slug
stringlengths 15
15
| content
listlengths 1
129
| rawContent
stringlengths 1
2k
| author
dict | attachments
listlengths 0
49
| mentions
listlengths 0
49
| reactions
listlengths 0
12
| publishedAt
stringlengths 24
24
| updatedAt
stringlengths 24
24
| commentators
listlengths 0
46
| url
stringlengths 25
46
| totalUniqueImpressions
int64 1
41.2k
| numComments
int64 0
621
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
504772386075668 | [
{
"type": "text",
"value": "Were you aware that we have a dedicated guide on different prompting mechanisms to improve the image generation quality? 🧨",
"raw": "Were you aware that we have a dedicated guide on different prompting mechanisms to improve the image generation quality? 🧨",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Takes you through simple prompt engineering, prompt weighting, prompt enhancement using GPT-2, and more.",
"raw": "Takes you through simple prompt engineering, prompt weighting, prompt enhancement using GPT-2, and more.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Check out the guide here 🦯",
"raw": "Check out the guide here 🦯",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted_prompts",
"resource": null,
"url": null,
"href": "https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted_prompts",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Were you aware that we have a dedicated guide on different prompting mechanisms to improve the image generation quality? 🧨
Takes you through simple prompt engineering, prompt weighting, prompt enhancement using GPT-2, and more.
Check out the guide here 🦯
https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted_prompts | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1649681653581-5f7fbd813e94f16a85448745.jpeg",
"fullname": "Sayak Paul",
"name": "sayakpaul",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 445,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f7fbd813e94f16a85448745/12dTczAyppx9K4if1B-0s.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"ashikurrahman",
"GPT007",
"linoyts",
"louisbrulenaudet",
"radames",
"chuangxinlezhi",
"mynkchaudhry"
],
"count": 7
},
{
"reaction": "🤯",
"users": [
"chuangxinlezhi"
],
"count": 1
}
] | 2024-06-25T09:08:27.000Z | 2024-06-25T17:42:42.253Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6640bbd0220cfa8cbfdce080/wiAHUu5ewawyipNs0YFBR.png",
"fullname": "John Smith",
"name": "John6666",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 364,
"isFollowing": false
}
] | /posts/sayakpaul/504772386075668 | 2,189 | 1 |
383558582332469 | [
{
"type": "text",
"value": "I've noticed some people are still downloading ",
"raw": "I've noticed some people are still downloading ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/neph1/sd-seer-griffin-3b",
"resource": {
"type": "model",
"id": "neph1/sd-seer-griffin-3b",
"discussionNum": null
},
"url": "https://huggingface.co/neph1/sd-seer-griffin-3b",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Should I make an update based on a more modern architecture? (griffin-3b is llama (1!))",
"raw": "Should I make an update based on a more modern architecture? (griffin-3b is llama (1!))",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I've noticed some people are still downloading https://huggingface.co/neph1/sd-seer-griffin-3b
Should I make an update based on a more modern architecture? (griffin-3b is llama (1!)) | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/653cd3049107029eb004f968/Y4XphXmk8P51GlIi6u9cd.png",
"fullname": "Rickard Edén",
"name": "neph1",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 13,
"isFollowing": false
} | [] | [] | [] | 2024-06-25T08:57:41.000Z | 2024-07-22T12:15:14.331Z | [
{
"avatarUrl": "/avatars/25883cb9e3e9411428a4b09a4e769fbb.svg",
"fullname": "gfhgfhgfh",
"name": "ffghgfh",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/neph1/383558582332469 | 592 | 1 |
676034649939962 | [
{
"type": "text",
"value": "📢 Interested in #LLM safety? ",
"raw": "📢 Interested in #LLM safety? ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We have just uploaded a new version of ALERT 🚨 on ArXiv with novel insights into the weaknesses and vulnerabilities of LLMs! 👀 ",
"raw": "We have just uploaded a new version of ALERT 🚨 on ArXiv with novel insights into the weaknesses and vulnerabilities of LLMs! 👀 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2404.08676",
"resource": null,
"url": null,
"href": "https://arxiv.org/abs/2404.08676",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "For a summary of the paper, read this blog post: ",
"raw": "For a summary of the paper, read this blog post: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/sted97/alert",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/sted97/alert",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " 🤗",
"raw": " 🤗",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📢 Interested in #LLM safety?
We have just uploaded a new version of ALERT 🚨 on ArXiv with novel insights into the weaknesses and vulnerabilities of LLMs! 👀 https://arxiv.org/abs/2404.08676
For a summary of the paper, read this blog post: https://huggingface.co/blog/sted97/alert 🤗 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61b85aa99ba538c73a7dc78b/gWxtQAvOYn7cXgE_nAy0p.jpeg",
"fullname": "Simone Tedeschi",
"name": "sted97",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 30,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👍",
"users": [
"PereLluis13"
],
"count": 1
}
] | 2024-06-25T08:15:29.000Z | 2024-06-25T08:15:29.270Z | [] | /posts/sted97/676034649939962 | 453 | 0 |
355818467715515 | [
{
"type": "text",
"value": "📣Thrilled to make public our recent work ENVISIONS !!!",
"raw": "📣Thrilled to make public our recent work ENVISIONS !!!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Without human annotations !",
"raw": "- Without human annotations !",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Without Distilling Strong LLMs !",
"raw": "- Without Distilling Strong LLMs !",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Self-improve LLMs in the environment",
"raw": "- Self-improve LLMs in the environment",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Amazing performances on agentic and reasoning tasks",
"raw": "- Amazing performances on agentic and reasoning tasks",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Insightful analysis on \"why\" questions",
"raw": "- Insightful analysis on \"why\" questions",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📝 Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models",
"raw": "📝 Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📎 Repo: ",
"raw": "📎 Repo: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/xufangzhi/ENVISIONS",
"resource": null,
"url": null,
"href": "https://github.com/xufangzhi/ENVISIONS",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📣Thrilled to make public our recent work ENVISIONS !!!
- Without human annotations !
- Without Distilling Strong LLMs !
- Self-improve LLMs in the environment
- Amazing performances on agentic and reasoning tasks
- Insightful analysis on "why" questions
📝 Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models
📎 Repo: https://github.com/xufangzhi/ENVISIONS | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/656d73ed0bbc114fe6449704/gpteBU9GmKSHRVkRBUHld.png",
"fullname": "Symbol-LLM",
"name": "Symbol-LLM",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 27,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"Symbol-LLM",
"GPT007",
"John6666"
],
"count": 3
},
{
"reaction": "🚀",
"users": [
"Symbol-LLM"
],
"count": 1
}
] | 2024-06-25T05:17:34.000Z | 2024-06-25T07:58:42.528Z | [
{
"avatarUrl": "/avatars/c5dd35ecf6b895f01b20fba7aa75124d.svg",
"fullname": "Jeffery",
"name": "sjfhsajkf",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/Symbol-LLM/355818467715515 | 1,776 | 1 |
210297200279279 | [
{
"type": "text",
"value": "📣Thrilled to make public our recent work ENVISIONS !!!",
"raw": "📣Thrilled to make public our recent work ENVISIONS !!!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Without human annotations !",
"raw": "- Without human annotations !",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Without Distilling Strong LLMs !",
"raw": "- Without Distilling Strong LLMs !",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Self-improve LLMs in the environment",
"raw": "- Self-improve LLMs in the environment",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Amazing performances on agentic and reasoning tasks",
"raw": "- Amazing performances on agentic and reasoning tasks",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Insightful analysis on \"why\" questions",
"raw": "- Insightful analysis on \"why\" questions",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📝 Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models",
"raw": "📝 Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📎 Repo: ",
"raw": "📎 Repo: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/xufangzhi/ENVISIONS",
"resource": null,
"url": null,
"href": "https://github.com/xufangzhi/ENVISIONS",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📣Thrilled to make public our recent work ENVISIONS !!!
- Without human annotations !
- Without Distilling Strong LLMs !
- Self-improve LLMs in the environment
- Amazing performances on agentic and reasoning tasks
- Insightful analysis on "why" questions
📝 Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models
📎 Repo: https://github.com/xufangzhi/ENVISIONS
| {
"avatarUrl": "/avatars/68ad6babbd6b1bc85a7dcb1a7888ac53.svg",
"fullname": "Fangzhi Xu",
"name": "xufangzhi",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"xufangzhi"
],
"count": 1
},
{
"reaction": "🚀",
"users": [
"xufangzhi"
],
"count": 1
}
] | 2024-06-25T05:13:21.000Z | 2024-06-25T05:13:21.917Z | [] | /posts/xufangzhi/210297200279279 | 463 | 0 |
154642657500810 | [
{
"type": "text",
"value": "🚀 KARAKURI LM 8x7B Instruct v0.1",
"raw": "🚀 KARAKURI LM 8x7B Instruct v0.1",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "KARAKURI Inc. has publicly released \"KARAKURI LM 8x7B Instruct v0.1\", the first domestic Large Language Model (LLM) in Japan to support Function calling and Retrieval-Augmented Generation (RAG). This AI agent can handle tasks across various applications autonomously, significantly reducing implementation costs compared to traditional models. ",
"raw": "KARAKURI Inc. has publicly released \"KARAKURI LM 8x7B Instruct v0.1\", the first domestic Large Language Model (LLM) in Japan to support Function calling and Retrieval-Augmented Generation (RAG). This AI agent can handle tasks across various applications autonomously, significantly reducing implementation costs compared to traditional models. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model Features:",
"raw": "Model Features:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Capable of autonomously choosing optimal documents and databases for various tasks.",
"raw": "- Capable of autonomously choosing optimal documents and databases for various tasks.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Applied extensively in customer support for automating responses and processes, analyzing Voice of Customer (VoC), and predicting optimal outreach timings.",
"raw": "- Applied extensively in customer support for automating responses and processes, analyzing Voice of Customer (VoC), and predicting optimal outreach timings.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model URL:",
"raw": "Model URL:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/karakuri-ai/karakuri-lm-8x7b-instruct-v0.1",
"resource": {
"type": "model",
"id": "karakuri-ai/karakuri-lm-8x7b-instruct-v0.1",
"discussionNum": null
},
"url": "https://huggingface.co/karakuri-ai/karakuri-lm-8x7b-instruct-v0.1",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Detailed press release (in Japanese):",
"raw": "Detailed press release (in Japanese):",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://karakuri.ai/seminar/news/karakuri-lm-8x7b-instruct-v0-1/",
"resource": null,
"url": null,
"href": "https://karakuri.ai/seminar/news/karakuri-lm-8x7b-instruct-v0-1/",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🚀 KARAKURI LM 8x7B Instruct v0.1
KARAKURI Inc. has publicly released "KARAKURI LM 8x7B Instruct v0.1", the first domestic Large Language Model (LLM) in Japan to support Function calling and Retrieval-Augmented Generation (RAG). This AI agent can handle tasks across various applications autonomously, significantly reducing implementation costs compared to traditional models.
Model Features:
- Capable of autonomously choosing optimal documents and databases for various tasks.
