Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 66 new columns ({'Bus', 'Sand', 'Bird', 'Wall', 'Snow', 'Bike-Rack', 'Traffic-Sign-Frame', 'CCTV-Camera', 'On-Rails', 'Utility-Pole', 'Boat', 'Car', 'Trailer', 'Building', 'Crosswalk---Plain', 'Curb-Cut', 'Sky', 'Car-Mount', 'Traffic-Sign-(Front)', 'Mailbox', 'Terrain', 'Pedestrian-Area', 'Bicyclist', 'Fence', 'Traffic-Light', 'Wheeled-Slow', 'Road', 'Ego-Vehicle', 'Sidewalk', 'Manhole', 'Trash-Can', 'Truck', 'Water', 'Curb', 'Catch-Basin', 'Guard-Rail', 'Tunnel', 'Traffic-Sign-(Back)', 'Banner', 'Rail-Track', 'Junction-Box', 'Mountain', 'Bike-Lane', 'Bridge', 'Parking', 'Barrier', 'Pothole', 'Other-Rider', 'Bicycle', 'Lane-Marking---Crosswalk', 'Phone-Booth', 'Ground-Animal', 'Vegetation', 'Service-Lane', 'Street-Light', 'Fire-Hydrant', 'Billboard', 'Pole', 'Other-Vehicle', 'Lane-Marking---General', 'uuid', 'Bench', 'Caravan', 'Person', 'Motorcycle', 'Motorcyclist'}) and 2 missing columns ({'no', '0957e928-b574-411a-900a-2b314400350c'}).

This happened while the csv dataset builder was generating data using

hf://datasets/matiasqr/specs/abuja/abuja_instances.csv (at revision ec8b9f4c7e66821f57421b044b384bbc1bd05b24)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              uuid: string
              Bird: int64
              Ground-Animal: int64
              Curb: int64
              Fence: int64
              Guard-Rail: int64
              Barrier: int64
              Wall: int64
              Bike-Lane: int64
              Crosswalk---Plain: int64
              Curb-Cut: int64
              Parking: int64
              Pedestrian-Area: int64
              Rail-Track: int64
              Road: int64
              Service-Lane: int64
              Sidewalk: int64
              Bridge: int64
              Building: int64
              Tunnel: int64
              Person: int64
              Bicyclist: int64
              Motorcyclist: int64
              Other-Rider: int64
              Lane-Marking---Crosswalk: int64
              Lane-Marking---General: int64
              Mountain: int64
              Sand: int64
              Sky: int64
              Snow: int64
              Terrain: int64
              Vegetation: int64
              Water: int64
              Banner: int64
              Bench: int64
              Bike-Rack: int64
              Billboard: int64
              Catch-Basin: int64
              CCTV-Camera: int64
              Fire-Hydrant: int64
              Junction-Box: int64
              Mailbox: int64
              Manhole: int64
              Phone-Booth: int64
              Pothole: int64
              Street-Light: int64
              Pole: int64
              Traffic-Sign-Frame: int64
              Utility-Pole: int64
              Traffic-Light: int64
              Traffic-Sign-(Back): int64
              Traffic-Sign-(Front): int64
              Trash-Can: int64
              Bicycle: int64
              Boat: int64
              Bus: int64
              Car: int64
              Caravan: int64
              Motorcycle: int64
              On-Rails: int64
              Other-Vehicle: int64
              Trailer: int64
              Truck: int64
              Wheeled-Slow: int64
              Car-Mount: int64
              Ego-Vehicle: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 7866
              to
              {'0957e928-b574-411a-900a-2b314400350c': Value('string'), 'no': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 66 new columns ({'Bus', 'Sand', 'Bird', 'Wall', 'Snow', 'Bike-Rack', 'Traffic-Sign-Frame', 'CCTV-Camera', 'On-Rails', 'Utility-Pole', 'Boat', 'Car', 'Trailer', 'Building', 'Crosswalk---Plain', 'Curb-Cut', 'Sky', 'Car-Mount', 'Traffic-Sign-(Front)', 'Mailbox', 'Terrain', 'Pedestrian-Area', 'Bicyclist', 'Fence', 'Traffic-Light', 'Wheeled-Slow', 'Road', 'Ego-Vehicle', 'Sidewalk', 'Manhole', 'Trash-Can', 'Truck', 'Water', 'Curb', 'Catch-Basin', 'Guard-Rail', 'Tunnel', 'Traffic-Sign-(Back)', 'Banner', 'Rail-Track', 'Junction-Box', 'Mountain', 'Bike-Lane', 'Bridge', 'Parking', 'Barrier', 'Pothole', 'Other-Rider', 'Bicycle', 'Lane-Marking---Crosswalk', 'Phone-Booth', 'Ground-Animal', 'Vegetation', 'Service-Lane', 'Street-Light', 'Fire-Hydrant', 'Billboard', 'Pole', 'Other-Vehicle', 'Lane-Marking---General', 'uuid', 'Bench', 'Caravan', 'Person', 'Motorcycle', 'Motorcyclist'}) and 2 missing columns ({'no', '0957e928-b574-411a-900a-2b314400350c'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/matiasqr/specs/abuja/abuja_instances.csv (at revision ec8b9f4c7e66821f57421b044b384bbc1bd05b24)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

