Dataset Viewer
EX_ID
stringlengths 11
13
| QUESTION
stringlengths 0
2.49k
| SOLUTION
stringlengths 159
5.78k
| SOURCE_URL
stringclasses 1
value | __index_level_0__
int64 1
155
|
---|---|---|---|---|
Exercise 2.1 | Imagine that you could distinguish between the four hydrogen atoms in a methane molecule, and labeled them H<sub>a</sub> through H<sub>d</sub>. In the images below, the <em>exact same</em> methane molecule is rotated and flipped in various positions. Draw the missing hydrogen atom labels. (It will be much easier to do this if you make a model.)<img alt="E2-1.png" class="internal" height="206px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/202345/E2-1.png?revision=2&size=bestfit&width=468&height=206" style="width: 468px; height: 206px;" width="468px"/> | <img alt="E2-1S.png" class="internal" height="95px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141189/E2-1S.png?revision=1&size=bestfit&width=488&height=95" style="width: 488px; height: 95px;" width="488px"/><strong>E2.2</strong>: <em>sp</em><sup>3</sup> orbital on carbon overlapping with <em>3p</em> orbital on chlorine. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 1 |
Exercise 2.13 | There is a third resonance contributor for formate (which we will soon learn is considered a 'minor' contributor). Draw this resonance contributor. | <img alt="E2-13S.png" class="internal" height="96px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141170/E2-13S.png?revision=1&size=bestfit&width=106&height=96" style="width: 106px; height: 96px;" width="106px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 5 |
Exercise 3.11 | Determine the stereochemical configurations of the chiral centers in the biomolecules shown below.<img alt="From left to right: dihydroorotate molecule, mevalonate molecule, (D)-erythrose molecule." class="internal" height="197px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141240/E3-11.png?revision=1&size=bestfit&width=631&height=197" style="width: 631px; height: 197px;" width="631px"/> | <img alt="E3-11S.png" class="internal" height="200px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141312/E3-11S.png?revision=1&size=bestfit&width=643&height=200" style="width: 643px; height: 200px;" width="643px"/><strong>E3.12</strong>: The C-O bond should be drawn as a dash to get the <em>R</em> configuration.<strong>E3.13</strong>:<img alt="E3-13S.png" class="internal" height="180px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141311/E3-13S.png?revision=1&size=bestfit&width=855&height=180" style="width: 855px; height: 180px;" width="855px"/><strong>E3.14</strong>: The value of <em>c </em>is 7.50 g/100 mL, so using the definition of specific rotation, the observed rotation is expected to be (11.5)(7.5) = 86.3<sup>o</sup>.<strong>E3.15</strong>: The observed rotation of the mixture is levorotary (negative, counter-clockwise), and the specific rotation of the pure <em>R</em> enantiomer is given as dextrorotary (positive, clockwise), meaning that the pure <em>S</em> enantiomer must be levorotary, and the mixture must contain more of the <em>S</em> enantiomer than of the <em>R</em> enantiomer.<strong>E3.16</strong>: Cysteine is the only common <span class="mt-font-size-10.0pt">L</span>-amino acid with <em>S</em> configuration. This is solely due to the rules of the naming system: the carbon of the side chain - which is directly bonded to a sulfur - has higher priority than the carboxylate carbon. In the other 19 amino acids, the carboxylate carbon has priority #2, and the side chain carbon has priority #3.<strong>E3.17</strong>:a) Starting with the RRR stereoisomer (which is given in the example), we flip the first and third chiral center to get SRS. The enantiomer of the SRS stereoisomer is that in which all three chiral centers are flipped: the RSR stereoismer.<img alt="E3-17S.png" class="internal" height="199px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141310/E3-17S.png?revision=1&size=bestfit&width=811&height=199" style="width: 811px; height: 199px;" width="811px"/>b) Epimers of the SRS stereoismer are RRS, SSS, and SRR (in each case, one of the three chiral centers has been flipped)c) How to find the compounds that are diastereomers of the SRS stereoisomer, but not epimers? Start with the list of the eight possible stereoisomers given in the example. Cross out SRS itself, and its enantiomer RSR (determined in part (a) above). Then cross out the three epimers we found in part (b). We are left with three isomers: RRR, SSR, and RSS. Each of these have one chiral center in common with SRS, and two that are flipped.<img alt="E3-17cS.png" class="internal" height="86px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141309/E3-17cS.png?revision=1&size=bestfit&width=280&height=86" style="width: 280px; height: 86px;" width="280px"/><strong>E3.18</strong>: This is the SRR stereoisomer:<img alt="E3-18S.png" class="internal" height="141px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141308/E3-18S.png?revision=1&size=bestfit&width=203&height=141" style="width: 203px; height: 141px;" width="203px"/><strong>E3.19</strong>:<img alt="E3-19S.png" class="internal" height="127px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141307/E3-19S.png?revision=1&size=bestfit&width=306&height=127" style="width: 306px; height: 127px;" width="306px"/><strong>E3.20</strong>:<img alt="E3-20S.png" class="internal" height="193px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141306/E3-20S.png?revision=1&size=bestfit&width=739&height=193" style="width: 739px; height: 193px;" width="739px"/><strong>E3.21</strong>: Going left to right, top to bottom:Diastereomers (two chiral centers are flipped).Enantiomers (all five chiral centers are flipped).Identical (drawing is flipped vertically but they are the same structure).Identical (the carbon which appears to be flipped in the drawing is <em>not</em> a chiral center).Constitutional isomers (same molecular formula, but notice that inositol does not have a ring oxygen. Is not a monosaccharide, it is a cyclohexane with six hydroxyl substituents.)