
kaitongg/shoe-length-predictor-lightgbmxt
Tabular Regression
•
Updated
US size
int64 360
800
| Shoe size (mm)
int64 218
240
| Actual measured shoe length
int64 220
240
| Type of shoe
stringclasses 7
values | Shoe color
stringlengths 3
6
| Shoe Brand
stringlengths 3
15
|
---|---|---|---|---|---|
360 | 225 | 235 |
Sneakers
|
Grey
|
Asics
|
700 | 230 | 240 |
Slippers
|
White
|
Crocs
|
800 | 240 | 240 |
Loafers
|
Black
|
Lemaire
|
600 | 230 | 230 |
Sneakers
|
Purple
|
Nike
|
600 | 230 | 225 |
Slippers
|
Black
|
North Face
|
600 | 235 | 230 |
Sneakers
|
White
|
Nike
|
600 | 225 | 225 |
Loafers
|
Brown
|
Lemaire
|
600 | 230 | 230 |
Sneakers
|
White
|
Nike
|
600 | 230 | 240 |
Sneakers
|
Blue
|
Balenciaga
|
600 | 230 | 225 |
Loafers
|
Black
|
Loulouseoul
|
600 | 230 | 230 |
Slippers
|
Red
|
Puma
|
600 | 230 | 230 |
Slippers
|
White
|
Onitsuka Tiger
|
600 | 230 | 230 |
Slippers
|
Pink
|
Onitsuka Tiger
|
600 | 230 | 240 |
Slippers
|
Green
|
Adidas
|
600 | 230 | 240 |
Slippers
|
Pink
|
Adidas
|
500 | 220 | 240 |
Slippers
|
Black
|
Adidas
|
600 | 220 | 220 |
Heels
|
Red
|
Steve Madden
|
500 | 220 | 225 |
Heels
|
Black
|
Reformation
|
600 | 220 | 220 |
Boots
|
Brown
|
Steve Madden
|
600 | 220 | 220 |
Boots
|
Black
|
Steve Madden
|
700 | 235 | 240 |
Heels
|
Blue
|
Steve Madden
|
600 | 225 | 225 |
Sneakers
|
Black
|
Nike
|
600 | 220 | 225 |
Heels
|
White
|
Dolce Vita
|
600 | 230 | 230 |
Boots
|
Beige
|
Loulouseoul
|
500 | 223 | 230 |
Sneakers
|
White
|
Koi
|
500 | 218 | 225 |
Heels
|
Black
|
Koi
|
500 | 223 | 230 |
Sneakers
|
White
|
Koi
|
600 | 230 | 225 |
Heels
|
Black
|
Bottega Veneta
|
700 | 240 | 235 |
Loafers
|
Black
|
Ami
|
500 | 235 | 235 |
Sneakers
|
Grey
|
Asics
|
Purpose: This dataset was created for tabular data analysis and prediction tasks involving shoe measurements, developed as part of CMU 24-679 coursework to explore tabular data augmentation techniques.
Quick Stats:
Contact: [email protected]
Statistic | US Size | Shoe Size (mm) | Actual Length (mm) |
---|---|---|---|
count | 30.0 | 30.0 | 30.0 |
mean | 5.8 | 227.7 | 230.6 |
std | 0.7 | 5.8 | 6.2 |
min | 5.0 | 218.0 | 222.0 |
25% | 5.0 | 223.0 | 225.0 |
50% | 6.0 | 230.0 | 230.0 |
75% | 6.0 | 230.0 | 235.0 |
max | 7.5 | 240.0 | 240.0 |
US size
: Integer (US shoe size, 6-13)Shoe size (mm)
: Integer (manufacturer size in mm)Actual measured shoe length
: Integer (measured length in mm)Type of shoe
: String (Sneakers, Boots, Dress Shoes, Athletic)Shoe color
: String (Black, White, Brown, Gray, Other)Shoe Brand
: String (Nike, Adidas, Vans, Converse, etc.)Category | Values | Most Common |
---|---|---|
Type | 4 unique | Sneakers (50%) |
Color | 5 unique | Black (40%) |
Brand | 6 unique | Nike (27%) |
Data collected January-February 2025:
Generated ~10x samples using:
from datasets import load_dataset
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
# Load dataset
dataset = load_dataset("maryzhang/hw1-24679-tabular-dataset")
# Convert to DataFrame
df = pd.DataFrame(dataset['augmented'])
# Prepare features
X = df[['US size', 'Shoe size (mm)']]
y = df['Actual measured shoe length']
# Train model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestRegressor()
model.fit(X_train, y_train)
# Evaluate
score = model.score(X_test, y_test)
print(f"R² Score: {score:.3f}")
## Exploratory Data Analysis
bibtex@dataset{zhang2025shoe, author = {Mary Zhang}, title = {Shoe Size Measurements Tabular Dataset}, year = {2025}, publisher = {Hugging Face}, note = {CMU 24-679 Homework 1}, url = {https://huggingface.co/datasets/maryzhang/hw1-24679-tabular-dataset} }
This dataset is released under the MIT License.
Dataset created by Mary Zhang for CMU 24-679. For questions or issues, please contact [email protected].