moreover, an adjusted analysis of GE outbreaks highlighted different effects among subgroups of residents according to sex and LOS. Indeed, multiple and/or repeated exposure to GE viruses while institutionalized may lead to susceptibility or possible increased immunity in some residents [23] . For the sex variable, two factors could explain the effect: a possible selection bias with men reporting mild infections less than women (particularly in the <86", "years subgroup) or that male susceptibility was different (age, LOS, immunity,. . .). A German study from 2013 also reported a greater impact in women [21] . Moreover, when age analysis was stratified by sex and LOS, no Epidemic impacts in nursing homes significant impact was observed in women; the only significant differences were fewer infections in men in the <86-subgroup (except in the NoV-with LOS <4 years).", "For the RTI outbreaks, sex and LOS variables did not have a significant effect. In residents older than 86, the odds of being infected in Flu+ context were 1.5 times higher for women and 1.7 for men. In univariate analysis, contrary to the other virus contexts where odds ratios were rarely above 2, residents over 95 years old had increased odds of infection of � 2.8 compared with the 70-year-old category, and for the 100 year-old group the odds were approximately 3.8. In the Flu+ context, autonomy adjusted for age (virus, sex and LOS stratification) revealed a possible increase in infection rates among less autonomous residents. A previous study found that when elderly residents were exposed to the A(H3N2) virus, there were higher rates of infection and reinfection, and more significant effects on the institution than with other influenza types/subtypes. In the community, the relative illness ratio (RIR) in the [22, 24] .", "The incidence of influenza infection and the associated risks were well described by age group, but the specific impact according to age was not studied. The results of this work highlighted the specific age distribution of influenza illnesses among the nursing home residents and the more significant impact among the older residents. This specific susceptibility could be a critical factor in the institutional exposure and dissemination of influenza and could partly explain the high infection impact in the elderly institutional population.", "In this work, autonomy status was not the main factor associated with infection (no significant impact in GE and in Flu-contexts). However, in Flu+ outbreaks, a high level of dependency was associated with a higher risk of falling ill. This observation implies that staff could play a role in the spread of infection (highly dependent and less mobile residents are less likely to contaminate themselves) or that the more active residents may be less fragile and/or have a greater involvement in the recommended infection control measures. Finally, improving compliance with personal hygiene measures both for nursing staff and residents might be expected to have a beneficial effect on infection rates. Previous studies identified higher NoV infection rates in highly dependent individuals, but the results were not adjusted for age and LOS to take into account the potential correlation with the autonomy status [20] .", "Lethality is difficult to assess in nursing homes because death is frequent. Our GE and RTI episodes occurred during the winter seasons, and there are possible interactions between outbreaks and increased mortality at this time of the year [25] . The all-cause lethality rate of the infected residents in our study reflected global mortality including GE and RTI outbreaks and the global epidemiological context. Not surprisingly, a higher all-cause lethality rate was observed in the influenza contexts, as reported in previous studies [25] [26] [27] . Age and autonomy had similar effects in the different contexts, but in GE and to a lesser degree in Flu-outbreaks, the relatively small number of deaths could have limited the power of the statistical tests. In nursing homes, residents are generally discharged due to death. The number of residents lost to follow up was low (0.14% in the first 28 days), so the 7-day interval turnover rate calculated on the base of the median LOS provides a", "good indication of the average case fatality rate. The lethality rate for NoV+ outbreaks was similar to the estimated 7-day interval turnover rate (1.6%) indicating that this context had a limited impact on the death rate.", "The all-cause lethality rate was most affected by age and autonomy. Both individual characteristics were significant in the Flu+ outbreaks, and autonomy adjusted for age was significant in the Flu-episodes. The influence of age on mortality in a context of influenza has already been described: a very high mortality rate (831/100,000 inhabitants) was reported in persons 90 years of age and older compared with those aged 65-69 years (23/100,000 inhabitants) [28] . In our univariate analysis, the higher risk was observed in the �90 group whose risk of death was at least 2.6 higher than the <70 group. When adjusted for autonomy, the impact of age was not significant in more autonomous residents in the Flu+ context and not at all in the Flucontext. The opposite analysis (autonomy adjusted for age) showed higher global impact in the less autonomous group (Flu-) or only in the �86 age group (Flu+). Age and autonomy are a reflection of resident's level of frailty. Clinical frailty scores were", "not used in this study, but in a previous study of patients with critical illness, they were associated with greater mortality, regardless of age [29] . This suggests that in addition to age, autonomy can be a valuable indicator for the assessment of outbreak impact in outbreak surveillance. Other studies have suggested that age and certain comorbidities are independent risk factors for the influenza mortality rate or that mortality increase according to the number of risk factors [28, 30] . Comorbidities and underlying diseases of various severities could reflect overall frailty and consequently the risk of death. In nursing homes, information about autonomy and age are easier to collect and interpret than data on comorbidities. These various approaches should be evaluated and compared in the goal of optimizing risk assessment among nursing home residents.", "The present work has two main limitations. First, the virus information was incomplete (limited identification, mainly influenza rapid tests for the RTI). Consequently, some episodes in the levels with no available identification may also have been associated with influenza or norovirus, and multiple contaminations could have been underestimated or not taken into account. Moreover, vaccination and oseltamivir prescriptions were recorded but not included because the influenza genotype was not determined and identification was limited.