- Applied extensively in customer support for automating responses and processes, analyzing Voice of Customer (VoC), and predicting optimal outreach timings.
Model URL:
https://huggingface.co/karakuri-ai/karakuri-lm-8x7b-instruct-v0.1
Detailed press release (in Japanese):
https://karakuri.ai/seminar/news/karakuri-lm-8x7b-instruct-v0-1/ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61a32e422172c41f121589d2/8jExNd-9fenpqw_Z1rvL6.jpeg",
"fullname": "Kaito Sugimoto",
"name": "kaisugi",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 12,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👍",
"users": [
"ynakashima"
],
"count": 1
}
] | 2024-06-25T04:51:03.000Z | 2024-06-25T04:51:03.474Z | [] | /posts/kaisugi/154642657500810 | 603 | 0 |
630121342404584 | [
{
"type": "text",
"value": "Doraemon AI your future friend",
"raw": "Doraemon AI your future friend",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://hf.co/chat/assistant/667a0d8482b5bcd065dd882f",
"resource": null,
"url": null,
"href": "https://hf.co/chat/assistant/667a0d8482b5bcd065dd882f",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Doraemon AI your future friend
https://hf.co/chat/assistant/667a0d8482b5bcd065dd882f
| {
"avatarUrl": "/avatars/d773a7dd9b706759131fc482ab71ced7.svg",
"fullname": "[email protected]",
"name": "Taf2023",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 8,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64841af2295256340e4b9f88/E12XQ7t5IQfgP7fp4kxnC.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64841af2295256340e4b9f88/5tJMbB_93yfHOSfpX82sk.jpeg"
}
] | [] | [
{
"reaction": "👀",
"users": [
"GPT007",
"Ievan",
"edwixx"
],
"count": 3
}
] | 2024-06-25T00:54:34.000Z | 2024-06-25T00:54:34.765Z | [] | /posts/Taf2023/630121342404584 | 1,531 | 0 |
515229433183214 | [
{
"type": "text",
"value": "𝗝𝘂𝗱𝗴𝗶𝗻𝗴 𝘁𝗵𝗲 𝗝𝘂𝗱𝗴𝗲𝘀: 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗶𝗻𝗴 𝗔𝗹𝗶𝗴𝗻𝗺𝗲𝗻𝘁 𝗮𝗻𝗱 𝗩𝘂𝗹𝗻𝗲𝗿𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀 𝗶𝗻 𝗟𝗟𝗠𝘀-𝗮𝘀-𝗝𝘂𝗱𝗴𝗲𝘀",
"raw": "𝗝𝘂𝗱𝗴𝗶𝗻𝗴 𝘁𝗵𝗲 𝗝𝘂𝗱𝗴𝗲𝘀: 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗶𝗻𝗴 𝗔𝗹𝗶𝗴𝗻𝗺𝗲𝗻𝘁 𝗮𝗻𝗱 𝗩𝘂𝗹𝗻𝗲𝗿𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀 𝗶𝗻 𝗟𝗟𝗠𝘀-𝗮𝘀-𝗝𝘂𝗱𝗴𝗲𝘀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2406.12624",
"resource": {
"type": "paper",
"id": "2406.12624",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2406.12624",
"href": null,
"user": null,
"label": "Judging the Judges: Evaluating Alignment and Vulnerabilities in\n LLMs-as-Judges (2406.12624)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "𝐂𝐚𝐧 𝐋𝐋𝐌𝐬 𝐬𝐞𝐫𝐯𝐞 𝐚𝐬 𝐫𝐞𝐥𝐢𝐚𝐛𝐥𝐞 𝐣𝐮𝐝𝐠𝐞𝐬 ⚖️?",
"raw": "𝐂𝐚𝐧 𝐋𝐋𝐌𝐬 𝐬𝐞𝐫𝐯𝐞 𝐚𝐬 𝐫𝐞𝐥𝐢𝐚𝐛𝐥𝐞 𝐣𝐮𝐝𝐠𝐞𝐬 ⚖️?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We aim to identify the right metrics for evaluating Judge LLMs and understand their sensitivities to prompt guidelines, engineering, and specificity. With this paper, we want to raise caution ⚠️ to blindly using LLMs as human proxy.",
"raw": "We aim to identify the right metrics for evaluating Judge LLMs and understand their sensitivities to prompt guidelines, engineering, and specificity. With this paper, we want to raise caution ⚠️ to blindly using LLMs as human proxy.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Blog - ",
"raw": "Blog - ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/singh96aman/judgingthejudges",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/singh96aman/judgingthejudges",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Arxiv - ",
"raw": "Arxiv - ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2406.12624",
"resource": null,
"url": null,
"href": "https://arxiv.org/abs/2406.12624",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Tweet - ",
"raw": "Tweet - ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://x.com/iamsingh96aman/status/1804148173008703509",
"resource": null,
"url": null,
"href": "https://x.com/iamsingh96aman/status/1804148173008703509",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@singh96aman",
"resource": null,
"url": null,
"href": null,
"user": "singh96aman",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@kartik727",
"resource": null,
"url": null,
"href": null,
"user": "kartik727",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Srinik-1",
"resource": null,
"url": null,
"href": null,
"user": "Srinik-1",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@sankaranv",
"resource": null,
"url": null,
"href": null,
"user": "sankaranv",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@dieuwkehupkes",
"resource": null,
"url": null,
"href": null,
"user": "dieuwkehupkes",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 𝗝𝘂𝗱𝗴𝗶𝗻𝗴 𝘁𝗵𝗲 𝗝𝘂𝗱𝗴𝗲𝘀: 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗶𝗻𝗴 𝗔𝗹𝗶𝗴𝗻𝗺𝗲𝗻𝘁 𝗮𝗻𝗱 𝗩𝘂𝗹𝗻𝗲𝗿𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀 𝗶𝗻 𝗟𝗟𝗠𝘀-𝗮𝘀-𝗝𝘂𝗱𝗴𝗲𝘀
https://huggingface.co/papers/2406.12624
𝐂𝐚𝐧 𝐋𝐋𝐌𝐬 𝐬𝐞𝐫𝐯𝐞 𝐚𝐬 𝐫𝐞𝐥𝐢𝐚𝐛𝐥𝐞 𝐣𝐮𝐝𝐠𝐞𝐬 ⚖️?
We aim to identify the right metrics for evaluating Judge LLMs and understand their sensitivities to prompt guidelines, engineering, and specificity. With this paper, we want to raise caution ⚠️ to blindly using LLMs as human proxy.
Blog - https://huggingface.co/blog/singh96aman/judgingthejudges
Arxiv - https://arxiv.org/abs/2406.12624
Tweet - https://x.com/iamsingh96aman/status/1804148173008703509
@singh96aman @kartik727 @Srinik-1 @sankaranv @dieuwkehupkes | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63b491f3103617b0a5af6b4b/4RqcGDxdF8Ny9cqyVuwYg.jpeg",
"fullname": "Aman Singh Thakur",
"name": "singh96aman",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63b491f3103617b0a5af6b4b/WZV9IGJtwDCbshA98gkrQ.png"
}
] | [
{
"avatarUrl": "/avatars/78c49f863eda2eac82b18261e794fb0f.svg",
"fullname": "Dieuwke Hupkes",
"name": "dieuwkehupkes",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1
},
{
"avatarUrl": "/avatars/43c7bbac7569e3d63017831f71ecd762.svg",
"fullname": "Kartik Choudhary",
"name": "kartik727",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1
},
{
"avatarUrl": "/avatars/979a72589441400a9dc25b1008de7def.svg",
"fullname": "Sankaran Vaidyanathan",
"name": "sankaranv",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63b491f3103617b0a5af6b4b/4RqcGDxdF8Ny9cqyVuwYg.jpeg",
"fullname": "Aman Singh Thakur",
"name": "singh96aman",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6
},
{
"avatarUrl": "/avatars/5aa58d7cc9da903399210b9f1f54dd68.svg",
"fullname": "Venkat Srinik Ramayapally",
"name": "Srinik-1",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null
}
] | [
{
"reaction": "🔥",
"users": [
"singh96aman",
"louisbrulenaudet",
"ljvmiranda921",
"Choms",
"Tom-Neverwinter"
],
"count": 5
},
{
"reaction": "🚀",
"users": [
"RuhiJ",
"ljvmiranda921",
"Tom-Neverwinter"
],
"count": 3
}
] | 2024-06-24T22:17:58.000Z | 2024-06-24T22:40:43.018Z | [] | /posts/singh96aman/515229433183214 | 2,086 | 0 |
357091156426242 | [
{
"type": "mention",
"value": null,
"raw": "@osanseviero",
"resource": null,
"url": null,
"href": null,
"user": "osanseviero",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " your move",
"raw": " your move",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | @osanseviero your move | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 137,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/659f000b83abded48e190901/_nLytYtZ5nHbRw6icztTv.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png",
"fullname": "Omar Sanseviero",
"name": "osanseviero",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2833
}
] | [] | 2024-06-24T19:50:30.000Z | 2024-06-25T11:28:55.616Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5dd96eb166059660ed1ee413/NQtzmrDdbG0H8qkZvRyGk.jpeg",
"fullname": "Julien Chaumond",
"name": "julien-c",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1563,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 137,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png",
"fullname": "Omar Sanseviero",
"name": "osanseviero",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2833,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/YCLHM-kwF9--v7I8YT9TH.jpeg",
"fullname": "jordan issiah levi joseph charles foots",
"name": "MrFoots",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 896,
"isFollowing": false
}
] | /posts/nroggendorff/357091156426242 | 530 | 6 |
158194207799625 | [
{
"type": "text",
"value": "How to generate LLM embeddings with open source models from Hugging Face 🤗 in PostgresML. ",
"raw": "How to generate LLM embeddings with open source models from Hugging Face 🤗 in PostgresML. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This article is the first in a multipart series that will show you how to build a post-modern semantic search and recommendation engine. ",
"raw": "This article is the first in a multipart series that will show you how to build a post-modern semantic search and recommendation engine. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "➡️ ",
"raw": "➡️ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://postgresml.org/blog/generating-llm-embeddings-with-open-source-models-in-postgresml",
"resource": null,
"url": null,
"href": "https://postgresml.org/blog/generating-llm-embeddings-with-open-source-models-in-postgresml",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "PostgresML is a backend for your AI app that unifies LLMs w/ vector memory + embedding generation + reranking & pruning models — all in a single process for better performance. ",
"raw": "PostgresML is a backend for your AI app that unifies LLMs w/ vector memory + embedding generation + reranking & pruning models — all in a single process for better performance. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We're always looking for ways to make PostgresML better — let us know what you think!",
"raw": "We're always looking for ways to make PostgresML better — let us know what you think!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | How to generate LLM embeddings with open source models from Hugging Face 🤗 in PostgresML.
This article is the first in a multipart series that will show you how to build a post-modern semantic search and recommendation engine.
➡️ https://postgresml.org/blog/generating-llm-embeddings-with-open-source-models-in-postgresml
PostgresML is a backend for your AI app that unifies LLMs w/ vector memory + embedding generation + reranking & pruning models — all in a single process for better performance.