<strong>E3.22</strong>:a) Identical. They have the same molecular formula and connectivity; there is only one chiral center, which is <em>R </em>in both structures.b) Enantiomers. The compound on the left is <em>R</em>, compound on the right is <em>S</em>.c) Enantiomers. The compound on the left is <em>R</em>, compound on the right is <em>S</em>.d) Enantiomers. The compound on the left is <em>SS</em>, compound on the right is <em>RR</em>.e) Identical. The structures are both glycerol, which is <em>not</em> chiral (the left and right 'arms' are the same, so the middle carbon is not a chiral center)f) Identical. Both structures are <em>SS</em>. Also, notice that if you rotate the right-side structure 120 degrees clockwise, it becomes exactly the same as the left-side structure.<strong>E3.23</strong>:a) Not <em>meso</em> b) <em>Meso</em>. c) Not mesod) <em>Meso</em> e) Not <em>meso</em> f)<em> Meso</em><strong>E3.24</strong>:<img alt="E3-24S.png" class="internal" height="616px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141305/E3-24S.png?revision=1&size=bestfit&width=736&height=616" style="width: 736px; height: 616px;" width="736px"/><strong>E3.25</strong>:a) <em>E</em> b) <em>N</em> c) <em>Z</em> d) <em>E</em><strong>E3.26</strong>:<img alt="E3-26S.png" class="internal" height="468px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141304/E3-26S.png?revision=1&size=bestfit&width=591&height=468" style="width: 591px; height: 468px;" width="591px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 8 |
Problem 1.1 | a) The structure as drawn is incomplete, because it is missing formal charges - fill them in.b) How many hydrogen atoms are on this structure?c) Identify the two important biomolecule classes (covered in section 1.3) in the structure.<img alt="P1-1.png" class="internal" height="223px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141131/P1-1.png?revision=1&size=bestfit&width=412&height=223" style="width: 412px; height: 223px;" width="412px"/> | a) Formal charges are located as shown.<img alt="P1-1aS.png" class="internal" height="222px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141155/P1-1aS.png?revision=1&size=bestfit&width=352&height=222" style="width: 352px; height: 222px;" width="352px"/>b) There are 16 hydrogen atoms:<img alt="P1-1bS.png" class="internal" height="235px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141152/P1-1bS.png?revision=1&size=bestfit&width=354&height=235" style="width: 354px; height: 235px;" width="354px"/>c) The structure contains a nucleotide segment and an amino acid segment:<img alt="P1-1cS.png" class="internal" height="245px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141149/P1-1cS.png?revision=1&size=bestfit&width=376&height=245" style="width: 376px; height: 245px;" width="376px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 11 |
Problem 1.4 | <img alt="P1-4.png" class="internal" height="315px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141128/P1-4.png?revision=1&size=bestfit&width=589&height=315" style="width: 589px; height: 315px;" width="589px"/>a) What is the functional group transformation that is taking place in each reaction?b) Keeping in mind that the 'R' abbreviation is often used to denote parts of a larger molecule which are <em>not</em> the focus of a particular process, which of the following abbreviated structures could be appropriate to use for aspartate semialdehyde when drawing out details of reaction A?<img alt="P1-4c.png" class="internal" height="123px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141126/P1-4c.png?revision=1&size=bestfit&width=630&height=123" style="width: 630px; height: 123px;" width="630px"/>c) Again using the 'R' convention, suggest an appropriate abbreviation for the reactant in reaction B. | a)Reaction A: aldehyde to primary alcoholReaction B: Secondary alcohol to ketone; aldehyde to primary alcoholb) The second structure from the right is an appropriate abbreviation. The part of the molecule in the box does not change in the reaction, and this can be abbreviated with 'R'.<img alt="P1-4bS.png" class="internal" height="205px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141147/P1-4bS.png?revision=1&size=bestfit&width=434&height=205" style="width: 434px; height: 205px;" width="434px"/>c) The part of the molecule in the box does not change in the reaction, and this can be abbreviated with 'R'.<img alt="P1-4cS.png" class="internal" height="285px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141143/P1-4cS.png?revision=1&size=bestfit&width=470&height=285" style="width: 470px; height: 285px;" width="470px"/><strong>P1.5</strong>:a) Threonine contains a secondary alcohol.b) Glutamine and asparagine contain amides.c) Cysteine contains a thiol.d) Methionine contains a sulfide.e) Tyrosine contains a phenol.f) The lysine side chain contains a primary ammonium.g) The glutamate and aspartate side chains contain carboxylates.h) Proline contains a secondary amine. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 14 |
Problem 1.6 | Note that according to VSEPR theory, ozone has bent geometry, azide ion is linear, and the geometry around the oxygen and carbon atoms of bicarbonate is bent. <img alt="P1-6S.png" class="internal" height="96px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141140/P1-6S.png?revision=1&size=bestfit&width=334&height=96" style="width: 334px; height: 96px;" width="334px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 16 |
|
Problem 1.8 | <img alt="P1-8.png" class="internal" height="525px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141116/P1-8.png?revision=1&size=bestfit&width=662&height=525" style="width: 662px; height: 525px;" width="662px"/>a) Fill in all missing formal charges (assume all atoms have a complete octet of valence electrons).b) Identify the following functional groups or structural elements (there may be more than one of each): carboxylate, carboxylic acid, cyclopropyl, amide, ketone, secondary ammonium ion, tertiary alcohol.c) Determine the number of hydrogen atoms in each compound. | <img alt="P1-8S.png" class="internal" height="479px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141137/P1-8S.png?revision=1&size=bestfit&width=631&height=479" style="width: 631px; height: 479px;" width="631px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 18 |
Problem 1.10 | Solutions to selected Chapter 1 problems<pclass><a href="https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_(Soderberg)" rel="internal" title="Organic_Chemistry_With_a_Biological_Emphasis">Organic Chemistry With a Biological Emphasis </a>by <a class="link-https" href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="external noopener nofollow" target="_blank" title="https://sites.google.com/morris.umn.edu/timsoderberg/home">Tim Soderberg</a> (University of Minnesota, Morris)