\n\nSecondly, the deaths of uninfected residents were not recorded in this protocol even though such data would have provided valuable information about the global epidemiological context.", "In conclusion, specific susceptibility patterns were observed among exposed residents. In this cohort of nursing homes, infection rates varied according to virus, sex, length of stay and age, and there were major differences in lethality depending on virus, age and autonomy score. The collected data were easy to record and could be used to improve the characterization of seasonal outbreaks in nursing homes, whose residents are particularly vulnerable. Finally, as the average age and dependency level of residents continues to increase, subsequently increasing the risk of infection and death, health care staff will have to be increasingly vigilant during seasonal outbreaks and targeted interventions should be implemented.\n\nSupporting information S1 Data. (CSV) S1 R Codes. (R) S1 Table. (XLSX) S10 Table. (XLSX) S11 Table. (XLSX)" ]
[ 37 ]
5,052
7,134
2,466
What can be the main challenges in managing a hospital outbreak of COVID-19?
634
[ "(1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource." ]
[ "Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China\n\nhttps://doi.org/10.1186/s13054-020-2786-x\n\nSHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea\n\nAuthors: Liu, Yong; Li, Jinxiu; Feng, Yongwen\nDate: 2020\nDOI: 10.1186/s13054-020-2786-x\nLicense: cc-by\n\nAbstract: nan", "Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.", "Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.", "Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy", "has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.", "2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.", "Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in", "our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .", "The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.\n\nCritical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] ." ]
[ 1 ]
879
1,292
2,466
Why early identification of COVID-19 patients can be difficult?
642
[ "Early identification of 2019-nCoV infection presents a major challenge" ]
[ "Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China\n\nhttps://doi.org/10.1186/s13054-020-2786-x\n\nSHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea\n\nAuthors: Liu, Yong; Li, Jinxiu; Feng, Yongwen\nDate: 2020\nDOI: 10.1186/s13054-020-2786-x\nLicense: cc-by\n\nAbstract: nan", "Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.", "Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.", "Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy", "has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.", "2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.", "Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in", "our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .", "The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.\n\nCritical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] ." ]
[ 2 ]
879
1,292
2,466
What are the steps that a hospital should take after COVID-19 outbreak?
644
[ "2019-nCoV patients should be admitted" ]
[ "Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China\n\nhttps://doi.org/10.1186/s13054-020-2786-x\n\nSHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea\n\nAuthors: Liu, Yong; Li, Jinxiu; Feng, Yongwen\nDate: 2020\nDOI: 10.1186/s13054-020-2786-x\nLicense: cc-by\n\nAbstract: nan", "Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.", "Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.", "Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy", "has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.", "2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.", "Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in", "our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .", "The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.\n\nCritical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] ." ]
[ 5 ]
879
1,292
2,466
Why exposure risk of COVID-19 is very high for ICU staff and what precautions should be taken?
645
[ "substantial exposure risk for ICU staff because of the following reasons" ]
[ "Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China\n\nhttps://doi.org/10.1186/s13054-020-2786-x\n\nSHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea\n\nAuthors: Liu, Yong; Li, Jinxiu; Feng, Yongwen\nDate: 2020\nDOI: 10.1186/s13054-020-2786-x\nLicense: cc-by\n\nAbstract: nan", "Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.", "Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.", "Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy", "has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.", "2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.", "Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in", "our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .", "The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.\n\nCritical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] ." ]
[ 6 ]
879
1,292
2,458
Use of SIR/SEIR model in Statistics-Based Predictions of Coronavirus Epidemic Spreading?