We're always looking for ways to make PostgresML better — let us know what you think! | {
"avatarUrl": "/avatars/20c6cabac91c84388340016f1ba6494d.svg",
"fullname": "Cassandra Stumer",
"name": "cassandrapgml",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🚀",
"users": [
"monsoon-nlp"
],
"count": 1
}
] | 2024-06-24T18:25:21.000Z | 2024-06-24T18:26:14.423Z | [] | /posts/cassandrapgml/158194207799625 | 439 | 0 |
986989202846565 | [
{
"type": "text",
"value": "Fine-tune Florence-2 on any task 🔥",
"raw": "Fine-tune Florence-2 on any task 🔥",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Today we release a notebook and a walkthrough blog on fine-tuning Florence-2 on DocVQA dataset ",
"raw": "Today we release a notebook and a walkthrough blog on fine-tuning Florence-2 on DocVQA dataset ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@andito",
"resource": null,
"url": null,
"href": null,
"user": "andito",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@SkalskiP",
"resource": null,
"url": null,
"href": null,
"user": "SkalskiP",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Blog: ",
"raw": "Blog: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " 📕",
"raw": " 📕",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Notebook: ",
"raw": "Notebook: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing",
"resource": null,
"url": null,
"href": "https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " 📖",
"raw": " 📖",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Florence-2 is a great vision-language model thanks to it's massive dataset and small size!",
"raw": "Florence-2 is a great vision-language model thanks to it's massive dataset and small size!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This model requires conditioning through task prefixes and it's not as generalist, requiring fine-tuning on a new task, such as DocVQA 📝",
"raw": "This model requires conditioning through task prefixes and it's not as generalist, requiring fine-tuning on a new task, such as DocVQA 📝",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We have fine-tuned the model on A100 (and one can also use a smaller GPU with smaller batch size) and saw that model picks up new tasks 🥹",
"raw": "We have fine-tuned the model on A100 (and one can also use a smaller GPU with smaller batch size) and saw that model picks up new tasks 🥹",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "See below how it looks like before and after FT 🤩",
"raw": "See below how it looks like before and after FT 🤩",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Play with the demo here ",
"raw": "Play with the demo here ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/andito/Florence-2-DocVQA",
"resource": {
"type": "space",
"id": "andito/Florence-2-DocVQA",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/andito/Florence-2-DocVQA",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " 🏄♀️",
"raw": " 🏄♀️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Fine-tune Florence-2 on any task 🔥
Today we release a notebook and a walkthrough blog on fine-tuning Florence-2 on DocVQA dataset @andito @SkalskiP
Blog: https://huggingface.co/blog 📕
Notebook: https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing 📖
Florence-2 is a great vision-language model thanks to it's massive dataset and small size!
This model requires conditioning through task prefixes and it's not as generalist, requiring fine-tuning on a new task, such as DocVQA 📝
We have fine-tuned the model on A100 (and one can also use a smaller GPU with smaller batch size) and saw that model picks up new tasks 🥹
See below how it looks like before and after FT 🤩
Play with the demo here https://huggingface.co/spaces/andito/Florence-2-DocVQA 🏄♀️ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/LPGYSsRAKwZgv8v2C7W8z.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65d66b494bbd0d92b641cdbb/6-7dm7B-JxcoS1QlCPdMN.jpeg",
"fullname": "Andres Marafioti",
"name": "andito",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 51
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60f84d4d85dbbb185d2e9a53/Mlc0XjAgQR2cuhGNchz07.jpeg",
"fullname": "Piotr Skalski",
"name": "SkalskiP",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2284
}
] | [
{
"reaction": "🤗",
"users": [
"omaryshchenko",
"pcuenq",
"MrDragonFox",
"SixOpen",
"Taylor658",
"KvrParaskevi",
"jxtngx",
"fdaudens",
"gokaygokay",
"osanseviero",
"John6666",
"nicolay-r",
"IsmaelMousa",
"emanuelevivoli",
"JoPmt",
"CelineLind",
"pandora-s",
"IlyasMoutawwakil",
"damerajee",
"bharatxoni",
"louisbrulenaudet",
"ucsahin",
"victor",
"not-lain",
"LeonceNsh",
"andito",
"fcakyon"
],
"count": 27
},
{
"reaction": "🔥",
"users": [
"not-lain",
"catyung",
"John6666",
"hoangphu7122002ai",
"Nadav314",
"uurcelikk",
"fcakyon"
],
"count": 7
}
] | 2024-06-24T15:51:35.000Z | 2024-06-24T15:51:35.488Z | [] | /posts/merve/986989202846565 | 5,995 | 0 |
423633326718867 | [
{
"type": "text",
"value": "🎉 We are thrilled to share our work on model merging. We proposed a new approach, Della-merging, which combines expert models from various domains into a single, versatile model. Della employs a magnitude-based sampling approach to eliminate redundant delta parameters, reducing interference when merging homologous models (those fine-tuned from the same backbone).",
"raw": "🎉 We are thrilled to share our work on model merging. We proposed a new approach, Della-merging, which combines expert models from various domains into a single, versatile model. Della employs a magnitude-based sampling approach to eliminate redundant delta parameters, reducing interference when merging homologous models (those fine-tuned from the same backbone).",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Della outperforms existing homologous model merging techniques such as DARE and TIES. Across three expert models (LM, Math, Code) and their corresponding benchmark datasets (AlpacaEval, GSM8K, MBPP), Della achieves an improvement of 3.6 points over TIES and 1.2 points over DARE.",
"raw": "Della outperforms existing homologous model merging techniques such as DARE and TIES. Across three expert models (LM, Math, Code) and their corresponding benchmark datasets (AlpacaEval, GSM8K, MBPP), Della achieves an improvement of 3.6 points over TIES and 1.2 points over DARE.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2406.11617",
"resource": {
"type": "paper",
"id": "2406.11617",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2406.11617",
"href": null,
"user": null,
"label": "DELLA-Merging: Reducing Interference in Model Merging through\n Magnitude-Based Sampling (2406.11617)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Github: ",
"raw": "Github: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/declare-lab/della",
"resource": null,
"url": null,
"href": "https://github.com/declare-lab/della",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@soujanyaporia",
"resource": null,
"url": null,
"href": null,
"user": "soujanyaporia",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Tej3",
"resource": null,
"url": null,
"href": null,
"user": "Tej3",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🎉 We are thrilled to share our work on model merging. We proposed a new approach, Della-merging, which combines expert models from various domains into a single, versatile model. Della employs a magnitude-based sampling approach to eliminate redundant delta parameters, reducing interference when merging homologous models (those fine-tuned from the same backbone).
Della outperforms existing homologous model merging techniques such as DARE and TIES. Across three expert models (LM, Math, Code) and their corresponding benchmark datasets (AlpacaEval, GSM8K, MBPP), Della achieves an improvement of 3.6 points over TIES and 1.2 points over DARE.
Paper: https://huggingface.co/papers/2406.11617
Github: https://github.com/declare-lab/della
@soujanyaporia @Tej3 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f278507e923d665e616271b/tWFuswXOTXtvMdL8zSrr_.png",
"fullname": "Rishabh Bhardwaj",
"name": "RishabhBhardwaj",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 17,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626b626405fe1cb65725aca1/aa-Lata46I3fXOmMetvXH.jpeg",
"fullname": "Soujanya Poria",
"name": "soujanyaporia",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6
},
{
"avatarUrl": "/avatars/48312867ac2c05d589869972f90881b9.svg",
"fullname": "Pala Tej Deep",
"name": "Tej3",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4
}
] | [
{
"reaction": "🤯",
"users": [
"YaTharThShaRma999",
"John6666",
"soujanyaporia",
"RishabhBhardwaj"
],
"count": 4
},
{
"reaction": "👍",
"users": [
"dillfrescott",
"QizhiPei"
],
"count": 2
},
{
"reaction": "👀",
"users": [
"louisbrulenaudet"
],
"count": 1
}
] | 2024-06-24T14:23:02.000Z | 2024-06-25T21:07:09.186Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg",
"fullname": "leroy Samuel Dyer",
"name": "LeroyDyer",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 82,
"isFollowing": false
},
{
"avatarUrl": "/avatars/48312867ac2c05d589869972f90881b9.svg",
"fullname": "Pala Tej Deep",
"name": "Tej3",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4,
"isFollowing": false
}
] | /posts/RishabhBhardwaj/423633326718867 | 2,421 | 3 |
341903216222465 | [
{
"type": "text",
"value": "Hello!",
"raw": "Hello!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Fixed Moondream 2 Multi-Interrogation, ( Use ZeroGPU correctly, Sam. *doink* ) ",
"raw": "Fixed Moondream 2 Multi-Interrogation, ( Use ZeroGPU correctly, Sam. *doink* ) ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Located here:",
"raw": "Located here:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/MrOvkill/moondream-2-multi-interrogation",
"resource": {
"type": "space",
"id": "MrOvkill/moondream-2-multi-interrogation",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/MrOvkill/moondream-2-multi-interrogation",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Also, uploaded pdox-reversed to include some new fields, my bad for not putting the Paradox name in from the start. All good now.",
"raw": "Also, uploaded pdox-reversed to include some new fields, my bad for not putting the Paradox name in from the start. All good now.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/MrOvkill/pdox-reversed",
"resource": {
"type": "dataset",
"id": "MrOvkill/pdox-reversed",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/MrOvkill/pdox-reversed",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hello!
Fixed Moondream 2 Multi-Interrogation, ( Use ZeroGPU correctly, Sam. *doink* )
Located here:
https://huggingface.co/spaces/MrOvkill/moondream-2-multi-interrogation
Also, uploaded pdox-reversed to include some new fields, my bad for not putting the Paradox name in from the start. All good now.