</pclass>This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/01%3A_Introduction_to_Organic_Structure_and_Bonding_I/1.0P%3A_1.P%3A_Problems_for_Chapter_1" rel="internal" target="_blank">1.E: Problems for Chapter 1</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="" rel="nofollow" target="_blank"></a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/01%3A_Introduction_to_Organic_Structure_and_Bonding_I/1.0P%3A_1.P%3A_Problems_for_Chapter_1" rel="internal" target="_blank">1.E: Problems for Chapter 1</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="nofollow" target="_blank">Tim Soderberg</a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. | <img alt="P1-10S.png" class="internal" height="99px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141134/P1-10S.png?revision=1&size=bestfit&width=560&height=99" style="width: 560px; height: 99px;" width="560px"/>This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/01%3A_Introduction_to_Organic_Structure_and_Bonding_I/1.0P%3A_1.P%3A_Problems_for_Chapter_1/1.01%3A_Solutions_to_selected_Chapter_1_problems" rel="internal" target="_blank">1.1: Solutions to selected Chapter 1 problems</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="" rel="nofollow" target="_blank"></a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/01%3A_Introduction_to_Organic_Structure_and_Bonding_I/1.0P%3A_1.P%3A_Problems_for_Chapter_1/1.01%3A_Solutions_to_selected_Chapter_1_problems" rel="internal" target="_blank">1.1: Solutions to selected Chapter 1 problems</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="nofollow" target="_blank">Tim Soderberg</a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 20 |
Exercise 1.17 | What functional group links the phosphatidylcholine 'head' group to glycerol in the membrane lipid structure shown above?Solutions to exercises | The linking group is a phosphate diesterThis page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/01%3A_Introduction_to_Organic_Structure_and_Bonding_I/1.05%3A_Solutions_to_Chapter_1_Exercises" rel="internal" target="_blank">1.5: Solutions to Chapter 1 Exercises</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="" rel="nofollow" target="_blank"></a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/01%3A_Introduction_to_Organic_Structure_and_Bonding_I/1.05%3A_Solutions_to_Chapter_1_Exercises" rel="internal" target="_blank">1.5: Solutions to Chapter 1 Exercises</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="nofollow" target="_blank">Tim Soderberg</a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 43 |
Exercise 2.26 | Using what you about atomic orbitals, rationalize the periodic trends in electronegativity. Why does it increase from left to right, and decrease from top to bottom? This is a good question to talk through with classmates and an instructor or tutor.Solutions to exercises | The <u>horizontal trend </u>is based on atomic number (the number of protons in the nucleus). For example, fluorine is more electronegative than carbon, because the fluorine nucleus contains three more protons, the positive charges on which pull negatively-charged electrons closer to the nucleus.The <u>vertical trend</u> is based on atom size, specifically the size of the 'electron cloud' surrounding the nucleus. For example, fluorine is more electronegative than chlorine (even though chlorine contains more protons) because the outermost valence electrons on fluorine, which are in the n = 2 "shell", are closer to the nucleus than the valence electrons in chlorine, which occupy the <em>n</em> = 3 "shell". The fluorine electron cloud, therefore, is subject to greater electrostatic attractive forces from protons (electrostatic forces decrease rapidly as the distance between the positive and negative charges increases.)<strong>E2.27</strong>: Only molecule (b) does <em>not</em> have a molecular dipole, due to its symmetry (bond dipoles are equal and in opposite directions).<strong>E2.28</strong>: To be a hydrogen bond donor, the molecule needs to have a hydrogen bound to N, O, or F. To be an acceptor, it merely needs an N, O, or F.<img alt="E2-28S.png" class="internal" height="289px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141138/E2-28S.png?revision=1&size=bestfit&width=675&height=289" style="width: 675px; height: 289px;" width="675px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 52 |
Problem 2.1 | Example answer for bond a: "this is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on one carbon and an <em>sp<sup>2</sup></em> orbital on another carbon."<img alt="P2-1.png" class="internal" height="239px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141080/P2-1.png?revision=1&size=bestfit&width=577&height=239" style="width: 577px; height: 239px;" width="577px"/> | <strong>bond a</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on one carbon and an <em>sp<sup>2</sup></em> orbital on another carbon.<strong>bond b</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on one carbon and an <em>sp<sup>2</sup></em> orbital on another carbon.<strong>bond c</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on a carbon and an <em>sp<sup>2</sup></em> orbital on a nitrogen, combined with a <span class="mt-font-Symbol">pi</span> bond formed by the overlap of a 2<em>p</em> orbital on a carbon and a 2<em>p</em> orbital on a nitrogen.<strong>bond d</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on a nitrogen and a 1s orbital on a hydrogen.<strong>bond e</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on one carbon and an <em>sp<sup>3 </sup></em>orbital on another carbon.<strong>bond f</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on one carbon and an <em>sp<sup>3</sup></em> orbital on another carbon.<strong>P2.2</strong>:a)<img alt="P2-1S.png" class="internal" height="526" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141125/P2-1S.png?revision=1" width="602"/>b)Top: the contributor on the right is minor due to separation of charge.Middle: the contributor on the left is minor due to one carbon not having a complete octet.Bottom: The contributors shown are roughly equivalent. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 55 |