669
[ "susceptible persons is S, infected (persons who are sick and spread the infection) -I, removed (persons who do not spread the infection anymore, this number is the sum of isolated, recovered and dead people) -R; the infection and immunization rates" ]
[ "Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China\n\nhttps://doi.org/10.20535/ibb.2020.4.1.195074\n\nSHA: 4ff89a71126d2932544a8337ba28787fde5f02a8\n\nAuthors: Nesteruk, Igor\nDate: 2020\nDOI: 10.20535/ibb.2020.4.1.195074\nLicense: cc-by\n\nAbstract: Information about the open-access article 'Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China' in DOAJ. DOAJ is an online directory that indexes and provides access to quality open access, peer-reviewed journals.", "Text: Here, we consider the development of an epidemic outbreak caused by coronavirus COVID-19 (the previous name was 2019-nCoV) (see e.g., [1] [2] [3] ). Since long-term data are available only for mainland China, we will try to predict the number of coronavirus victims V (number of persons who caught the infection and got sick) only in this area. The first estimations of V(t) exponential growth versus time t, typical for the initial stages of every epidemic (see e.g., [4] ) have been done in [3] . For long-time predictions, more complicated mathematical models are necessary. For example, a susceptible-exposed-infectious-recovered (SEIR) model was used in [2] . Nevertheless, complicated models need more effort for unknown parameters identification. This procedure may be especially difficult if reliable data are limited.", "In this study, we use the known SIR model for the dynamics of an epidemic [4] [5] [6] [7] [8] . For the parameter identification, we will use the exact solution of the SIR set of linear equations and statistical approach developed in [4] (tested also in [9] ). These methods were applied for investigation of the children disease, which occurred in Chernivtsi (Ukraine) in 1988-1989. We will estimate some of the epidemic characteristics and present the dependencies for victim numbers, infected and removed persons versus time.\n\nWe shall analyze the daily data for the number of confirmed cases in mainland China, which origins from the National Health Commission of the People's Republic of China [1] . A part of the official diagram (its version, presented on February 15, 2020) is shown in Fig. 1 . For calculations, we have used the data for the period of time from January 16 to February 9, 2020. The numbers shown after February 9 were used for verification of predictions.", "On February 12, 2020, the National Health Commission of the People's Republic of China has added 12289 new cases (not previously included in official counts) as \"clinically diagnosed cases\". The cases, reported by this official organization before, have the name of \"tested confirmed cases\" [1] . To avoid confusiong, we will denote \"tested confirmed cases\" as Wj; j corresponds to the different time moments tj (see the Table) . Let us denote the \"clinically diagnosed cases\" as Qj. The sum of Wj and Qj is shown in the last column in Fig. 1 and in the Table. The Table shows that the precise time of the epidemic beginning t0 is unknown. Therefore, the optimization procedures have to determine the optimal value of this parameter as well as for other parameters of SIR model. The sum of \"tested confirmed cases\" and \"clinically diagnosed cases\" Wj + Qj 16 0 45 1 16 14380 Unknown 17 1 62 2 17 17205 Unknown 18 2 121 3 18 20440 Unknown 19 3 198 4 19 24324 Unknown 20", "4 291 5 20 28018 Unknown 21 5 440 6 21 31161 Unknown 22 6 571 7 22 34568 Unknown 23 7 830 8 23 37198 Unknown 24 8 1287 9 24 40171 Unknown 25 9 1975 10 25 42638 Unknown 26 10 2744 11 26 44653 Unknown 27 11 4515 12 27 46472 58761 28 12 5974 13 28 48467 63851 29 13 7711 14 29 49970 66492 30 14 9692 ----31 15 11791 ----", "The SIR model for an infectious disease can be written as follows [6, 7] :\n\n,\n\nThe number of susceptible persons is S, infected (persons who are sick and spread the infection) -I, removed (persons who do not spread the infection anymore, this number is the sum of isolated, recovered and dead people) -R; the infection and immunization rates are  and  respectively. \n\nIt follows from (1) and (2) that\n\nIntegration of (5) with the initial conditions (4) yields:\n\nFunction I has a maximum at S  and tends to zero at infinity, see [6, 7] . In comparison, the number of susceptible persons at infinity 0, S   and can be calculated with the use of (6) from a non-linear equation \n\nyields:\n\nThus, for every set of parameters N, ,  ,  0 t and a fixed value of V the integral (10) can be calculated and the corresponding moment of time can be determined from (9) . Then I can be calculated from (6) by putting S = N  V and function R from", "Statistical approach for parameter identification. Linear regression As in paper [4] , we shall use the fact that the random function 1 ( , , ) F V N  has a linear distribution (see (9) ). Then we can apply the linear regression (see [10] ) for every pair of parameters N and  and calculate the corresponding values of 0 t and .  The optimal (the most reliable) values of N and  correspond to the maximum value of the correlation coefficient r (see [4, 9] ).