https://huggingface.co/datasets/MrOvkill/pdox-reversed | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png",
"fullname": "Samuel L Meyers",
"name": "MrOvkill",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 31,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👀",
"users": [
"osanseviero",
"Ramikan-BR",
"dillfrescott",
"kaltre"
],
"count": 4
}
] | 2024-06-24T13:24:36.000Z | 2024-06-24T13:24:36.332Z | [] | /posts/MrOvkill/341903216222465 | 1,098 | 0 |
985624558872301 | [
{
"type": "mention",
"value": null,
"raw": "@dwancin",
"resource": null,
"url": null,
"href": null,
"user": "dwancin",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " Can you please reset your toggle component's space? It's stuck for some reason. Happy to help",
"raw": " Can you please reset your toggle component's space? It's stuck for some reason. Happy to help",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/dwancin/gradio_toggle",
"resource": {
"type": "space",
"id": "dwancin/gradio_toggle",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/dwancin/gradio_toggle",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | @dwancin Can you please reset your toggle component's space? It's stuck for some reason. Happy to help
https://huggingface.co/spaces/dwancin/gradio_toggle | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1654278567459-626a9bfa03e2e2796f24ca11.jpeg",
"fullname": "Freddy Boulton",
"name": "freddyaboulton",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 156,
"isFollowing": false
} | [] | [] | [] | 2024-06-24T09:54:45.000Z | 2024-06-24T09:54:45.698Z | [] | /posts/freddyaboulton/985624558872301 | 1,223 | 0 |
798841828414409 | [
{
"type": "text",
"value": "A few new styles added as SDXL LoRA:",
"raw": "A few new styles added as SDXL LoRA:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Midsommar Cartoon",
"raw": "Midsommar Cartoon",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "A playful cartoon style featuring bold colors and a retro aesthetic. Personal favorite at the moment.",
"raw": "A playful cartoon style featuring bold colors and a retro aesthetic. Personal favorite at the moment.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/alvdansen/midsommarcartoon",
"resource": {
"type": "model",
"id": "alvdansen/midsommarcartoon",
"discussionNum": null
},
"url": "https://huggingface.co/alvdansen/midsommarcartoon",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "---",
"raw": "---",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Wood Block XL",
"raw": "Wood Block XL",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I've started training public domain styles to create some interesting datasets. In this case I found a group of images taken from really beautiful and colorful Japanese Blockprints. ",
"raw": "I've started training public domain styles to create some interesting datasets. In this case I found a group of images taken from really beautiful and colorful Japanese Blockprints. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/alvdansen/wood-block-xl",
"resource": {
"type": "model",
"id": "alvdansen/wood-block-xl",
"discussionNum": null
},
"url": "https://huggingface.co/alvdansen/wood-block-xl",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "--",
"raw": "--",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Dimension W",
"raw": "Dimension W",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "For this model I did actually end up working on an SD 1.5 model as well as an SDXL. I prefer the SDXL version, and I am still looking for parameters I am really happy with for SD 1.5. That said, both have their merits. I trained this with the short film I am working on in mind.",
"raw": "For this model I did actually end up working on an SD 1.5 model as well as an SDXL. I prefer the SDXL version, and I am still looking for parameters I am really happy with for SD 1.5. That said, both have their merits. I trained this with the short film I am working on in mind.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/alvdansen/dimension-w",
"resource": {
"type": "model",
"id": "alvdansen/dimension-w",
"discussionNum": null
},
"url": "https://huggingface.co/alvdansen/dimension-w",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/alvdansen/dimension-w-sd15",
"resource": {
"type": "model",
"id": "alvdansen/dimension-w-sd15",
"discussionNum": null
},
"url": "https://huggingface.co/alvdansen/dimension-w-sd15",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | A few new styles added as SDXL LoRA:
Midsommar Cartoon
A playful cartoon style featuring bold colors and a retro aesthetic. Personal favorite at the moment.
https://huggingface.co/alvdansen/midsommarcartoon
---
Wood Block XL
I've started training public domain styles to create some interesting datasets. In this case I found a group of images taken from really beautiful and colorful Japanese Blockprints.
https://huggingface.co/alvdansen/wood-block-xl
--
Dimension W
For this model I did actually end up working on an SD 1.5 model as well as an SDXL. I prefer the SDXL version, and I am still looking for parameters I am really happy with for SD 1.5. That said, both have their merits. I trained this with the short film I am working on in mind.
https://huggingface.co/alvdansen/dimension-w
https://huggingface.co/alvdansen/dimension-w-sd15
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/N9eAopiefimHDYRMc62Xo.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/rCywSMdNeGV31BI0Ioy0S.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/VMp9VXt4JNeDQrXnkmm0E.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/rLp6dm0Aw5h_E24KDQoDq.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/tlJV08OtHr1vEt5LzQT24.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/6LKAivWxR6HVJLa-jTqvv.png"
}
] | [] | [
{
"reaction": "👍",
"users": [
"kristaller486",
"Brukolakos",
"Ramikan-BR",
"YaTharThShaRma999"
],
"count": 4
},
{
"reaction": "❤️",
"users": [
"louisbrulenaudet",
"Noeloise",
"IkeaMan"
],
"count": 3
},
{
"reaction": "🔥",
"users": [
"YaTharThShaRma999"
],
"count": 1
}
] | 2024-06-24T07:30:18.000Z | 2024-06-24T07:30:18.715Z | [] | /posts/alvdansen/798841828414409 | 2,446 | 0 |
876260401440477 | [
{
"type": "text",
"value": "Last week, Intel's new Xeon CPUs, Sapphire Rapids (SPR), landed on Inference Endpoints and I think they got the potential to reduce the cost of your RAG pipelines 💸",
"raw": "Last week, Intel's new Xeon CPUs, Sapphire Rapids (SPR), landed on Inference Endpoints and I think they got the potential to reduce the cost of your RAG pipelines 💸",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Why ? Because they come with Intel® AMX support, which is a set of instructions that support and accelerate BF16 and INT8 matrix multiplications on CPU ⚡",
"raw": "Why ? Because they come with Intel® AMX support, which is a set of instructions that support and accelerate BF16 and INT8 matrix multiplications on CPU ⚡",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I went ahead and built a Space to showcase how to efficiently deploy embedding models on SPR for both Retrieving and Ranking documents, with Haystack compatible components: ",
"raw": "I went ahead and built a Space to showcase how to efficiently deploy embedding models on SPR for both Retrieving and Ranking documents, with Haystack compatible components: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/optimum-intel/haystack-e2e",
"resource": null,
"url": null,
"href": "https://huggingface.co/spaces/optimum-intel/haystack-e2e",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Here's how it works:",
"raw": "Here's how it works:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Document Store: A FAISS document store containing the seven-wonders dataset, embedded, indexed and stored on the Space's persistent storage to avoid unnecessary re-computation of embeddings.",
"raw": "- Document Store: A FAISS document store containing the seven-wonders dataset, embedded, indexed and stored on the Space's persistent storage to avoid unnecessary re-computation of embeddings.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Retriever: It embeds the query at runtime and retrieves from the dataset N documents that are most semantically similar to the query's embedding.",
"raw": "- Retriever: It embeds the query at runtime and retrieves from the dataset N documents that are most semantically similar to the query's embedding.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We use the small variant of the BGE family here because we want a model that's fast to run on the entire dataset and has a small embedding space for fast similarity search. Specifically we use an INT8 quantized bge-small-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance. ",
"raw": "We use the small variant of the BGE family here because we want a model that's fast to run on the entire dataset and has a small embedding space for fast similarity search. Specifically we use an INT8 quantized bge-small-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Ranker: It re-embeds the retrieved documents at runtime and re-ranks them based on semantic similarity to the query's embedding. We use the large variant of the BGE family here because it's optimized for accuracy allowing us to filter the most relevant k documents that we'll use in the LLM prompt. Specifically we use an INT8 quantized bge-large-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance. ",
"raw": "- Ranker: It re-embeds the retrieved documents at runtime and re-ranks them based on semantic similarity to the query's embedding. We use the large variant of the BGE family here because it's optimized for accuracy allowing us to filter the most relevant k documents that we'll use in the LLM prompt. Specifically we use an INT8 quantized bge-large-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Space: ",
"raw": "Space: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/optimum-intel/haystack-e2e",
"resource": null,
"url": null,
"href": "https://huggingface.co/spaces/optimum-intel/haystack-e2e",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Retriever IE: ",
"raw": "Retriever IE: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/optimum-intel/fastrag-retriever",
"resource": {
"type": "model",
"id": "optimum-intel/fastrag-retriever",
"discussionNum": null
},
"url": "https://huggingface.co/optimum-intel/fastrag-retriever",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Ranker IE: ",
"raw": "Ranker IE: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/optimum-intel/fastrag-ranker",
"resource": {
"type": "model",
"id": "optimum-intel/fastrag-ranker",
"discussionNum": null
},
"url": "https://huggingface.co/optimum-intel/fastrag-ranker",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Last week, Intel's new Xeon CPUs, Sapphire Rapids (SPR), landed on Inference Endpoints and I think they got the potential to reduce the cost of your RAG pipelines 💸
Why ? Because they come with Intel® AMX support, which is a set of instructions that support and accelerate BF16 and INT8 matrix multiplications on CPU ⚡
I went ahead and built a Space to showcase how to efficiently deploy embedding models on SPR for both Retrieving and Ranking documents, with Haystack compatible components: https://huggingface.co/spaces/optimum-intel/haystack-e2e
Here's how it works:
- Document Store: A FAISS document store containing the seven-wonders dataset, embedded, indexed and stored on the Space's persistent storage to avoid unnecessary re-computation of embeddings.
- Retriever: It embeds the query at runtime and retrieves from the dataset N documents that are most semantically similar to the query's embedding.
We use the small variant of the BGE family here because we want a model that's fast to run on the entire dataset and has a small embedding space for fast similarity search. Specifically we use an INT8 quantized bge-small-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance.
- Ranker: It re-embeds the retrieved documents at runtime and re-ranks them based on semantic similarity to the query's embedding. We use the large variant of the BGE family here because it's optimized for accuracy allowing us to filter the most relevant k documents that we'll use in the LLM prompt. Specifically we use an INT8 quantized bge-large-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance.