Problem 2.5 | a-i) Describe the orbitals involved in the bonds indicated by the arrows, as in problem 2.1.<img alt="P2-5.png" class="internal" height="566px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141070/P2-5.png?revision=1&size=bestfit&width=717&height=566" style="width: 717px; height: 566px;" width="717px"/> | <strong>bond a</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on one carbon and an <em>sp<sup>3 </sup></em>orbital on another carbon.<strong>bond b</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on a carbon and an <em>sp<sup>2 </sup></em>orbital on an oxygen, combined with a <span class="mt-font-Symbol">p</span>i bond formed by the overlap of a 2<em>p</em> orbital on a carbon and a 2<em>p</em> orbital on an oxygen.<strong>bond c</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on a carbon and an <em>sp<sup>3 </sup></em>orbital on another carbon.<strong>bond d</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on a carbon and an <em>sp<sup>3 </sup></em>orbital on an oxygen.<strong>bond e</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on a carbon and an <em>sp<sup>3 </sup></em>orbital on an oxygen.<strong>bond f</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on a carbon and an <em>sp<sup>3 </sup></em>orbital on a nitrogen.<strong>bond g</strong> is a <span class="mt-font-Symbol">s</span>igma bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on a carbon and an <em>sp<sup>2 </sup></em>orbital on a nitrogen.<strong>bond h</strong> is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>3</sup></em> orbital on a carbon and an <em>sp<sup>3 </sup></em>orbital on a nitrogen.<strong>bond i </strong>is a <span class="mt-font-Symbol">sigma</span> bond formed by the overlap of an <em>sp<sup>2</sup></em> orbital on one carbon and an <em>sp<sup>3 </sup></em>orbital on another carbon. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 59 |
Problem 2.6 | a-k) For each bond indicated by an arrow, specify the types of orbitals that are overlapping (for example, overlap between two <em>sp3</em>-hybridized carbons would be denoted C<em><sub>sp3</sub></em>-C<em><sub>sp3</sub></em>)l) (functional group review) Which compound contains two aldehydes? Which contains an ether? Which contains an amide? Which contains a terminal alkene? Which contains an amine (and is this amine primary, secondary, tertiary, or quaternary?)m) Give the molecular formula for the walking-stick compound<img alt="P2-6.png" class="internal" height="527px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141067/P2-6.png?revision=1&size=bestfit&width=682&height=527" style="width: 682px; height: 527px;" width="682px"/> | a) C<em><sub>sp3</sub></em> – O<em><sub>sp3</sub></em> b) C<em><sub>sp2</sub></em> – C<em><sub>sp3</sub></em> c) C<em><sub>sp2</sub></em> – N<em><sub>sp2</sub></em> d) C<em><sub>sp2</sub></em> – C<em><sub>sp2</sub></em> e) C<em><sub>sp3</sub></em> – C<em><sub>sp3</sub></em> f) C<em><sub>sp2</sub></em> – C<em><sub>sp2</sub></em>g) C<em><sub>sp3</sub></em>- C<em><sub>sp3</sub></em> h)C<em><sub>sp2</sub></em> – H<em><sub>1s</sub></em> i) C<em><sub>sp2</sub></em> – O<em><sub>sp2</sub></em> j) C<em><sub>sp2</sub></em> – Cl<sub>3<em>p</em></sub> k) N<em>sp</em><em><sup>3</sup></em> – H<em><sub>1s</sub></em>l) The walking stick compound contains two aldehydes, compound one contains an ether, compound 2 contains an amide, compound 3 contains a terminal alkene, and compound 4 contains a secondary amine.m) The molecular formula of the walking stick compound is C<sub>10</sub>H<sub>14</sub>O<sub>2</sub>. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 60 |
Problem 2.7 | <img alt="P2-7.png" class="internal" height="71px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141064/P2-7.png?revision=1&size=bestfit&width=235&height=71" style="width: 235px; height: 71px;" width="235px"/> | <em>shortest</em>bond e (triple bond)bond c (double bond)bond d (single bond between sp<sup>2</sup> and sp hybridized carbons)bond f (single bond between sp and sp<sup>3</sup> hybridized carbons)bond b (single bond between sp<sup>2</sup> and sp<sup>3</sup> hybridized carbons)bond a (single bond between two sp<sup>3</sup> hybridized carbons)<em>longest</em> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 61 |
Problem 2.11 | a) bonds a, b, c, and db) bonds e and f<img alt="P2-11.png" class="internal" height="287px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141059/P2-11.png?revision=1&size=bestfit&width=270&height=287" style="width: 270px; height: 287px;" width="270px"/> | <em>shortest</em>bond c (double bond)bond d (single bond between two sp<sup>2</sup> hybridized carbons)bond b (single bond between sp<sup>2</sup> and sp<sup>3</sup> hybridized carbons)bond a (single bond between two sp<sup>3</sup> hybridized carbons)<em>longest</em> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 65 |
Problem 2.12 | The amide shown below is not capable of acting as a hydrogen bond donor (it does not have any N-H bonds), and thus is expected to be less soluble in water. The other three amides of the same formula have one or more N-H bonds, and can thus participate in hydrogen bonding with water as both donor and acceptor.<img alt="P2-12S.png" class="internal" height="110px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141123/P2-12S.png?revision=1&size=bestfit&width=128&height=110" style="width: 128px; height: 110px;" width="128px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 66 |
|
Problem 2.13 | a) there is a separation of charge between the nitrogen indicated by the arrow and the oxygen.b) there is a separation of charge between a chlorine (positive) and one of the three nitrogens.<img alt="P2-13.png" class="internal" height="211px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141056/P2-13.png?revision=1&size=bestfit&width=324&height=211" style="width: 324px; height: 211px;" width="324px"/> | <img alt="P2-13S.png" class="internal" height="509px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141121/P2-13S.png?revision=1&size=bestfit&width=734&height=509" style="width: 734px; height: 509px;" width="734px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 67 |