\n\nSince we did not know and still don't know the values of Qj before February 12, 2020, we supposed that Vj = Wj and have done the calculations with the use of data for the time period from January 16 to February 9, 2020. The optimal values of the parameters are:\n\nThe corresponding correlation coefficient is very high r = 0.997966487046645. The solution of (7) yields the value 45579.", "The corresponding number of infected I, susceptible S and removed R persons versus time (starting from January 16, 2020) were calculated and shown in Fig. 2 . The blue line represents the number of victims V = I + R and is in good agreement with \"tested confirmed cases\" Wj, reported by the National Health Commission of the People's Republic of China [1] (blue markers).\n\nUnfortunately, many cases have not been included in the official counts and have appeared in the official Table from [1] only on February 12 as \"clinically diagnosed cases\" Qj (see Fig. 1 ). Since the National Health Commission of the the People's Republic of China has proposed two different ways of registration of the same disease [1] , Vj must be the sum of Wj and Qj , i.e. Vj = Wj + Qj (provided that no new methods of registering the same disease would appear). Values Wj after February 9 are shown in Fig. 3 by \"stars\". \"Crosses\" represent the sum Wj + Qj .", "Since the optimal curve was obtained only with the use of Wj and the difference between Wj and Vj is very big (e.g., it was 12 289 persons on February 12, 2020), the predictions shown in Fig. 2 and reported in [11] are no longer relevant. To have better predictions, it is necessary to have exact Qjdata for the period before February 12. Blue markers show the \"tested confirmed cases\" W j , reported by the National Health Commission of the People's Republic of China [1] . The \"circles\" correspond to the points used for calculations (it was supposed that V j = W j ); \"stars\" -to the points used only for verification Circles\" show the \"tested confirmed cases\" W j for the period from January 16 to February 9, 2020, [2] . These points were used to calculate the prediction curve. \"Stars\" correspond to the \"tested confirmed cases\" W j for the period from February 10 to February 14, 2020, [1] . \"Crosses\" represent the sum W j + Q j from [1]", "The simple mathematical model was used to predict the characteristics of the epidemic caused by coronavirus in mainland China. The numbers of infected, susceptible, and removed persons versus time were predicted and compared with the new data obtained after February 10, 2020, when the calculations were completed. Unfortunately, many cases have not been included in the official counts and have appeared on February 12 only. It makes the predictions reported on February 10, 2020, no longer relevant. Further research should focus on updating the predictions with the use of corrected data and more complicated mathematical models." ]
[ 5 ]
1,460
2,025
1,629
What is Carrageenan?
2,141
[ "a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 1 ]
5,044
7,815
1,629
What is a potential therapeutic benefit of carageenan?
2,142
[ "carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7)" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 1 ]
5,044
7,815
1,629
What is the optimal window for initiating treatment with carageenan and Zanamivir?
2,143
[ "72 hours post infection" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 2 ]
5,044
7,815
1,629
What was the mortality rate of influenza a virus subtype h7n9 (avian or bird flu)?
2,144
[ "more than 35%" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
How many human cases were there of influenza a virus subtype h7n9?
2,145
[ "more than 400 human cases" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
How did most patients contract influenza a virus subtype h7n9?
2,146
[ "Most patients with A(H7N9) infections had contact with poultry or visited live animal markets" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
Can influenza a virus subtype h7n9 be transmit human to human?
2,147
[ "some sporadic cases seemed to be a result of human to human transmissions" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
What kind of disease is caused by influenza?
2,148
[ "influenza is an acute respiratory disease" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
How many severe cases are there for annual influenza epidemics?
2,149
[ "Worldwide, annual epidemics result in about three to five million cases of severe illness" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
How many deaths occur annually as a result of annual influenza epidemics?
2,150
[ "250,000 to 500,000" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 3 ]
5,044
7,815
1,629
Is coinfection common in influenza infection?
2,151
[ "influenza virus infections are often accompanied by other viral pathogens" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 5 ]
5,044
7,815
1,629
What percentage of people infected with influenza have a viral coinfection?
2,153
[ "Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] ." ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 5 ]
5,044
7,815
1,629
What are common concamitant infections during the course of influenza infection?
2,154
[ "human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 5 ]
5,044
7,815
1,629
What is the anti-viral mechanism of action for carrageenan?
2,155
[ "The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 8 ]
5,044
7,815
1,629
What is the hypothetical mechanical benefit for carageenan in preventing and treating upper respiratory infections?
2,156
[ "a protective physical barrier in the nasal cavity" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 8 ]
5,044
7,815
1,629
What is carageenan?
2,157
[ "a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 8 ]
5,044
7,815
1,629
What is the recovery benefit of carageenan in patients with any respiratory virus?