Space: https://huggingface.co/spaces/optimum-intel/haystack-e2e
Retriever IE: https://huggingface.co/optimum-intel/fastrag-retriever
Ranker IE: https://huggingface.co/optimum-intel/fastrag-ranker | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1642598610696-noauth.jpeg",
"fullname": "Ilyas Moutawwakil",
"name": "IlyasMoutawwakil",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 67,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🧠",
"users": [
"davidberenstein1957",
"louisbrulenaudet",
"IlyasMoutawwakil",
"anakin87",
"mfuntowicz",
"lunarflu",
"not-lain",
"nbroad"
],
"count": 8
},
{
"reaction": "🚀",
"users": [
"IlyasMoutawwakil",
"mfuntowicz",
"lunarflu",
"not-lain",
"jeffboudier",
"nbroad"
],
"count": 6
},
{
"reaction": "👍",
"users": [
"whitebill",
"jtatman",
"rjohnn",
"jlzhou"
],
"count": 4
}
] | 2024-06-24T06:55:08.000Z | 2024-06-24T06:55:08.721Z | [] | /posts/IlyasMoutawwakil/876260401440477 | 3,918 | 0 |
242181868210458 | [
{
"type": "text",
"value": "So far I've implemented more accurate 👌 assessment of LLMs reasoning capabilities in Target Sentiment Analysis (zero-shot mode). With that, recalculated tables of the related benchmark 📊 also has better separation into categories, with the following 🏆 top 🏆 performing models: ",
"raw": "So far I've implemented more accurate 👌 assessment of LLMs reasoning capabilities in Target Sentiment Analysis (zero-shot mode). With that, recalculated tables of the related benchmark 📊 also has better separation into categories, with the following 🏆 top 🏆 performing models: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🟩 1. Proprietary models (🏆 GPT-4 🇺🇸 / GPT-3.5-0613 🇷🇺 )",
"raw": "🟩 1. Proprietary models (🏆 GPT-4 🇺🇸 / GPT-3.5-0613 🇷🇺 )",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🟥 2. Open and < 100B (🏆 LLaMA-3-70B)",
"raw": "🟥 2. Open and < 100B (🏆 LLaMA-3-70B)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🟧 3. Open and < 10B (🏆LLaMA-3-8B-Instruct 🇺🇸 / Qwen-2-7B-Instruct 🇷🇺)",
"raw": "🟧 3. Open and < 10B (🏆LLaMA-3-8B-Instruct 🇺🇸 / Qwen-2-7B-Instruct 🇷🇺)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🟨 4. Open and less 1B (🏆Flan-T5-large 🇺🇸 / Qwen2-0.5B-Instruct 🇷🇺)",
"raw": "🟨 4. Open and less 1B (🏆Flan-T5-large 🇺🇸 / Qwen2-0.5B-Instruct 🇷🇺)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Benchmark: ",
"raw": "Benchmark: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark",
"resource": null,
"url": null,
"href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | So far I've implemented more accurate 👌 assessment of LLMs reasoning capabilities in Target Sentiment Analysis (zero-shot mode). With that, recalculated tables of the related benchmark 📊 also has better separation into categories, with the following 🏆 top 🏆 performing models:
🟩 1. Proprietary models (🏆 GPT-4 🇺🇸 / GPT-3.5-0613 🇷🇺 )
🟥 2. Open and < 100B (🏆 LLaMA-3-70B)
🟧 3. Open and < 10B (🏆LLaMA-3-8B-Instruct 🇺🇸 / Qwen-2-7B-Instruct 🇷🇺)
🟨 4. Open and less 1B (🏆Flan-T5-large 🇺🇸 / Qwen2-0.5B-Instruct 🇷🇺)
Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg",
"fullname": "Nicolay Rusnachenko",
"name": "nicolay-r",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 48,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/IEuMy5deAhvnNDF7QgoRZ.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/hT2FygThP22BOBslSpSlJ.png"
}
] | [] | [] | 2024-06-23T22:27:52.000Z | 2024-06-23T22:28:15.780Z | [] | /posts/nicolay-r/242181868210458 | 679 | 0 |
504603469361099 | [
{
"type": "text",
"value": "I'm decentralizing my AI. I'll be using Radicle for decentralized Git and IPFS for distributing AI models.",
"raw": "I'm decentralizing my AI. I'll be using Radicle for decentralized Git and IPFS for distributing AI models.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I believe there is a significant opportunity to democratize open AI development moving forward. I appreciate that Radicle is open-source, prioritizes local operations, functions offline, seeds data peer-to-peer from my node, is programmable, and incorporates built-in security features.",
"raw": "I believe there is a significant opportunity to democratize open AI development moving forward. I appreciate that Radicle is open-source, prioritizes local operations, functions offline, seeds data peer-to-peer from my node, is programmable, and incorporates built-in security features.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "IPFS is great decentralized data storage, and I have already begun seeding SLMs and LoRa adapters. Tomorrow will add my collection of LLMs, VLMs, etc models and datasets I'm actively using. I have 10Gbps fiber optics at home so my node has enough bandwidth. ",
"raw": "IPFS is great decentralized data storage, and I have already begun seeding SLMs and LoRa adapters. Tomorrow will add my collection of LLMs, VLMs, etc models and datasets I'm actively using. I have 10Gbps fiber optics at home so my node has enough bandwidth. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.",
"raw": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I'm decentralizing my AI. I'll be using Radicle for decentralized Git and IPFS for distributing AI models.
I believe there is a significant opportunity to democratize open AI development moving forward. I appreciate that Radicle is open-source, prioritizes local operations, functions offline, seeds data peer-to-peer from my node, is programmable, and incorporates built-in security features.
IPFS is great decentralized data storage, and I have already begun seeding SLMs and LoRa adapters. Tomorrow will add my collection of LLMs, VLMs, etc models and datasets I'm actively using. I have 10Gbps fiber optics at home so my node has enough bandwidth.
Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png",
"fullname": "Mitko Vasilev",
"name": "mitkox",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 117,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63f731c7d36951307fcca6bf/_Bm8tsXGgJcPCEO2olkaf.png"
}
] | [] | [] | 2024-06-23T19:45:28.000Z | 2024-06-24T11:55:32.971Z | [
{
"avatarUrl": "/avatars/9a369763a73278cddcf2abcae594865d.svg",
"fullname": "Dhruv Diddi",
"name": "ddiddi",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
}
] | /posts/mitkox/504603469361099 | 656 | 2 |
172866169462273 | [
{
"type": "text",
"value": "Hey everyone!",
"raw": "Hey everyone!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I'm excited to share a new demo for my ChartInstruct model from our ACL 2024 paper. It excels at various chart understanding tasks like QA, captioning, open-ended QA, fact checking and more!",
"raw": "I'm excited to share a new demo for my ChartInstruct model from our ACL 2024 paper. It excels at various chart understanding tasks like QA, captioning, open-ended QA, fact checking and more!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Thanks to Hugging Face's ZeroGPU program, the demo runs smoothly even with the model's 7B parameters!",
"raw": "Thanks to Hugging Face's ZeroGPU program, the demo runs smoothly even with the model's 7B parameters!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Check it out and enjoy!",
"raw": "Check it out and enjoy!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Demo: ",
"raw": "Demo: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/ahmed-masry/ChartInstruct-LLama2",
"resource": {
"type": "space",
"id": "ahmed-masry/ChartInstruct-LLama2",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/ahmed-masry/ChartInstruct-LLama2",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model: ",
"raw": "Model: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/ahmed-masry/ChartInstruct-LLama2",
"resource": {
"type": "model",
"id": "ahmed-masry/ChartInstruct-LLama2",
"discussionNum": null
},
"url": "https://huggingface.co/ahmed-masry/ChartInstruct-LLama2",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2403.09028",
"resource": null,
"url": null,
"href": "https://arxiv.org/abs/2403.09028",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hey everyone!
I'm excited to share a new demo for my ChartInstruct model from our ACL 2024 paper. It excels at various chart understanding tasks like QA, captioning, open-ended QA, fact checking and more!
Thanks to Hugging Face's ZeroGPU program, the demo runs smoothly even with the model's 7B parameters!
Check it out and enjoy!
Demo: https://huggingface.co/spaces/ahmed-masry/ChartInstruct-LLama2
Model: https://huggingface.co/ahmed-masry/ChartInstruct-LLama2
Paper: https://arxiv.org/abs/2403.09028 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63efd75a5c2ceb16fc6e98fc/qoA4LKuLTEr7hx90i90UK.jpeg",
"fullname": "Ahmed Masry",
"name": "ahmed-masry",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 42,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"osanseviero",
"qgyd2021",
"shivanshdhar"
],
"count": 3
}
] | 2024-06-23T15:44:44.000Z | 2024-06-23T15:44:44.529Z | [] | /posts/ahmed-masry/172866169462273 | 3,399 | 0 |
927750006725150 | [
{
"type": "text",
"value": "Hello!",
"raw": "Hello!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I've made a little evaluation dataset for LLMs that require advanced and convoluted logical reasoning. It's composed of 81 unique paradoxes, with admittedly a couple in the same category ( absolutes. ) It's available here: ",
"raw": "I've made a little evaluation dataset for LLMs that require advanced and convoluted logical reasoning. It's composed of 81 unique paradoxes, with admittedly a couple in the same category ( absolutes. ) It's available here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/MrOvkill/pdox",
"resource": {
"type": "dataset",
"id": "MrOvkill/pdox",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/MrOvkill/pdox",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "**Update**: I have upgraded the dataset to v3, ( don't worry about v2, it can be forgotten... ) and placed in a separate repo here: ",
"raw": "**Update**: I have upgraded the dataset to v3, ( don't worry about v2, it can be forgotten... ) and placed in a separate repo here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/MrOvkill/pdox-reversed",
"resource": {
"type": "dataset",
"id": "MrOvkill/pdox-reversed",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/MrOvkill/pdox-reversed",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Enjoy & Have fun!",
"raw": "Enjoy & Have fun!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`-<3`",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "-<3",
"lang": null
}
] | Hello!
I've made a little evaluation dataset for LLMs that require advanced and convoluted logical reasoning. It's composed of 81 unique paradoxes, with admittedly a couple in the same category ( absolutes. ) It's available here: https://huggingface.co/datasets/MrOvkill/pdox
**Update**: I have upgraded the dataset to v3, ( don't worry about v2, it can be forgotten... ) and placed in a separate repo here:
https://huggingface.co/datasets/MrOvkill/pdox-reversed
Enjoy & Have fun!
`-<3` | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png",
"fullname": "Samuel L Meyers",
"name": "MrOvkill",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 31,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"YaTharThShaRma999",
"SaylorTwift",
"osanseviero",
"Ramikan-BR",
"nbroad"
],
"count": 5
},
{
"reaction": "👀",
"users": [
"Ramikan-BR",
"louisbrulenaudet",
"John6666"
],
"count": 3
},
{
"reaction": "🚀",
"users": [
"Ramikan-BR"
],
"count": 1
},
{
"reaction": "❤️",
"users": [
"Ramikan-BR"
],
"count": 1
},
{
"reaction": "🧠",
"users": [
"Ramikan-BR"
],
"count": 1
}
] | 2024-06-23T13:05:20.000Z | 2024-06-27T15:26:29.818Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/644cb09a22d211df644a0a6c/v0EHypMU4X3Oxxf3cao_O.png",
"fullname": "Júlio César",
"name": "Ramikan-BR",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 10,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png",
"fullname": "Samuel L Meyers",
"name": "MrOvkill",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 31,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg",
"fullname": "leroy Samuel Dyer",
"name": "LeroyDyer",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 82,
"isFollowing": false
}
] | /posts/MrOvkill/927750006725150 | 3,328 | 12 |
707316305956940 | [
{
"type": "text",
"value": "I'm very proud to have supported ",
"raw": "I'm very proud to have supported ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@CGIAR",
"resource": null,
"url": null,
"href": null,
"user": "CGIAR",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Digigreen",
"resource": null,
"url": null,
"href": null,
"user": "Digigreen",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " in making ",
"raw": " in making ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "http://Farmer.chat",
"resource": null,
"url": null,
"href": "http://Farmer.chat",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", an app that supports 20k smallholder farmers on a daily basis 🌾",
"raw": ", an app that supports 20k smallholder farmers on a daily basis 🌾",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "There are ~500 million smallholder farmers globally, playing a critical role in global food security. Having access to accurate information is essential for them.",
"raw": "There are ~500 million smallholder farmers globally, playing a critical role in global food security. Having access to accurate information is essential for them.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "💬 An “agricultural extension service” offers technical advice on agriculture, and also supplies farmers with the necessary inputs and services to support their agricultural production.",
"raw": "💬 An “agricultural extension service” offers technical advice on agriculture, and also supplies farmers with the necessary inputs and services to support their agricultural production.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "But agriculture extension agents are not in large enough numbers to cope with all the requests, especially in countries like Kenya, India, Ethiopia, and Nigeria.",
"raw": "But agriculture extension agents are not in large enough numbers to cope with all the requests, especially in countries like Kenya, India, Ethiopia, and Nigeria.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🚀 So the team set out to build an app called ",
"raw": "🚀 So the team set out to build an app called ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "http://Farmer.Chat",
"resource": null,
"url": null,
"href": "http://Farmer.Chat",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", to provide an agricultural extension service, by building on the immense knowledge accumulated by CGIAR.",
"raw": ", to provide an agricultural extension service, by building on the immense knowledge accumulated by CGIAR.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✨ The app is technically impressive: behind the Whatsapp-type UX, an agent interprets the user's intent, and identifies which tool to call to best answer their request: weather API, RAG on a CGIAR-provided knowledge base, market data, etc. The RAG on the knowledge base is in itself a work of art.",
"raw": "✨ The app is technically impressive: behind the Whatsapp-type UX, an agent interprets the user's intent, and identifies which tool to call to best answer their request: weather API, RAG on a CGIAR-provided knowledge base, market data, etc. The RAG on the knowledge base is in itself a work of art.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🎯 A key part of building such a complex system is to be able to evaluate it properly. During our bi-weekly sessions with the team, I could support them in implementing the method called \"LLM-as-a-judge\" to tackle this problem.",
"raw": "🎯 A key part of building such a complex system is to be able to evaluate it properly. During our bi-weekly sessions with the team, I could support them in implementing the method called \"LLM-as-a-judge\" to tackle this problem.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "It worked really well : thanks to the amazing work of the team, the app now successfully answered over 300 thousand requests, in 6 different languages, and it keeps growing!",
"raw": "It worked really well : thanks to the amazing work of the team, the app now successfully answered over 300 thousand requests, in 6 different languages, and it keeps growing!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "➡️ ",
"raw": "➡️ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Vinsingh",
"resource": null,
"url": null,
"href": null,
"user": "Vinsingh",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@rajgreen",
"resource": null,
"url": null,
"href": null,
"user": "rajgreen",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " and I just wrote a blog post to describe how the app works, especially the LLM-as-a-judge system!",
"raw": " and I just wrote a blog post to describe how the app works, especially the LLM-as-a-judge system!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Read it here 👉 ",
"raw": "Read it here 👉 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/digital-green-llm-judge",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/digital-green-llm-judge",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I'm very proud to have supported @CGIAR and @Digigreen in making http://Farmer.chat, an app that supports 20k smallholder farmers on a daily basis 🌾
There are ~500 million smallholder farmers globally, playing a critical role in global food security. Having access to accurate information is essential for them.