Problem 2.14 | <img alt="image160.png" class="internal" height="280px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140269/image159.png?revision=1&size=bestfit&width=753&height=280" style="width: 753px; height: 280px;" width="753px"/><img alt="image162.png" class="internal" height="275" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140266/image161.png?revision=1" width="673"/> | <img alt="P2-14S.png" class="internal" height="797px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141119/P2-14S.png?revision=1&size=bestfit&width=542&height=797" style="width: 542px; height: 797px;" width="542px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 68 |
Problem 2.15 | <img alt="image164.png" class="internal" height="232px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140263/image163.png?revision=1&size=bestfit&width=214&height=232" style="width: 214px; height: 232px;" width="214px"/> | <img alt="P2-15S.png" class="internal" height="176px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141118/P2-15S.png?revision=1&size=bestfit&width=192&height=176" style="width: 192px; height: 176px;" width="192px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 69 |
Problem 2.16 | <img alt="P2-16S.png" class="internal" height="218px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141115/P2-16S.png?revision=1&size=bestfit&width=817&height=218" style="width: 817px; height: 218px;" width="817px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 70 |
|
Problem 2.17 | <img alt="image166.png" class="internal" height="346px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140259/image165.png?revision=1&size=bestfit&width=281&height=346" style="width: 281px; height: 346px;" width="281px"/> | <img alt="P2-17S.png" class="internal" height="403px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141113/P2-17S.png?revision=1&size=bestfit&width=639&height=403" style="width: 639px; height: 403px;" width="639px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 71 |
Problem 2.18 | <img alt="image168.png" class="internal" height="175px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140255/image167.png?revision=1&size=bestfit&width=317&height=175" style="width: 317px; height: 175px;" width="317px"/>a) Several resonance contributors can be drawn in which the oxygen atom indicated by an arrow bears a positive formal charge. Indicate atoms where a corresponding negative formal charge could be located in these contributors.b) Answer the same question again, this time with the structural isomer shown below.<img alt="image170.png" class="internal" height="193px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140251/image169.png?revision=1&size=bestfit&width=386&height=193" style="width: 386px; height: 193px;" width="386px"/> | <img alt="P2-18S.png" class="internal" height="226px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141110/P2-18S.png?revision=1&size=bestfit&width=697&height=226" style="width: 697px; height: 226px;" width="697px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 72 |
Problem 2.19 | <img alt="P2-19.png" class="internal" height="427px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141054/P2-19.png?revision=1&size=bestfit&width=553&height=427" style="width: 553px; height: 427px;" width="553px"/> | a) 1:CH<sub>3</sub>F2: CH<sub>2</sub>F<sub>2</sub>3: CH<sub>3</sub>CHF<sub>2</sub>4: HF2 and 3 have two fluorines and are more polar than 1, so they have stronger intermolecular dipole-dipole interactions. 3 has one more carbon than 2, and therefore stronger van der Waals interactions. 4 is capable of hydrogen bonding, so it has the strongest intermolecular interactions and the highest boiling point.b)<img alt="P2-19bS.png" class="internal" height="130px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141107/P2-19bS.png?revision=1&size=bestfit&width=474&height=130" style="width: 474px; height: 130px;" width="474px"/>1 and 2 have only van der Waals interactions, but 2 has more carbons so these interactions are slightly stronger. 3 has a polar carbonyl group, and 4 is capable of hydrogen bonding.c)<img alt="P2-19cS.png" class="internal" height="132px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141104/P2-19cS.png?revision=1&size=bestfit&width=356&height=132" style="width: 356px; height: 132px;" width="356px"/>1 is not capable of hydrogen bonding. 2 and 3 both have hydrogen bonding groups, but 3 has one more carbon and therefore stronger overall van der Waals interactions.d)<img alt="P2-19dS.png" class="internal" height="130px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141099/P2-19dS.png?revision=1&size=bestfit&width=439&height=130" style="width: 439px; height: 130px;" width="439px"/>1 has only van der Waals interactions. 2 has a polar thiol group, but 3 has a hydroxyl group which is capable of hydrogen bonding. 4 is a salt: the charge-charge interactions are very strong and lead to a very high boiling point. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 73 |
Problem 2.20 | <img alt="P2-20.png" class="internal" height="659px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141051/P2-20.png?revision=1&size=bestfit&width=612&height=659" style="width: 612px; height: 659px;" width="612px"/> | a) The compound on the right is more soluble (fewer hydrophobic carbons)b) The compound on the left is more soluble (ionic phosphate group)c) The compound on the left is more soluble (fewer hydrophobic carbons)d) The compound on the left is more soluble (capable of hydrogen bonding)e) The compound on the right is more soluble (fewer hydrophobic carbons) | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 74 |
Problem 2.22 | The lone pair electrons on the peptide nitrogen are conjugated to the carbonyl <span class="mt-font-Symbol">pi </span>bond, and thus are not available to act as hydrogen bond acceptors.<img alt="P2-22S.png" class="internal" height="226px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141097/P2-22S.png?revision=1&size=bestfit&width=429&height=226" style="width: 429px; height: 226px;" width="429px"/><strong>P2.23</strong>: Both bonds are the same length, and have a bond order of 1.5 (one part single bond, one part double bond). The central oxygen is sp<sup>2</sup> hybridized (note the 'bent' geometry).<img alt="P2-23S.png" class="internal" height="66px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141094/P2-23S.png?revision=1&size=bestfit&width=308&height=66" style="width: 308px; height: 66px;" width="308px"/><strong>P2.26</strong>: The five-membered ring is <em>not</em> part of the aromatic system, due to the presence of an sp<sup>2</sup> hybridized carbon in the ring. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 76 |