2,158
[ "1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 9 ]
5,044
7,815
1,629
What is the anti-influenza benefit of carageenan?
2,159
[ "anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 9 ]
5,044
7,815
1,629
What is the association between influenza viral load and carageenan?
2,160
[ "a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 9 ]
5,044
7,815
1,629
Is Oseltamivir effective when taken intranasally?
2,163
[ "In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 12 ]
5,044
7,815
1,629
What is the effect of intranasal Zanamivir on laboratory confirmed infleunza infection?
2,164
[ "challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 12 ]
5,044
7,815
1,629
Do carageenan and Zanamivir delivered intranasally have a benefit when taken for influenza subtype H7N7 infection?
2,165
[ "the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 32 ]
5,044
7,815
1,629
Do carageenan and Zanamivir delivered intranasally have a benefit when taken for influenza subtype H1N1 infection?
2,166
[ "carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 33 ]
5,044
7,815
1,629
Is there a dose-dependent response to carageenan and Zanamavir intranasal therapy?
2,179
[ "While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 40 ]
5,044
7,815
1,629
Do carageenan and Zanamavir together have a greater benefit than either in monotherapy?
2,180
[ "the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 42 ]
5,044
7,815
1,629
Did the use of carageenan play a role in pandemic's caused by novel viruses?
2,182
[ "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines" ]
[ "The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/\n\nSHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a\n\nAuthors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine\nDate: 2015-06-08\nDOI: 10.1371/journal.pone.0128794\nLicense: cc-by", "Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds", "significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.", "Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6]", "and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.", "It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .", "As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to", "induce escape mutations.", "One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and", "demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed", "Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.", "At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .\n\nWe have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .", "Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total,", "safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .", "Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.", "Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as \"carrageenan\").", "Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.\n\nMadin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).", "Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].", "To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT", "for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.", "After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.", "All animal experiments were carried out according to the guidelines of the \"European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes\" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.", "For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical", "considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.", "As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.", "To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for", "H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.", "The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.", "Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.", "In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.", "First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate", "compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.", "Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).\n\nIn summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.", "Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.\n\nAs shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted", "We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.", "During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.", "For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual", "compounds.", "The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan", "(12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely", "related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.", "We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.", "We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.", "The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.", "Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an", "increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.", "In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.", "A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness", "this combinational therapy meets an urgent medical need.", "A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).\n\nNovel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.", "Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF)" ]
[ 49 ]
5,044
7,815
1,623
How was ILI defined?
4,101
[ "as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 6 ]
2,114
3,040
1,623
What is this assay based on?
4,104
[ "on the multiplex ligation-dependent probe amplification (MLPA) technology." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 8 ]
2,114
3,040
1,623
How was random sampling performed?
4,102
[ "with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 7 ]
2,114
3,040
1,623
What used to detect pathogens?
4,103
[ "Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 8 ]
2,114
3,040
1,623
What does the retrospective study use?
4,033
[ "nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 1 ]
2,114
3,040
1,623
How many swabs were randomly selected and analyzed?
4,034
[ "250" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 1 ]
2,114
3,040
1,623
How were the swabs analyzed?
4,035
[ "by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 1 ]
2,114
3,040
1,623
What viruses were detected?
4,037
[ "respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%)." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 1 ]
2,114
3,040
1,623
What co-infections were found?
4,038
[ "Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 1 ]
2,114
3,040
1,623
What seasonal differences were found?
4,039
[ "seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[]
2,114
3,040
1,623
What does the study highlight?
4,040
[ "a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. I" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 2 ]
2,114
3,040
1,623
What does the study show?
4,041
[ "that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 2 ]
2,114
3,040
1,623
Which are identified as major viruses mostly responsible for ILI and pneumonia in several studies?
4,042
[ "Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 3 ]
2,114
3,040
1,623
What percentage of these infections are identified?
4,087
[ "less than 50%" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 3 ]
2,114
3,040
1,623
What is Reunion Island?
4,088
[ "a French overseas territory" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 4 ]
2,114
3,040
1,623
What is the number of inhabitants of Reunion Island?
4,089
[ "850,000" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 4 ]
2,114
3,040
1,623
Where is Reunion Island located?
4,090
[ "n the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.)" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 4 ]
2,114
3,040
1,623
What is the island's health care system similar to?
4,091
[ "to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 4 ]
2,114
3,040
1,623
When does influenza activity increase?
4,092
[ "during austral winter, corresponding to summer in Europe" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 4 ]
2,114
3,040
1,623
When does the influenza vaccination campaign in Reunion Island start?