0957e928-b574-411a-900a-2b314400350c
string
no
string
4b4d67a0-762e-454e-95b4-ae59d5141af1
no
be9438a8-e31a-4cd7-a1ee-5d0e6be503eb
no
f5a2c4ee-e309-4498-820b-2483214aea30
no
4a9096cb-96f8-448f-90d4-cc33042a7b96
no
f6a31199-b3d2-4eb4-bdc3-c3258fe4dd39
no
4dc26489-64db-4002-9c5c-aef3bf34b04c
no
9205a212-13f0-4e9e-9a2f-61454aa7f419
no
f2ef4bba-2afd-444d-945f-cc6cab094c67
no
4e89d815-290f-4e13-af97-5a06148e5abf
no
91bb7318-6177-42f9-9d62-befd99ee74df
no
2095d7b9-dea7-4064-ab19-fd2915abb97c
no
ee47941d-e083-4c6d-aec9-5d8b9b53a812
no
05ccedec-0a17-4698-af29-7a9f073de8c4
no
f3c92294-d334-44c7-a9e1-9b8869484423
no
0fe98505-6264-4f41-acc4-6d9000f86ec9
no
07714585-b4a2-4385-b630-babf648b054d
no
6c797e52-932a-4ad0-9cd4-af10200ffdd5
no
cd7e4582-3c52-49bc-93e2-4358c05efafb
no
e1bc3beb-a78f-4320-bdf8-12993505017f
no
2964b4b2-750f-4645-8252-78e10f0f8d2c
no
10097dd0-aa37-47af-83b1-4c60abfbf03f
no
9ae04811-d66f-4023-9b7e-9fd90cb2ac5f
no
49cd056a-0d35-4189-bc95-4844872b8253
no
f4ab2927-5b74-494c-8fca-7391d5d93fb8
no
feaf697c-de8a-404c-8cd2-89842ff3aa1d
no
90e5c7a0-750c-4dbf-b643-f5d956c006bf
no
ab6ff5c1-d785-45d8-af5b-b7dccc4c73d5
no
7262a0ae-7460-4968-9f11-640b084d24ff
no
086f66bc-7159-48b8-bf54-bac85db1ee48
no
b0f8abc9-dc32-44e9-8d14-e8103dc56ef2
no
6de5381a-d48f-4e3d-972e-b6fc1226ac5b
no
14b5892f-e036-4b9e-9c28-902f1b4c28aa
no
8a93d55a-82b4-4ec7-90ba-9b397b88a955
no
e7a31a3d-9620-4aaf-9dcb-9863f475b75c
no
d9f9e78b-3e91-4a1f-8f94-82254fbb1c52
no
7bc1fb1d-28c3-45ef-b0d4-aad22d223b21
no
4e1b5be4-7444-418e-9362-f9250461fea5
no
5efa89ee-56de-48e9-8d51-42430808544b
no
b095faea-2694-4b97-8d08-73dcde9e54cf
no
61424451-9bbc-4eeb-be5c-be9ebd144075
no
186cb373-9fab-4fdd-855e-e989efada871
no
4794b154-f85a-47e7-971a-37351e65e796
no
cfc993dc-4563-4c4f-aad7-92fa4b018406
no
684dc561-7633-495a-aa70-c8e6907a6b50
no
2d775d0d-104b-4008-8527-2052980ca765
no
d051d309-633a-47c9-9ef7-f1b94cf63a20
no
f5b0ac44-118a-4120-9f3e-9b06f48bd7db
no
a4c3a072-124d-41b8-9e43-48e047be35a3
no
01a8512f-693d-4db5-bca4-0ed143b12812
no
81358bd5-b2bd-4493-a2a5-b252a1716c7a
no
b1c01042-28e7-4961-b3aa-83f0397b06c9
no
03e6b0d2-c9ee-4b9c-b943-2b6543e4a69a
no
b8e0f95f-f0b4-4e7c-a2dd-95e2395213e6
no
725c8d06-1f08-47ca-b94a-4b7284b33a94
no
d3e78e19-7849-4cae-8548-06b6ce51a86a
no
310d0884-6f9d-40a6-a47b-ba9e4ee725a3
no
7b81416b-6381-482b-a1f6-07bf018ce199
no
98f132ad-49e3-4d05-adfb-4cfc77bc1012
no
4481e006-ba5b-4cf7-b117-2e915e52e508
no
4fd29041-4bde-4b39-bc9f-88ccf69c5744
no
edc4901a-1cc0-4cae-896c-287b791d9313
no
0237e6c9-ac7f-40f0-ac7a-b35e96f2d3eb
no
42b11d12-f31f-4f81-bb40-a3a05c46f41c
no
85df495e-8ca4-445f-8a14-ee95d70b2dc6
no
ab9b1c84-e362-479d-97a1-21cebadb896a
no
0007cb81-41f0-45db-a8b2-e72fd4dbef4e
no
2d4e0f95-b032-41af-956e-1bea50ac8542
no
71aa6b03-5a0a-4423-b67d-1ae77cc6c07a
no
d749b9c7-cf23-40a6-ba4e-2aae1d3ade80
no
c595bfa6-efb0-405e-a556-d88d1120af7e
no
8204f7f3-4fc6-40a6-b59e-8bf30c4aad07
no
d9555408-cbb1-4dde-84de-e897edb4eb04
no
e832ceae-fee6-43b4-b2df-fcfaf8344fff
no
9891f8a7-a1c9-4877-b000-78c1c43ba612
no
87f39a91-e2db-4c3b-a633-7cecfd7b446a
no
eae51bac-5aa2-42a3-a879-583c34537335
no
133b51fc-d150-40a0-91db-093ba3a61701
yes
55420b4a-ea2a-4b68-92ac-eb9d24bcfb81
no
c07aba6d-fe9c-4fd3-b3a5-3d9692a5dfe0
no
67f87c1f-01f2-459e-9c4f-c614adcd16b2
no
f4a68069-188b-4c52-aecc-0201ca5aa7ed
no
ffdca73a-14ae-47f5-8a3c-736838447894
no
32dd6924-626f-4376-8162-95a8843ca507
no
ff1449e2-dcc2-4cd3-b184-b5c88ca8cc2d
no
9f987597-b52a-4e2b-81a8-107188a6793d
no
6d88ed37-03fb-4f15-9b48-22899eb5f243
no
fffd6194-ca90-4f63-ba76-76916f0ad601
no
28b5b349-3749-44bf-8bfc-dba056801e86
no
d7426989-15bf-49d3-ad33-5ab21843758c
no
956f8262-3ef5-4ed2-8023-8fc733f2ff34
no
6d3d41f3-532c-40b6-a3c2-f872cb1c34f0
no
2a367edc-583f-4e84-b16e-383c9b162bf1
no
f9d967fd-d26d-4f22-be4c-999e2acc0f2d
no
9e9c691f-98ee-4e27-98e8-d1de225e58f5
no
11f9b2dc-8448-4d2b-be91-ccd3275d9a23
no
3bf5b090-4dbc-4608-a7ee-9404b5f4a7fd
no
6f87b968-db36-458e-b742-992a312fcf62
no
0d5a500a-0fef-403b-926f-f1f082c6a03b
no
6ad8514e-9275-4319-bd62-41a3dbda05e5
no
fa91a2da-4e6c-4157-a2b7-5c97c28d44a1
no
End of preview.