|
Problem 2.27 | <img alt="P2-27.png" class="internal" height="251px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141046/P2-27.png?revision=1&size=bestfit&width=534&height=251" style="width: 534px; height: 251px;" width="534px"/> | A is <em>not</em> aromatic (sp<sup>3</sup> hybridized carbon in the ring)B is aromatic (count the lone pair and you get 10 <span class="mt-font-Symbol">pi </span>electrons, which is a Huckel number)C is <em>not</em> aromatic (the 2<em>p </em>orbital on the carbocation is empty, thus there are only four <span class="mt-font-Symbol">pi </span>electrons in the system, which is not a Huckel number)D is <em>not</em> aromatic (four <span class="mt-font-Symbol">pi </span>electrons, not a Huckel number)E is <em>not</em> aromatic (sp<sup>3</sup> hybridized carbon in the ring)F is <em>not</em> aromatic (sp<sup>3</sup> hybridized carbon in the ring)G is <em>not</em> aromatic (lone pair electrons count as part of <span class="mt-font-Symbol">pi</span> system, thus there are four <span class="mt-font-Symbol">pi </span>electrons which is not a Huckel number.H is aromatic (carbocation is sp<sup>2</sup> hybridized, the 2<em>p</em> orbital is empty, so there are two <span class="mt-font-Symbol">p</span>i electrons in the system, and 2 is a Huckel number)I is <em>not</em> aromatic (there are three conjugated pi bonds with six pi electrons in the system, but the compound is not cyclic). | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 80 |
Problem 2.28 | <img alt="P2-28.png" class="internal" height="257px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141044/P2-28.png?revision=1&size=bestfit&width=747&height=257" style="width: 747px; height: 257px;" width="747px"/> | <img alt="P2-28S.png" class="internal" height="214px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141091/P2-28S.png?revision=1&size=bestfit&width=751&height=214" style="width: 751px; height: 214px;" width="751px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 81 |
Problem 2.29 | <img alt="P2-29.png" class="internal" height="239px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141040/P2-29.png?revision=1&size=bestfit&width=614&height=239" style="width: 614px; height: 239px;" width="614px"/> | <img alt="P2-29S.png" class="internal" height="199px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141089/P2-29S.png?revision=1&size=bestfit&width=620&height=199" style="width: 620px; height: 199px;" width="620px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 82 |
Problem 2.30 | <img alt="P2-30.png" class="internal" height="154px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141037/P2-30.png?revision=1&size=bestfit&width=495&height=154" style="width: 495px; height: 154px;" width="495px"/>Solutions to selected problems<pclass><a href="https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_(Soderberg)" rel="internal" title="Organic_Chemistry_With_a_Biological_Emphasis">Organic Chemistry With a Biological Emphasis </a>by <a class="link-https" href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="external noopener nofollow" target="_blank" title="https://sites.google.com/morris.umn.edu/timsoderberg/home">Tim Soderberg</a> (University of Minnesota, Morris)
</pclass>This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/02%3A_Introduction_to_Organic_Structure_and_Bonding_II/2.0P%3A_2.P%3A_Problems_for_Chapter_2" rel="internal" target="_blank">2.P: Problems for Chapter 2</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="" rel="nofollow" target="_blank"></a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/02%3A_Introduction_to_Organic_Structure_and_Bonding_II/2.0P%3A_2.P%3A_Problems_for_Chapter_2" rel="internal" target="_blank">2.P: Problems for Chapter 2</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="nofollow" target="_blank">Tim Soderberg</a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. | <img alt="P2-30S.png" class="internal" height="163px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141086/P2-30S.png?revision=1&size=bestfit&width=520&height=163" style="width: 520px; height: 163px;" width="520px"/>This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/02%3A_Introduction_to_Organic_Structure_and_Bonding_II/2.0P%3A_2.P%3A_Problems_for_Chapter_2/1.01%3A_Solutions_to_selected_chapter_2_problems" rel="internal" target="_blank">1.1: Solutions to selected chapter 2 problems</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="" rel="nofollow" target="_blank"></a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.This page titled <a class="internal mt-self-link" href="https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/02%3A_Introduction_to_Organic_Structure_and_Bonding_II/2.0P%3A_2.P%3A_Problems_for_Chapter_2/1.01%3A_Solutions_to_selected_chapter_2_problems" rel="internal" target="_blank">1.1: Solutions to selected chapter 2 problems</a> is shared under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0" rel="nofollow" target="_blank">CC BY-NC-SA 4.0</a> license and was authored, remixed, and/or curated by <a href="https://sites.google.com/morris.umn.edu/timsoderberg/home" rel="nofollow" target="_blank">Tim Soderberg</a> via <a href="https://digitalcommons.morris.umn.edu/chem_facpubs/1/" rel="nofollow" target="_blank">source content</a> that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 83 |
Exercise 3.1 | Using free rotation around C-C single bonds, show that (R,S) and (S,R)-tartaric acid are identical molecules.<img alt="soderberg 3tartartic.svg" class="internal" height="86px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/360027/soderberg_3tartartic.svg?revision=1&size=bestfit&width=332&height=86" style="width: 332px; height: 86px;" width="332px"/> | <img alt="E3-1S.png" class="internal" height="553px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141319/E3-1S.png?revision=1&size=bestfit&width=451&height=553" style="width: 451px; height: 553px;" width="451px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 90 |