💬 An “agricultural extension service” offers technical advice on agriculture, and also supplies farmers with the necessary inputs and services to support their agricultural production.
But agriculture extension agents are not in large enough numbers to cope with all the requests, especially in countries like Kenya, India, Ethiopia, and Nigeria.
🚀 So the team set out to build an app called http://Farmer.Chat, to provide an agricultural extension service, by building on the immense knowledge accumulated by CGIAR.
✨ The app is technically impressive: behind the Whatsapp-type UX, an agent interprets the user's intent, and identifies which tool to call to best answer their request: weather API, RAG on a CGIAR-provided knowledge base, market data, etc. The RAG on the knowledge base is in itself a work of art.
🎯 A key part of building such a complex system is to be able to evaluate it properly. During our bi-weekly sessions with the team, I could support them in implementing the method called "LLM-as-a-judge" to tackle this problem.
It worked really well : thanks to the amazing work of the team, the app now successfully answered over 300 thousand requests, in 6 different languages, and it keeps growing!
➡️ @Vinsingh, @rajgreen and I just wrote a blog post to describe how the app works, especially the LLM-as-a-judge system!
Read it here 👉 https://huggingface.co/blog/digital-green-llm-judge | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg",
"fullname": "Aymeric Roucher",
"name": "m-ric",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 453,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63d10d4e8eaa4831005e92b5/RpN1mn5MFii4A-Ym-VlRa.png"
}
] | [
{
"avatarUrl": "/avatars/3e3dafe68eaf0fb6d31cf5a9eb2a018e.svg",
"fullname": "Rajsekar Manokaran",
"name": "rajgreen",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64f708c57a4a5902e2ece8e9/18N5A8pl8x93Ix2Xcf_No.jpeg",
"fullname": "Vineet Singh",
"name": "Vinsingh",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1
}
] | [
{
"reaction": "👀",
"users": [
"John6666",
"AtAndDev",
"darkzbaron"
],
"count": 3
},
{
"reaction": "😎",
"users": [
"monsoon-nlp",
"AtAndDev"
],
"count": 2
}
] | 2024-10-28T16:57:53.000Z | 2024-10-28T16:57:53.681Z | [] | /posts/m-ric/707316305956940 | 1,813 | 0 |
224128230608362 | [
{
"type": "text",
"value": "If you are like me, I like to find up and coming datasets and spaces before everyone else.",
"raw": "If you are like me, I like to find up and coming datasets and spaces before everyone else.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I made a trending repo space ",
"raw": "I made a trending repo space ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/cfahlgren1/trending-repos",
"resource": {
"type": "space",
"id": "cfahlgren1/trending-repos",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/cfahlgren1/trending-repos",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " where it shows:",
"raw": " where it shows:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- New up and coming Spaces in the last day",
"raw": "- New up and coming Spaces in the last day",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- New up and coming Datasets in the last 2 weeks",
"raw": "- New up and coming Datasets in the last 2 weeks",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "It's a really good way to find some new gems before they become popular. For example, someone is working on a way to dynamically create assets inside a video game here: ",
"raw": "It's a really good way to find some new gems before they become popular. For example, someone is working on a way to dynamically create assets inside a video game here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/gptcall/AI-Game-Creator",
"resource": {
"type": "space",
"id": "gptcall/AI-Game-Creator",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/gptcall/AI-Game-Creator",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | If you are like me, I like to find up and coming datasets and spaces before everyone else.
I made a trending repo space https://huggingface.co/spaces/cfahlgren1/trending-repos where it shows:
- New up and coming Spaces in the last day
- New up and coming Datasets in the last 2 weeks
It's a really good way to find some new gems before they become popular. For example, someone is working on a way to dynamically create assets inside a video game here: https://huggingface.co/spaces/gptcall/AI-Game-Creator
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/648a374f00f7a3374ee64b99/YPwSOrronoozwHbJchPn3.jpeg",
"fullname": "Caleb Fahlgren",
"name": "cfahlgren1",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 93,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/SrAlOPs9_vM8RZqFUhGS8.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/sk8ULyS0zHbImOP5TALiC.png"
}
] | [] | [
{
"reaction": "👀",
"users": [
"John6666",
"KhalilGuetari"
],
"count": 2
}
] | 2024-10-28T14:18:19.000Z | 2024-10-28T14:18:59.537Z | [] | /posts/cfahlgren1/224128230608362 | 1,106 | 0 |
549720632228150 | [
{
"type": "text",
"value": "Hello, researchers! I've tried to made reading HF Daily Papers easier and made a tool that does reviews with LLMs like Claude 3.5, GPT-4o and sometimes FLUX.",
"raw": "Hello, researchers! I've tried to made reading HF Daily Papers easier and made a tool that does reviews with LLMs like Claude 3.5, GPT-4o and sometimes FLUX.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📚 Classification by topics",
"raw": "📚 Classification by topics",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📅 Sorting by publication date and HF addition date",
"raw": "📅 Sorting by publication date and HF addition date",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔄 Syncing every 2 hours",
"raw": "🔄 Syncing every 2 hours",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "💻 Hosted on GitHub ",
"raw": "💻 Hosted on GitHub ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🌏 English, Russian, and Chinese",
"raw": "🌏 English, Russian, and Chinese",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📈 Top by week/month (in progress)",
"raw": "📈 Top by week/month (in progress)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👉 ",
"raw": "👉 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://hfday.ru",
"resource": null,
"url": null,
"href": "https://hfday.ru",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Let me know what do you think of it.",
"raw": "Let me know what do you think of it.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hello, researchers! I've tried to made reading HF Daily Papers easier and made a tool that does reviews with LLMs like Claude 3.5, GPT-4o and sometimes FLUX.
📚 Classification by topics
📅 Sorting by publication date and HF addition date
🔄 Syncing every 2 hours
💻 Hosted on GitHub
🌏 English, Russian, and Chinese
📈 Top by week/month (in progress)
👉 https://hfday.ru
Let me know what do you think of it. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1635314457124-5f32b2367e583543386214d9.jpeg",
"fullname": "Sergei Averkiev",
"name": "averoo",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 20,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f32b2367e583543386214d9/l-EUMSSuF9w4zIuwVJ8tb.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"kristaller486",
"merve",
"codemurt",
"Dref360",
"morish",
"averoo",
"Aurelien-Morgan",
"AtAndDev",
"byoussef"
],
"count": 9
},
{
"reaction": "👀",
"users": [
"John6666",
"averoo",
"merve",
"Dref360",
"hanimab",
"AtAndDev"
],
"count": 6
},
{
"reaction": "👍",
"users": [
"whitebill",
"adhisetiawan",
"Dref360",
"dillfrescott",
"Aurelien-Morgan",
"AtAndDev"
],
"count": 6
},
{
"reaction": "❤️",
"users": [
"averoo",
"Aurelien-Morgan",
"AtAndDev",
"ijohn07"
],
"count": 4
}
] | 2024-10-28T12:49:53.000Z | 2024-10-28T14:22:36.043Z | [] | /posts/averoo/549720632228150 | 3,706 | 0 |
138914126043955 | [
{
"type": "text",
"value": "Hugging Face Hub Python library now comes with easy inference for vision language models! ✨",
"raw": "Hugging Face Hub Python library now comes with easy inference for vision language models! ✨",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "$ pip install huggingface_hub 🤗",
"raw": "$ pip install huggingface_hub 🤗",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hugging Face Hub Python library now comes with easy inference for vision language models! ✨
$ pip install huggingface_hub 🤗 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/jz6O2P5Dqm4kxeVCyNEM2.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"not-lain",
"nofl",
"prithivMLmods",
"MefhigosetH",
"cfahlgren1",
"John6666",
"iky1e",
"celinah",
"Malte0621",
"MexIvanov"
],
"count": 10
},
{
"reaction": "👍",
"users": [
"anilguven",
"not-lain",
"nofl",
"a9i",
"laua",
"cfahlgren1",
"celinah",
"MexIvanov"
],
"count": 8
},
{
"reaction": "❤️",
"users": [
"not-lain",
"nofl",
"iky1e",
"celinah",
"ijohn07",
"MexIvanov"
],
"count": 6
},
{
"reaction": "🤗",
"users": [
"John6666",
"ritzfy",
"MexIvanov"
],
"count": 3
},
{
"reaction": "🚀",
"users": [
"John6666"
],
"count": 1
}
] | 2024-10-28T11:41:39.000Z | 2024-10-28T11:52:45.584Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 896,
"isFollowing": false
}
] | /posts/merve/138914126043955 | 5,080 | 1 |
712692061633140 | [
{
"type": "text",
"value": "Good folks from ",
"raw": "Good folks from ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Microsoft",
"resource": null,
"url": null,
"href": null,
"user": "Microsoft",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " have released an exciting breakthrough in GUI automation!",
"raw": " have released an exciting breakthrough in GUI automation!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "OmniParser – a game-changing approach for pure vision-based GUI agents that works across multiple platforms and applications.",
"raw": "OmniParser – a game-changing approach for pure vision-based GUI agents that works across multiple platforms and applications.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Key technical innovations:",
"raw": "Key technical innovations:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Custom-trained interactable icon detection model using 67k screenshots from popular websites",
"raw": "- Custom-trained interactable icon detection model using 67k screenshots from popular websites",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Specialized BLIP-v2 model fine-tuned on 7k icon-description pairs for extracting functional semantics",
"raw": "- Specialized BLIP-v2 model fine-tuned on 7k icon-description pairs for extracting functional semantics",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Novel combination of icon detection, OCR, and semantic understanding to create structured UI representations",
"raw": "- Novel combination of icon detection, OCR, and semantic understanding to create structured UI representations",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The results are impressive:",
"raw": "The results are impressive:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Outperforms GPT-4V baseline by significant margins on the ScreenSpot benchmark",
"raw": "- Outperforms GPT-4V baseline by significant margins on the ScreenSpot benchmark",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Achieves 73% accuracy on Mind2Web without requiring HTML data",
"raw": "- Achieves 73% accuracy on Mind2Web without requiring HTML data",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Demonstrates a 57.7% success rate on AITW mobile tasks",
"raw": "- Demonstrates a 57.7% success rate on AITW mobile tasks",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "What makes OmniParser special is its ability to work across platforms (mobile, desktop, web) using only screenshot data – no HTML or view hierarchy needed. This opens up exciting possibilities for building truly universal GUI automation tools.",
"raw": "What makes OmniParser special is its ability to work across platforms (mobile, desktop, web) using only screenshot data – no HTML or view hierarchy needed. This opens up exciting possibilities for building truly universal GUI automation tools.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The team has open-sourced both the interactable region detection dataset and icon description dataset to accelerate research in this space.",
"raw": "The team has open-sourced both the interactable region detection dataset and icon description dataset to accelerate research in this space.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Kudos to the Microsoft Research team for pushing the boundaries of what's possible with pure vision-based GUI understanding!",
"raw": "Kudos to the Microsoft Research team for pushing the boundaries of what's possible with pure vision-based GUI understanding!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "What are your thoughts on vision-based GUI automation?",
"raw": "What are your thoughts on vision-based GUI automation?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Good folks from @Microsoft have released an exciting breakthrough in GUI automation!