4,093
[ "April" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 4 ]
2,114
3,040
1,623
What is the clinical and biological influenza surveillance has been based on?
4,094
[ "a sentinel practitioner's network" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 5 ]
2,114
3,040
1,623
What is this network composed of?
4,095
[ "58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 5 ]
2,114
3,040
1,623
How are the influenza tests carried out?
4,096
[ "Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 5 ]
2,114
3,040
1,623
What do 40-50% of the samples test positive for?
4,097
[ "for influenza A virus, A(H1N1)pdm09 or B virus" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 5 ]
2,114
3,040
1,623
What are the ILI samples wich test negative for influence?
4,098
[ "are of unknown etiology" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 5 ]
2,114
3,040
1,623
What tool has been developed to identify several viruses simultaneously?
4,099
[ ", multiplex reverse transcriptase polymerase chain reaction (RT-PCR)" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 5 ]
2,114
3,040
1,623
What are the objectives of the study?
4,100
[ "to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 6 ]
2,114
3,040
1,623
On which system the reverse transcription and preamplification steps were performed?
4,105
[ "on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science)." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 8 ]
2,114
3,040
1,623
Which two seasons were identified for trends in virus circulation??
4,106
[ "winter season during weeks 23 to 39 between June and September and summer season during the rest of the year." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 9 ]
2,114
3,040
1,623
Which were the most frequently identified respiratory pathogens?
4,107
[ "rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%)" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 11 ]
2,114
3,040
1,623
What were detected only in summer?
4,108
[ "Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 12 ]
2,114
3,040
1,623
What viruses were identified only in winter?
4,109
[ "Parainfluenza 1,2 and 4 viruses" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 12 ]
2,114
3,040
1,623
Respiratory viral pathogens were present in what percentage of samples?
4,111
[ "76.1" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 1 ]
2,114
3,040
1,623
What did the study highlight?
4,112
[ "several co-infections, showing that concomitant the multiple etiology of ILI" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 15 ]
2,114
3,040
1,623
How many swabs remained without etiology?
4,113
[ "53 swabs, representing 24% of the sample" ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 16 ]
2,114
3,040
1,623
What hypotheses can explain this result?
4,114
[ "a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 16 ]
2,114
3,040
1,623
What could not be tested for?
4,115
[ "RNAse P, a marker of human cells," ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 16 ]
2,114
3,040
1,623
What does this study highlight?
4,116
[ "circulation of multiple pathogens in Réunion Island throughout the year." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 19 ]
2,114
3,040
1,623
What does the study show?
4,117
[ "that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 19 ]
2,114
3,040
1,623
What would be interesting to do?
4,118
[ "to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ "Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/\n\nSHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c\n\nAuthors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent\nDate: 2016-09-21\nDOI: 10.1371/journal.pone.0163377\nLicense: cc-by", "Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and", "coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.", "Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .", "Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.", "Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.\n\nSeveral biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.", "The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.\n\nILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.", "Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.", "We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1", "Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.\n\nData and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.", "Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.\n\nDuring the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.", "Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.\n\nThe respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .\n\nAmong the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.\n\nRegarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .", "Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.", "A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.\n\nRegarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.", "This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .", "This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .", "Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.\n\nAmong the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.", "Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .\n\nNo case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.", "A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.", "In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time." ]
[ 19 ]
2,114
3,040
2,459
What is it most similar to?
3,593
[ "bat beta-coronaviruses, with the highest being >96% identity" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 1 ]
1,120
1,784
2,459
How many people were affected as of Feb. 10, 2020?
3,589
[ "greater than 40,000" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 0 ]
1,120
1,784
2,459
How is the SARS-CoV-2 referred to?
3,590
[ "as coronavirus disease discovered in 2019 (COVID-19)" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 0 ]
1,120
1,784
2,459
How much similarity the SARS-COV-2 genome sequence has with SARS-COV?
3,592
[ "∼80% identity with SARS-CoV" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 1 ]
1,120
1,784
2,459
what similarity human SARS-COV and palm civet SARSlike COV share?
3,594
[ "99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 2 ]
1,120
1,784
2,459
How much is the difference between the human SARS-CoV-2 and the bat RaTG13-CoV?
3,595
[ "greater than 1,100 nt" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 2 ]
1,120
1,784
2,459
Why is it highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2.
3,596
[ "are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 2 ]
1,120
1,784
2,459
What are the most revealing signs that SARS-CoV-2 evolved by natural evolution.
3,597
[ "The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bat" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 2 ]
1,120
1,784
2,459
What did the Nature Medicine paper report?