Exercise 3.2 | Draw a Newman projection, looking down the C<sub>2</sub>-C<sub>3</sub> bond, of 1-butene in the conformation shown below (C<sub>2</sub> should be your <em>front</em> carbon).<img alt="image026.png" class="internal" height="91px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141184/image026.png?revision=1&size=bestfit&width=137&height=91" style="width: 137px; height: 91px;" width="137px"/>Solutions to exercises | <img alt="E3-2S.png" class="internal" height="172px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141318/E3-2S.png?revision=1&size=bestfit&width=369&height=172" style="width: 369px; height: 172px;" width="369px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 91 |
Exercise 1.4 | <span>Fill in all missing lone pair electrons and formal charges in the structures below. Assume that all atoms have a complete valence shell of electrons. Net charges are shown outside the brackets.</span><img alt=" " class="internal" height="296px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140914/E1.4.png?revision=1&size=bestfit&width=691&height=296" style="width: 691px; height: 296px;" width="691px"/>Solutions to exercises | <strong><img alt="E1-4 solnfig.png" class="internal" height="250px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141158/E1-4_solnfig.png?revision=1&size=bestfit&width=635&height=250" style="width: 635px; height: 250px;" width="635px"/></strong> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 94 |
Exercise 2.30 | Rank each set of three compounds below according to their solubility in water (most soluble to least):<img alt="The compounds in set a are C5H9OHOHNH2, C6H12OHOH, and C9H18OHOH. The compounds in set b are C6H10O, C6H10OH, and C9H14O. The compounds in set c are C5H10NH, C5H11N. and C5H9NH2. " class="internal" height="375px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141032/E2-30.png?revision=1&size=bestfit&width=688&height=375" style="width: 688px; height: 375px;" width="688px"/> | The main factors in these examples are the number of H-bonding groups, whether groups are H-bond acceptors <em>and</em> donors or just acceptors, and the number of carbons.<img alt="E2-30S.png" class="internal" height="406px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141133/E2-30S.png?revision=1&size=bestfit&width=701&height=406" style="width: 701px; height: 406px;" width="701px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 101 |
Exercise 2.31 | Vitamins can be classified as water-soluble or fat-soluble (consider fat to be a very non-polar 'solvent'. Decide on a classification for each of the vitamins shown below.<img alt="The vitamins are vitamin c (ascorbic acid), vitamin B3 (niacin) and vitamin A (retinol). " class="internal" height="191px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140366/image121.png?revision=1&size=bestfit&width=725&height=191" style="width: 725px; height: 191px;" width="725px"/> | Ascorbic acid and niacin are water soluble (lots of hydrophilic groups relative to the number of carbons). Retinol is fat-soluble (only one hydrophilic alcohol group, a large hydrophobic hydrocarbon group. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 102 |
Exercise 2.32 | Both aniline and phenol are mostly insoluble in pure water. Predict the solubility of these two compounds in 10% aqueous hydrochloric acid, and explain your reasoning.<img alt="Bond line drawings of aniline and phenol. " class="internal" height="141px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140360/image123.png?revision=1&size=bestfit&width=209&height=141" style="width: 209px; height: 141px;" width="209px"/> | Aniline is basic and would be protonated (and thus cationic) in aqueous HCl. Charged species are generally water soluble. On the other hand, phenol is not basic and thus would remain as a neutral, water-insoluble molecule. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 103 |
Exercise 2.33 | Would you predict methanol or 2-propanol (rubbing alcohol) to be a better solvent for cyclohexanone? Why?Solutions to exercises | Both alcohol solvents could form H-bonds with cyclohexanone, but isopropanol is less polar (it has three carbons), and thus would be the better solvent for the relatively nonpolar cyclohexanone. | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 104 |
Exercise 1.12 | Identify the functional groups (other than alkanes) in the following organic compounds. State whether alcohols and amines are primary, secondary, or tertiary.<img alt=" " class="internal" height="370px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141008/figE1-2-1.png?revision=1&size=bestfit&width=566&height=370" style="width: 566px; height: 370px;" width="566px"/>Solutions to exercises | a) carboxylate, sulfide, aromatic, two amide groups (one of which is cyclic)b) tertiary alcohol, thioesterc) carboxylate, ketoned) ether, primary amine, alkene | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 141 |
Exercise 2.9 | Identify all conjugated and isolated double bonds in the structures below. For each conjugated pi system, specify the number of overlapping <em>p</em> orbitals, and how many pi electrons are shared among them.<img alt="Structure on the left is C10H18O. Structure on the right is C13H14O" class="internal" height="93px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140894/figE2-2-1.png?revision=1&size=bestfit&width=534&height=93" style="width: 534px; height: 93px;" width="534px"/> | <img alt="E2-9S.png" class="internal" height="194px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141178/E2-9S.png?revision=1&size=bestfit&width=587&height=194" style="width: 587px; height: 194px;" width="587px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 146 |
Exercise 2.10 | Identify all isolated and conjugated double bonds in lycopene, the red-colored compound in tomatoes. How many pi electrons are contained in the conjugated pi system?<img alt="Bond line drawing of lycopene" class="internal" height="115px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/140925/figE2-2-2.png?revision=1&size=bestfit&width=776&height=115" style="width: 776px; height: 115px;" width="776px"/>Solutions to exercises | The conjugated system contains 22 2<em>p</em> orbitals sharing 22 <span class="mt-font-Symbol">p</span>i electrons<img alt="E2-10S.png" class="internal" height="163px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141176/E2-10S.png?revision=1&size=bestfit&width=804&height=163" style="width: 804px; height: 163px;" width="804px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 147 |
Exercise 1.1 | How many protons and neutrons do the following isotopes have?