OmniParser – a game-changing approach for pure vision-based GUI agents that works across multiple platforms and applications.
Key technical innovations:
- Custom-trained interactable icon detection model using 67k screenshots from popular websites
- Specialized BLIP-v2 model fine-tuned on 7k icon-description pairs for extracting functional semantics
- Novel combination of icon detection, OCR, and semantic understanding to create structured UI representations
The results are impressive:
- Outperforms GPT-4V baseline by significant margins on the ScreenSpot benchmark
- Achieves 73% accuracy on Mind2Web without requiring HTML data
- Demonstrates a 57.7% success rate on AITW mobile tasks
What makes OmniParser special is its ability to work across platforms (mobile, desktop, web) using only screenshot data – no HTML or view hierarchy needed. This opens up exciting possibilities for building truly universal GUI automation tools.
The team has open-sourced both the interactable region detection dataset and icon description dataset to accelerate research in this space.
Kudos to the Microsoft Research team for pushing the boundaries of what's possible with pure vision-based GUI understanding!
What are your thoughts on vision-based GUI automation? | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png",
"fullname": "Kuldeep Singh Sidhu",
"name": "singhsidhukuldeep",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 187,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/9ynemzluOx3A7afE1Hdq8.mp4"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"emanuelbsilva",
"John6666",
"a9i",
"aleksey-6",
"AtAndDev",
"JoshOohAhh",
"iky1e",
"juliets"
],
"count": 8
},
{
"reaction": "🚀",
"users": [
"JoshOohAhh"
],
"count": 1
}
] | 2024-10-28T04:12:11.000Z | 2024-10-28T04:12:11.516Z | [] | /posts/singhsidhukuldeep/712692061633140 | 2,559 | 0 |
615028313210983 | [
{
"type": "text",
"value": "Allegro: New Open Source SOTA Text to Image Model - 27 Amazing Examples With Prompts, Apache 2.0 License - Models and inference code published already",
"raw": "Allegro: New Open Source SOTA Text to Image Model - 27 Amazing Examples With Prompts, Apache 2.0 License - Models and inference code published already",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Video to watch all : ",
"raw": "Video to watch all : ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.youtube.com/watch?v=0tsLqNXQ5Mk",
"resource": null,
"url": null,
"href": "https://www.youtube.com/watch?v=0tsLqNXQ5Mk",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Official repo : ",
"raw": "Official repo : ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/rhymes-ai/Allegro",
"resource": null,
"url": null,
"href": "https://github.com/rhymes-ai/Allegro",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Hugging Face : ",
"raw": "Hugging Face : ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/rhymes-ai/Allegro",
"resource": {
"type": "model",
"id": "rhymes-ai/Allegro",
"discussionNum": null
},
"url": "https://huggingface.co/rhymes-ai/Allegro",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper : ",
"raw": "Paper : ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2410.15458",
"resource": null,
"url": null,
"href": "https://arxiv.org/abs/2410.15458",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Allegro: New Open Source SOTA Text to Image Model - 27 Amazing Examples With Prompts, Apache 2.0 License - Models and inference code published already
Video to watch all : https://www.youtube.com/watch?v=0tsLqNXQ5Mk
Official repo : https://github.com/rhymes-ai/Allegro
Hugging Face : https://huggingface.co/rhymes-ai/Allegro
Paper : https://arxiv.org/abs/2410.15458 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png",
"fullname": "Furkan Gözükara",
"name": "MonsterMMORPG",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 355,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👀",
"users": [
"John6666",
"ravikiran777",
"AtAndDev",
"YaTharThShaRma999"
],
"count": 4
}
] | 2024-10-28T00:07:13.000Z | 2024-10-28T00:07:13.640Z | [] | /posts/MonsterMMORPG/615028313210983 | 2,619 | 0 |
679029409152624 | [
{
"type": "text",
"value": "Introducing Lemone-router, a series of classification models designed to produce an optimal multi-agent system for different branches of tax law.",
"raw": "Introducing Lemone-router, a series of classification models designed to produce an optimal multi-agent system for different branches of tax law.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts :",
"raw": "Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts :",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```python\nlabel2id = {\n \"Bénéfices professionnels\": 0,\n \"Contrôle et contentieux\": 1,\n \"Dispositifs transversaux\": 2,\n \"Fiscalité des entreprises\": 3,\n \"Patrimoine et enregistrement\": 4,\n \"Revenus particuliers\": 5,\n \"Revenus patrimoniaux\": 6,\n \"Taxes sur la consommation\": 7\n}\n\t\nid2label = {\n 0: \"Bénéfices professionnels\",\n 1: \"Contrôle et contentieux\",\n 2: \"Dispositifs transversaux\",\n 3: \"Fiscalité des entreprises\",\n 4: \"Patrimoine et enregistrement\",\n 5: \"Revenus particuliers\",\n 6: \"Revenus patrimoniaux\",\n 7: \"Taxes sur la consommation\"\n}\n```",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "label2id = {\n \"Bénéfices professionnels\": 0,\n \"Contrôle et contentieux\": 1,\n \"Dispositifs transversaux\": 2,\n \"Fiscalité des entreprises\": 3,\n \"Patrimoine et enregistrement\": 4,\n \"Revenus particuliers\": 5,\n \"Revenus patrimoniaux\": 6,\n \"Taxes sur la consommation\": 7\n}\n\t\nid2label = {\n 0: \"Bénéfices professionnels\",\n 1: \"Contrôle et contentieux\",\n 2: \"Dispositifs transversaux\",\n 3: \"Fiscalité des entreprises\",\n 4: \"Patrimoine et enregistrement\",\n 5: \"Revenus particuliers\",\n 6: \"Revenus patrimoniaux\",\n 7: \"Taxes sur la consommation\"\n}",
"lang": "python"
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "It achieves the following results on the evaluation set:",
"raw": "It achieves the following results on the evaluation set:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Loss: 0.4734",
"raw": "- Loss: 0.4734",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Accuracy: 0.9191",
"raw": "- Accuracy: 0.9191",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Link to the collection: ",
"raw": "Link to the collection: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/louisbrulenaudet/lemone-router-671cce21d6410f3570514762",
"resource": {
"type": "collection",
"id": "louisbrulenaudet/lemone-router-671cce21d6410f3570514762",
"discussionNum": null
},
"url": "https://huggingface.co/collections/louisbrulenaudet/lemone-router-671cce21d6410f3570514762",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Introducing Lemone-router, a series of classification models designed to produce an optimal multi-agent system for different branches of tax law.
Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts :
```python
label2id = {
"Bénéfices professionnels": 0,
"Contrôle et contentieux": 1,
"Dispositifs transversaux": 2,
"Fiscalité des entreprises": 3,
"Patrimoine et enregistrement": 4,
"Revenus particuliers": 5,
"Revenus patrimoniaux": 6,
"Taxes sur la consommation": 7
}
id2label = {
0: "Bénéfices professionnels",
1: "Contrôle et contentieux",
2: "Dispositifs transversaux",
3: "Fiscalité des entreprises",
4: "Patrimoine et enregistrement",
5: "Revenus particuliers",
6: "Revenus patrimoniaux",
7: "Taxes sur la consommation"
}
```
It achieves the following results on the evaluation set:
- Loss: 0.4734
- Accuracy: 0.9191
Link to the collection: https://huggingface.co/collections/louisbrulenaudet/lemone-router-671cce21d6410f3570514762 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg",
"fullname": "Louis Brulé Naudet",
"name": "louisbrulenaudet",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 168,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6459fa0f5b3111fbe83286e1/4u1FWhGXeAC1qHVM7CBbv.webp"
}
] | [] | [
{
"reaction": "👀",
"users": [
"John6666"
],
"count": 1
},
{
"reaction": "👍",
"users": [
"ijohn07"
],
"count": 1
}
] | 2024-10-27T22:44:40.000Z | 2024-10-27T22:45:11.338Z | [] | /posts/louisbrulenaudet/679029409152624 | 944 | 0 |
794427406687928 | [
{
"type": "text",
"value": "Is Hallucination Always Harmful? Unlike traditional approaches that view hallucinations as detrimental, our work in NeurIPS'24 proposes a novel perspective: hallucinations as intrinsic prior knowledge. Derived from the commonsense knowledge acquired during pre-training, these hallucinations are not merely noise but a source of task-relevant information. By leveraging hallucinations as a form of prior knowledge, we can effectively mine difficult samples without the need for customized prompts, streamlining tasks like camouflage sample detection and medical image segmentation.",
"raw": "Is Hallucination Always Harmful? Unlike traditional approaches that view hallucinations as detrimental, our work in NeurIPS'24 proposes a novel perspective: hallucinations as intrinsic prior knowledge. Derived from the commonsense knowledge acquired during pre-training, these hallucinations are not merely noise but a source of task-relevant information. By leveraging hallucinations as a form of prior knowledge, we can effectively mine difficult samples without the need for customized prompts, streamlining tasks like camouflage sample detection and medical image segmentation.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Check out our paper for more insights and detailed methodologies:https://huggingface.co/papers/2408.15205",
"raw": "Check out our paper for more insights and detailed methodologies:https://huggingface.co/papers/2408.15205",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Is Hallucination Always Harmful? Unlike traditional approaches that view hallucinations as detrimental, our work in NeurIPS'24 proposes a novel perspective: hallucinations as intrinsic prior knowledge. Derived from the commonsense knowledge acquired during pre-training, these hallucinations are not merely noise but a source of task-relevant information. By leveraging hallucinations as a form of prior knowledge, we can effectively mine difficult samples without the need for customized prompts, streamlining tasks like camouflage sample detection and medical image segmentation.