3,598
[ "the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 4 ]
1,120
1,784
2,459
Why does the claim lack any scientific basis?
3,599
[ "because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides)." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 4 ]
1,120
1,784
2,459
How was the mouse-adapted SARS virus (MA15) generated?
3,600
[ "by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 4 ]
1,120
1,784
2,459
How did the SARS-CoV gain elevated replication and lung pathogenesis in aged mice ?
3,601
[ "due to six coding genetic mutations associated with mouse adaptation." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 4 ]
1,120
1,784
2,459
Why is it likely that MA15 is highly attenuated to replicate in human cells?
3,602
[ "due to the mouse adaptation." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 4 ]
1,120
1,784
2,459
Why were civets proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans?
3,604
[ "t was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 5 ]
1,120
1,784
2,459
What was the finding in 2013?
3,605
[ "several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 5 ]
1,120
1,784
2,459
Why is it proposed that some bat SL-CoVs may be able to directly infect human hosts?
3,606
[ "Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 5 ]
1,120
1,784
2,459
What was done to test if an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. T
3,607
[ "the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15 SARS-CoV backbone." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[]
1,120
1,784
2,459
What were the results of this test?
3,608
[ "The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 6 ]
1,120
1,784
2,459
Why were experiments with SL-SHC014-MA15 chimeric virus were later restricted?
3,609
[ "as gain of function (GOF) studies under the US government-mandated pause policy" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 7 ]
1,120
1,784
2,459
Why is there no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus?
3,610
[ "upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 7 ]
1,120
1,784
2,459
What did the rumour that the virus was made by humans in the lab, claim?
3,611
[ "that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. I" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 8 ]
1,120
1,784
2,459
What was reported in a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao?
3,612
[ "they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random" ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 8 ]
1,120
1,784
2,459
What happened to the report with initial claims?
3,613
[ "Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 8 ]
1,120
1,784
2,459
What is the difference between evolution and synthetic constructs?
3,614
[ "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 9 ]
1,120
1,784
2,459
What is the conclusion of this report?
3,615
[ "there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host." ]
[ "No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2\n\nhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054935/\n\nSHA: 5a9154aee79901dd8fecd58b7bcd9b7351102d24\n\nAuthors: Liu, Shan-Lu; Saif, Linda J.; Weiss, Susan R.; Su, Lishan\nDate: 2020-02-26\nDOI: 10.1080/22221751.2020.1733440\nLicense: cc-by\n\nAbstract: nan\n\nText: The emergence and outbreak of a newly discovered acute respiratory disease in Wuhan, China, has affected greater than 40,000 people, and killed more than 1,000 as of Feb. 10, 2020. A new human coronavirus, SARS-CoV-2, was quickly identified, and the associated disease is now referred to as coronavirus disease discovered in 2019 (COVID-19) (https://globalbiodefense. com/novel-coronavirus-covid-19-portal/).", "According to what has been reported [1] [2] [3] , COVID-2019 seems to have similar clinical manifestations to that of the severe acute respiratory syndrome (SARS) caused by SARS-CoV. The SARS-CoV-2 genome sequence also has ∼80% identity with SARS-CoV, but it is most similar to some bat beta-coronaviruses, with the highest being >96% identity [4, 5] .", "Currently, there are speculations, rumours and conspiracy theories that SARS-CoV-2 is of laboratory origin. Some people have alleged that the human SARS-CoV-2 was leaked directly from a laboratory in Wuhan where a bat CoV (RaTG13) was recently reported, which shared ∼96% homology with the SARS-CoV-2 [4] . However, as we know, the human SARS-CoV and intermediate host palm civet SARSlike CoV shared 99.8% homology, with a total of 202 single-nucleotide (nt) variations (SNVs) identified across the genome [6] . Given that there are greater than 1,100 nt differences between the human SARS-CoV-2 and the bat RaTG13-CoV [4] , which are distributed throughout the genome in a naturally occurring pattern following the evolutionary characteristics typical of CoVs, it is highly unlikely that RaTG13 CoV is the immediate source of SARS-CoV-2. The absence of a logical targeted pattern in the new viral sequences and a close relative in a wildlife species (bats) are the most revealing signs that", "SARS-CoV-2 evolved by natural evolution. A search for an intermediate animal host between bats and humans is needed to identify animal CoVs more closely related to human SARS-CoV-2. There is speculation that pangolins might carry CoVs closely related to SARS-CoV-2, but the data to substantiate this is not yet published (https:// www.nature.com/articles/d41586-020-00364-2).", "Another claim in Chinese social media points to a Nature Medicine paper published in 2015 [7] , which reports the construction of a chimeric CoV with a bat CoV S gene (SHC014) in the backbone of a SARS CoV that has adapted to infect mice (MA15) and is capable of infecting human cells [8] . However, this claim lacks any scientific basis and must be discounted because of significant divergence in the genetic sequence of this construct with the new SARS-CoV-2 (>5,000 nucleotides).