Dataset Viewer
Auto-converted to Parquet
US size
int64
360
800
Shoe size (mm)
int64
218
240
Actual measured shoe length
int64
220
240
Type of shoe
stringclasses
7 values
Shoe color
stringlengths
3
6
Shoe Brand
stringlengths
3
15
360
225
235
Sneakers
Grey
Asics
700
230
240
Slippers
White
Crocs
800
240
240
Loafers
Black
Lemaire
600
230
230
Sneakers
Purple
Nike
600
230
225
Slippers
Black
North Face
600
235
230
Sneakers
White
Nike
600
225
225
Loafers
Brown
Lemaire
600
230
230
Sneakers
White
Nike
600
230
240
Sneakers
Blue
Balenciaga
600
230
225
Loafers
Black
Loulouseoul
600
230
230
Slippers
Red
Puma
600
230
230
Slippers
White
Onitsuka Tiger
600
230
230
Slippers
Pink
Onitsuka Tiger
600
230
240
Slippers
Green
Adidas
600
230
240
Slippers
Pink
Adidas
500
220
240
Slippers
Black
Adidas
600
220
220
Heels
Red
Steve Madden
500
220
225
Heels
Black
Reformation
600
220
220
Boots
Brown
Steve Madden
600
220
220
Boots
Black
Steve Madden
700
235
240
Heels
Blue
Steve Madden
600
225
225
Sneakers
Black
Nike
600
220
225
Heels
White
Dolce Vita
600
230
230
Boots
Beige
Loulouseoul
500
223
230
Sneakers
White
Koi
500
218
225
Heels
Black
Koi
500
223
230
Sneakers
White
Koi
600
230
225
Heels
Black
Bottega Veneta
700
240
235
Loafers
Black
Ami
500
235
235
Sneakers
Grey
Asics

Shoe Size Measurements Tabular Dataset

Dataset Summary

Purpose: This dataset was created for tabular data analysis and prediction tasks involving shoe measurements, developed as part of CMU 24-679 coursework to explore tabular data augmentation techniques.

Quick Stats:

  • 338 total samples (30 original + 308 augmented)
  • 3 numerical features + 3 categorical features
  • High correlation between size measurements (>0.97)
  • ~10x augmentation factor

Contact: [email protected]

Exploratory Data Analysis

Summary Statistics (Original Data)

Statistic US Size Shoe Size (mm) Actual Length (mm)
count 30.0 30.0 30.0
mean 5.8 227.7 230.6
std 0.7 5.8 6.2
min 5.0 218.0 222.0
25% 5.0 223.0 225.0
50% 6.0 230.0 230.0
75% 6.0 230.0 235.0
max 7.5 240.0 240.0

Visualizations

EDA Plots

Key Findings

  • Strong positive correlation (>0.85) between all size measurements
  • Distribution centered around US size 6 (women's sizing)
  • No missing values in dataset
  • Size range: US 5.0 to 7.5 (women's shoe sizes)
  • Most common brands: Nike (5), Steve Madden (4), Adidas (4)
  • Shoe types: Sneakers (10), Slippers (9), Heels (6), Loafers (3), Boots (2)
  • Colors: Black (9), White (6), Pink (2), Grey (2), others (11)

Dataset Composition

Features

  • US size: Integer (US shoe size, 6-13)
  • Shoe size (mm): Integer (manufacturer size in mm)
  • Actual measured shoe length: Integer (measured length in mm)
  • Type of shoe: String (Sneakers, Boots, Dress Shoes, Athletic)
  • Shoe color: String (Black, White, Brown, Gray, Other)
  • Shoe Brand: String (Nike, Adidas, Vans, Converse, etc.)

Distribution

Category Values Most Common
Type 4 unique Sneakers (50%)
Color 5 unique Black (40%)
Brand 6 unique Nike (27%)

Data Splits

  • original: 30 manually collected measurements
  • augmented: 308 synthetically generated samples

Data Collection Process

Collection Methodology

Data collected January-February 2025:

  • Personal shoe collection measurements
  • Retail store size charts
  • Manufacturer specifications
  • Manual measurements using standard ruler

Selection Criteria

  • Common shoe brands and types
  • Adult sizes (US 6-13)
  • Verified measurements
  • Diverse shoe categories

Preprocessing and Augmentation

Preprocessing Pipeline

  1. Converted all measurements to integers (3-digit mm)
  2. Standardized categorical values
  3. Removed any invalid entries
  4. Verified measurement consistency

Augmentation Techniques

Generated ~10x samples using:

  • Gaussian Noise: ±5% variation on numerical features
  • Linear Interpolation: Between similar sizes
  • SMOTE-inspired: Synthetic samples between neighbors
  • Category Shuffling: 10% probability of categorical variation
  • Correlation Preservation: Maintained size relationships

Labels and Annotation

Measurement Schema

  • All numerical features in millimeters
  • US sizes follow standard conversion
  • Actual length may vary ±5mm from manufacturer size

Data Quality

  • No missing values
  • All correlations preserved in augmentation
  • Categorical distributions maintained

Intended Use and Limitations

Intended Use Cases

  • Shoe size prediction models
  • Tabular augmentation studies
  • Regression/classification tasks
  • Educational demonstrations
  • Size conversion algorithms

Limitations

  • Small original dataset (30 samples)
  • Limited to adult sizes
  • May not represent all brands equally
  • Augmented data maintains original distributions
  • Not suitable for medical/orthopedic applications

Out-of-Scope Uses

  • Medical foot assessments
  • Children's shoe sizing
  • Production quality control
  • Commercial sizing systems without validation

Ethical Considerations

Representation

  • Limited to common US sizes
  • May not represent global sizing standards
  • Brand selection based on availability

Privacy

  • No personal information included
  • Measurements anonymized
  • No individual foot measurements

Bias Considerations

  • Western brand bias
  • Adult size focus
  • May not represent specialty footwear

AI Usage Disclosure

AI-Assisted Components

  • Augmentation code: Partially generated with AI assistance
  • Statistical analysis: Manual calculations
  • Documentation: Structure refined with AI help
  • Data: All measurements manually collected

Human Oversight

  • All original data manually measured
  • Augmentation parameters tuned empirically
  • Quality checks performed on all samples
  • Final dataset manually reviewed

Usage Example

from datasets import load_dataset
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

# Load dataset
dataset = load_dataset("maryzhang/hw1-24679-tabular-dataset")

# Convert to DataFrame
df = pd.DataFrame(dataset['augmented'])

# Prepare features
X = df[['US size', 'Shoe size (mm)']]
y = df['Actual measured shoe length']

# Train model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestRegressor()
model.fit(X_train, y_train)

# Evaluate
score = model.score(X_test, y_test)
print(f"R² Score: {score:.3f}")
## Exploratory Data Analysis

Citation

bibtex@dataset{zhang2025shoe, author = {Mary Zhang}, title = {Shoe Size Measurements Tabular Dataset}, year = {2025}, publisher = {Hugging Face}, note = {CMU 24-679 Homework 1}, url = {https://huggingface.co/datasets/maryzhang/hw1-24679-tabular-dataset} }

License

This dataset is released under the MIT License.

Contact

Dataset created by Mary Zhang for CMU 24-679. For questions or issues, please contact [email protected].

Downloads last month
202

Models trained or fine-tuned on maryzhang/hw1-24679-tabular-dataset