Street Perception Evaluation Considering Socioeconomics (SPECS)

Repository for the Street Perception Evaluation Considering Socioeconomics (SPECS) dataset developed in the It's not you, it's me: Global urban visual perception varies across demographics and personalities project. This project was developed at the Future Cities Lab Global in the Singapore-ETH Centre in close collaboration with the Urban Analytics Lab (UAL) at the National University of Singapore (NUS).

Content Breakdown

SPECS
β”œβ”€β”€ abuja/
    β”œβ”€β”€ 10 CSV files with contextual information for this city' images
β”œβ”€β”€ global-streetscapes/ (download contextual data from original [Global Streetscapes](https://huggingface.co/datasets/NUS-UAL/global-streetscapes))
β”œβ”€β”€ labels/
    β”œβ”€β”€ final/ (6 XLSX files with final pairwise comparisons)
    β”œβ”€β”€ inferences/ (6 CSV files with inferred perception scores using the perception model used in [Global Streetscapes](https://huggingface.co/datasets/NUS-UAL/global-streetscapes))
    β”œβ”€β”€ processed/ (10 CSV files with computed perception Q scores)
β”œβ”€β”€ svi/ (SVIs should be downloaded following the [wiki](https://github.com/matqr/specs/wiki) or with the metadata file)
    β”œβ”€β”€ img_paths.csv (path location )
    β”œβ”€β”€ metadata.csv (file with imagery metadata)
    β”œβ”€β”€ visual_complexity_all.csv

Read More

Read more about this project on its website, which includes an overview of this effort together with the background and the paper.

A free version (postprint / author-accepted manuscript) can be downloaded here.

Citation

To cite this work, please refer to the paper:

Quintana, M., Gu, Y., Liang, X., Hou, Y., Ito, K., Zhu, Y., Abdelrahman, M., & Biljecki, F. (2025). Global urban visual perception varies across demographics and personalities (No. arXiv:2505.12758).

BibTeX:

@article{Quintana2025,
  title = {Global Urban Visual Perception Varies across Demographics and Personalities},
  author = {Quintana, Matias and Gu, Youlong and Liang, Xiucheng and Hou, Yujun and Ito, Koichi and Zhu, Yihan and Abdelrahman, Mahmoud and Biljecki, Filip},
  year = {2025},
  doi = {10.48550/arXiv.2505.12758},
  url = {http://arxiv.org/abs/2505.12758},
}

Downloads last month
39