\n\nThe mouse-adapted SARS virus (MA15) [9] was generated by serial passage of an infectious wildtype SARS CoV clone in the respiratory tract of BALB/c mice. After 15 passages in mice, the SARS-CoV gained elevated replication and lung pathogenesis in aged mice (hence M15), due to six coding genetic mutations associated with mouse adaptation. It is likely that MA15 is highly attenuated to replicate in human cells or patients due to the mouse adaptation.", "It was proposed that the S gene from bat-derived CoV, unlike that from human patients-or civetsderived viruses, was unable to use human ACE2 as a receptor for entry into human cells [10, 11] . Civets were proposed to be an intermediate host of the bat-CoVs, capable of spreading SARS CoV to humans [6, 12] . However, in 2013 several novel bat coronaviruses were isolated from Chinese horseshoe bats and the bat SARS-like or SL-CoV-WIV1 was able to use ACE2 from humans, civets and Chinese horseshoe bats for entry [8] . Combined with evolutionary evidence that the bat ACE2 gene has been positively selected at the same contact sites as the human ACE2 gene for interacting with SARS CoV [13] , it was proposed that an intermediate host may not be necessary and that some bat SL-CoVs may be able to directly infect human hosts. To directly address this possibility, the exact S gene from bat coronavirus SL-SHC014 was synthesized and used to generate a chimeric virus in the mouse adapted MA15", "SARS-CoV backbone. The resultant SL-SHC014-MA15 virus could indeed efficiently use human ACE2 and replicate in primary human airway cells to similar titres as epidemic strains of SARS-CoV. While SL-SHC014-MA15 can replicate efficiently in young and aged mouse lungs, infection was attenuated, and less virus antigen was present in the airway epithelium as compared to SARS MA15, which causes lethal outcomes in aged mice [7] .", "Due to the elevated pathogenic activity of the SHC014-MA15 chimeric virus relative to MA15 chimeric virus with the original human SARS S gene in mice, such experiments with SL-SHC014-MA15 chimeric virus were later restricted as gain of function (GOF) studies under the US government-mandated pause policy (https://www.nih.gov/about-nih/who-weare/nih-director/statements/nih-lifts-funding-pausegain-function-research). The current COVID-2019 epidemic has restarted the debate over the risks of constructing such viruses that could have pandemic potential, irrespective of the finding that these bat CoVs already exist in nature. Regardless, upon careful phylogenetic analyses by multiple international groups [5, 14] , the SARS-CoV-2 is undoubtedly distinct from SL-SHC014-MA15, with >6,000 nucleotide differences across the whole genome. Therefore, once again there is no credible evidence to support the claim that the SARS-CoV-2 is derived from the chimeric SL-SHC014-MA15 virus.", "There are also rumours that the SARS-CoV-2 was artificially, or intentionally, made by humans in the lab, and this is highlighted in one manuscript submitted to BioRxiv (a manuscript sharing site prior to any peer review), claiming that SARS-CoV-2 has HIV sequence in it and was thus likely generated in the laboratory. In a rebuttal paper led by an HIV-1 virologist Dr. Feng Gao, they used careful bioinformatics analyses to demonstrate that the original claim of multiple HIV insertions into the SARS-CoV-2 is not HIV-1 specific but random [15] . Because of the many concerns raised by the international community, the authors who made the initial claim have already withdrawn this report.", "Evolution is stepwise and accrues mutations gradually over time, whereas synthetic constructs would typically use a known backbone and introduce logical or targeted changes instead of the randomly occurring mutations that are present in naturally isolated viruses such as bat CoV RaTG13. In our view, there is currently no credible evidence to support the claim that SARS-CoV-2 originated from a laboratory-engineered CoV. It is more likely that SARS-CoV-2 is a recombinant CoV generated in nature between a bat CoV and another coronavirus in an intermediate animal host. More studies are needed to explore this possibility and resolve the natural origin of SARS-CoV-2. We should emphasize that, although SARS-CoV-2 shows no evidence of laboratory origin, viruses with such great public health threats must be handled properly in the laboratory and also properly regulated by the scientific community and governments.\n\nNo potential conflict of interest was reported by the author(s).", "Susan R. Weiss http://orcid.org/0000-0002-8155-4528" ]
[ 9 ]
1,120
1,784