<li class="lt-chem-106473"><sup>31</sup>P, the most common isotope of phosphorus</li>
<li class="lt-chem-106473"><sup>32</sup>P, a radioactive isotope of phosphorus used often in the study of DNA and RNA.</li>
<li class="lt-chem-106473"><sup>37</sup>Cl, one of the two common isotopes of chlorine.</li>
<li class="lt-chem-106473">tritium (<sup>3</sup>H), a radioactive isotope of hydrogen, used often by biochemists as a 'tracer' atom.</li>
<li class="lt-chem-106473"><sup>14</sup>C, a radioactive isotope of carbon, also used as a tracer in biochemistry.</li>
| a) The atomic number of P (phosphorus) is 15, meaning there are 15 protons. The mass number for the <sup>31</sup>P isotope is 31, so:15 protons + <strong>16 neutrons</strong> = mass number 31(recall that mass number is number of protons and neutrons).<em>(for parts b-d, use the same reasoning as above)</em>b) 15 protons + <strong>17 neutrons</strong> = mass number 32c) 17 protons + <strong>20 neutrons </strong>= mass number 37d) 1 proton + <strong>2 neutrons</strong> = mass number 3e) 6 protons + <strong>8 neutrons</strong> = mass number 14 | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 153 |
Exercise 1.2 | The electron configuration of a carbon atom is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>2</sup>, and that of a sodium cation (Na<sup>+</sup>) is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>. Show the electron configuration for:
<li class="lt-chem-106473">a nitrogen atom</li>
<li class="lt-chem-106473">an oxygen atom</li>
<li class="lt-chem-106473">a fluorine atom</li>
<li class="lt-chem-106473">a magnesium atom</li>
<li class="lt-chem-106473">a magnesium cation (Mg<sup>2+</sup>)</li>
<li class="lt-chem-106473">a potassium atom</li>
<li class="lt-chem-106473">a potassium ion (K<sup>+</sup>)</li>
<li class="lt-chem-106473">a chloride anion (Cl<sup>-</sup>)</li>
<li class="lt-chem-106473">a sulfur atom</li>
<li class="lt-chem-106473">a lithium cation (Li<sup>+</sup>)</li>
<li class="lt-chem-106473">a calcium cation (Ca<sup>2+</sup>)</li>
| a) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>3</sup> b) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>4</sup> c) 1<em>s</em><sup>2</sup>2s<sup>2</sup>2<em>p</em><sup>5</sup>d) 1<em>s</em><sup>2</sup>2s<sup>2</sup>2<em>p</em><sup>6</sup>3<em>s</em><sup>2</sup> e) 1<em>s</em><sup>2</sup>2s<sup>2</sup>2<em>p</em><sup>6 </sup>(same as Neon atom) f) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>6</sup>3<em>s</em><sup>2</sup>3<em>p</em><sup>6</sup>4<em>s</em><sup>1</sup>g) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>6</sup>3<em>s</em><sup>2</sup>3<em>p</em><sup>6</sup> (same as Argon atom)h) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>6</sup>3<em>s</em><sup>2</sup>3<em>p</em><sup>6</sup> (same as Argon atom)i) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>6</sup>3<em>s</em><sup>2</sup>3<em>p</em><sup>4</sup>j) 1<em>s</em><sup>2</sup> (same as Helium atom)k) 1<em>s</em><sup>2</sup>2<em>s</em><sup>2</sup>2<em>p</em><sup>6</sup>3<em>s</em><sup>2</sup>3<em>p</em><sup>6</sup> (same as Argon atom) | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 154 |
Exercise 1.3 | Draw Lewis structures for the following species (use lines to denote bonds, dots for lone-pair electrons). All atoms should have a complete valence shell of electrons.
<li class="lt-chem-106473">ammonia, NH<sub>3</sub></li>
<li class="lt-chem-106473">ammonium ion, NH<sub>4</sub><sup>+</sup></li>
<li class="lt-chem-106473">amide ion, NH<sub>2</sub><sup>-</sup></li>
<li class="lt-chem-106473">formaldehyde, HCOH</li>
<li class="lt-chem-106473">acetate ion, CH<sub>3</sub>COO<sup>-</sup></li>
<li class="lt-chem-106473">methyl amine, CH<sub>3</sub>NH<sub>2</sub></li>
<li class="lt-chem-106473">ethanol, CH<sub>3</sub>CH<sub>2</sub>OH</li>
<li class="lt-chem-106473">diethylether, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub></li>
<li class="lt-chem-106473">cyclohexanol (molecular formula C<sub>6</sub>H<sub>12</sub>O, with six carbons bonded in a ring and an OH group)</li>
<li class="lt-chem-106473">propene, CH<sub>2</sub>CHCH<sub>3</sub></li>
<li class="lt-chem-106473">pyruvate, CH<sub>3</sub>COCO<sub>2</sub>H</li>
| <img alt="E1.3S.png" class="internal" height="616px" loading="lazy" src="https://chem.libretexts.org/@api/deki/files/141175/E1.3S.png?revision=1&size=bestfit&width=582&height=616" style="width: 582px; height: 616px;" width="582px"/> | https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg) | 155 |
No dataset card yet
- Downloads last month
- 15