Check out our paper for more insights and detailed methodologies:https://huggingface.co/papers/2408.15205 | {
"avatarUrl": "/avatars/a73e2139700e23eff455734c99cef5ba.svg",
"fullname": "Jian Hu",
"name": "lwpyh",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/65e1b6e9501590df0173cbd3/cNzo95d7mpZ86LMYGNr2v.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/65e1b6e9501590df0173cbd3/iI_r541zGNFiaHf-yXTSp.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/65e1b6e9501590df0173cbd3/z7YCcykHprmw89D3jsVQR.png"
}
] | [] | [
{
"reaction": "👀",
"users": [
"John6666"
],
"count": 1
}
] | 2024-10-27T20:44:23.000Z | 2024-10-27T20:47:05.963Z | [] | /posts/lwpyh/794427406687928 | 563 | 0 |
236385586855520 | [
{
"type": "text",
"value": "Last Week in Medical AI: Top Research ",
"raw": "Last Week in Medical AI: Top Research ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Papers/Models",
"raw": "Papers/Models",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " 🔥",
"raw": " 🔥",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🏅 (October 19-26, 2024)",
"raw": "🏅 (October 19-26, 2024)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🏅 Medical AI Paper of the Week:",
"raw": "🏅 Medical AI Paper of the Week:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Safety principles for medical summarization using generative AI by Google",
"raw": "Safety principles for medical summarization using generative AI by Google",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Medical LLM & Other Models:",
"raw": "Medical LLM & Other Models:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- BioMistral-NLU: Medical Vocab Understanding",
"raw": "- BioMistral-NLU: Medical Vocab Understanding",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Bilingual Multimodal LLM for Biomedical Tasks",
"raw": "- Bilingual Multimodal LLM for Biomedical Tasks",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Metabolic-Enhanced LLMs for Clinical Analysis",
"raw": "- Metabolic-Enhanced LLMs for Clinical Analysis",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Dermatology Foundation Model",
"raw": "- Dermatology Foundation Model",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Frameworks and Methodologies:",
"raw": "Frameworks and Methodologies:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Back-in-Time: Medical Deepfake Detection",
"raw": "- Back-in-Time: Medical Deepfake Detection",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Hybrid GenAI for Crystal Design",
"raw": "- Hybrid GenAI for Crystal Design",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- VISAGE: Video Synthesis for Surgery",
"raw": "- VISAGE: Video Synthesis for Surgery",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- MoRE: Multi-Modal X-Ray/ECG Pretraining",
"raw": "- MoRE: Multi-Modal X-Ray/ECG Pretraining",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- SleepCoT: Personalized Health via CoT",
"raw": "- SleepCoT: Personalized Health via CoT",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Medical LLM Applications:",
"raw": "Medical LLM Applications:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- ONCOPILOT: CT Model for Tumors",
"raw": "- ONCOPILOT: CT Model for Tumors",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- LMLPA: Linguistic Personality Assessment",
"raw": "- LMLPA: Linguistic Personality Assessment",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- GenAI for Medical Training",
"raw": "- GenAI for Medical Training",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Medical LLMs & Benchmarks:",
"raw": "Medical LLMs & Benchmarks:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- LLM Evaluation Through Explanations",
"raw": "- LLM Evaluation Through Explanations",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Contrastive Decoding for Medical LLM Hallucination",
"raw": "- Contrastive Decoding for Medical LLM Hallucination",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "AI in Healthcare Ethics:",
"raw": "AI in Healthcare Ethics:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Healthcare XAI Through Storytelling",
"raw": "- Healthcare XAI Through Storytelling",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Clinical LLM Bias Analysis",
"raw": "- Clinical LLM Bias Analysis",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- ReflecTool: Reflection-Aware Clinical Agents",
"raw": "- ReflecTool: Reflection-Aware Clinical Agents",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Full Thread: ",
"raw": "Full Thread: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://x.com/OpenlifesciAI/status/1850202986053808441",
"resource": null,
"url": null,
"href": "https://x.com/OpenlifesciAI/status/1850202986053808441",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Now you can watch and listen to the latest Medical AI papers daily on our YouTube and Spotify channels as well!",
"raw": "Now you can watch and listen to the latest Medical AI papers daily on our YouTube and Spotify channels as well!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- 🎙️ Spotify: ",
"raw": "- 🎙️ Spotify: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://podcasters.spotify.com/pod/show/medicalai/episodes/Medical-AI-Weekly-Digest-From-Deepfake-Detection-to-Clinical-LLMs-Oct-19-26--Part-1-e2q6012",
"resource": null,
"url": null,
"href": "https://podcasters.spotify.com/pod/show/medicalai/episodes/Medical-AI-Weekly-Digest-From-Deepfake-Detection-to-Clinical-LLMs-Oct-19-26--Part-1-e2q6012",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- YouTube: ",
"raw": "- YouTube: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://youtu.be/Wt5QOv1vk2U",
"resource": null,
"url": null,
"href": "https://youtu.be/Wt5QOv1vk2U",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Last Week in Medical AI: Top Research Papers/Models 🔥
🏅 (October 19-26, 2024)
🏅 Medical AI Paper of the Week:
Safety principles for medical summarization using generative AI by Google
Medical LLM & Other Models:
- BioMistral-NLU: Medical Vocab Understanding
- Bilingual Multimodal LLM for Biomedical Tasks
- Metabolic-Enhanced LLMs for Clinical Analysis
- Dermatology Foundation Model
Frameworks and Methodologies:
- Back-in-Time: Medical Deepfake Detection
- Hybrid GenAI for Crystal Design
- VISAGE: Video Synthesis for Surgery
- MoRE: Multi-Modal X-Ray/ECG Pretraining
- SleepCoT: Personalized Health via CoT
Medical LLM Applications:
- ONCOPILOT: CT Model for Tumors
- LMLPA: Linguistic Personality Assessment
- GenAI for Medical Training
Medical LLMs & Benchmarks:
- LLM Evaluation Through Explanations
- Contrastive Decoding for Medical LLM Hallucination
AI in Healthcare Ethics:
- Healthcare XAI Through Storytelling
- Clinical LLM Bias Analysis
- ReflecTool: Reflection-Aware Clinical Agents
Full Thread: https://x.com/OpenlifesciAI/status/1850202986053808441
Now you can watch and listen to the latest Medical AI papers daily on our YouTube and Spotify channels as well!
- 🎙️ Spotify: https://podcasters.spotify.com/pod/show/medicalai/episodes/Medical-AI-Weekly-Digest-From-Deepfake-Detection-to-Clinical-LLMs-Oct-19-26--Part-1-e2q6012
- YouTube: https://youtu.be/Wt5QOv1vk2U | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f3fe13d79c1ba4c353d0c19/XswyGe3OtOdZ6g7rnrgfc.png",
"fullname": "Aaditya Ura",
"name": "aaditya",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 219,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/b0ta_7EzRzmWbC3qS3ZGn.jpeg"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"aaditya",
"AtAndDev",
"ravikiran777",
"fetong",
"shetumohanto",
"vtrubamacrocosmos",
"Healthtensor",
"models4world"
],
"count": 8
},
{
"reaction": "🚀",
"users": [
"aaditya",
"John6666",
"AtAndDev",
"kobonj",
"vtrubamacrocosmos",
"Healthtensor",
"models4world"
],
"count": 7
},
{
"reaction": "🔥",
"users": [
"aaditya",
"AtAndDev",
"JoPmt",
"Healthtensor",
"models4world"
],
"count": 5
},
{
"reaction": "🤗",
"users": [
"aaditya",
"AtAndDev",
"Lowenzahn",
"rhyliieee",
"models4world"
],
"count": 5
},
{
"reaction": "🤝",
"users": [
"aaditya",
"AtAndDev",
"Healthtensor",
"models4world"
],
"count": 4
},
{
"reaction": "🧠",
"users": [
"aaditya",
"AtAndDev",
"models4world"
],
"count": 3
}
] | 2024-10-27T08:55:32.000Z | 2024-11-02T13:36:57.126Z | [] | /posts/aaditya/236385586855520 | 3,197 | 0 |
379914320579674 | [
{
"type": "code_fence",
"value": null,
"raw": "```\n@echo off\necho hello world\npause\n```",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "@echo off\necho hello world\npause",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | ```
@echo off
echo hello world
pause
```
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 137,
"isFollowing": false
} | [] | [
{
"avatarUrl": "/avatars/5bf1369591e89edb79f0e559f9fa567a.svg",
"fullname": "echo",
"name": "echo",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null
}
] | [
{
"reaction": "😎",
"users": [
"John6666",
"Ryouko65777",
"UpWorkflowMedia",
"prithivMLmods",
"AtAndDev",
"not-lain",
"xi0v"
],
"count": 7
},
{
"reaction": "😔",
"users": [
"takeraparterer"
],
"count": 1
}
] | 2024-10-26T22:04:18.000Z | 2024-10-28T00:44:34.379Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg",
"fullname": "Joseph Pollack",
"name": "Tonic",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 310,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630f3e4002ce39336c411048/FXJON7b-aRUiH0_V2uRsi.jpeg",
"fullname": "alkinun",
"name": "AtAndDev",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 17,
"isFollowing": false
},
{
"avatarUrl": "/avatars/876c0e874870038f620b0e4cc44ee371.svg",
"fullname": " ",
"name": "Juicey",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
}
] | /posts/nroggendorff/379914320579674 | 3,288 | 3 |
461231991332860 | [
{
"type": "text",
"value": "Zero to Hero Stable Diffusion 3 Tutorial with Amazing SwarmUI SD Web UI that Utilizes ComfyUI",
"raw": "Zero to Hero Stable Diffusion 3 Tutorial with Amazing SwarmUI SD Web UI that Utilizes ComfyUI",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://youtu.be/HKX8_F1Er_w",
"resource": null,
"url": null,
"href": "https://youtu.be/HKX8_F1Er_w",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Do not skip any part of this tutorial to master how to use Stable Diffusion 3 (SD3) with the most advanced generative AI open source APP SwarmUI. Automatic1111 SD Web UI or Fooocus are not supporting the #SD3 yet. Therefore, I am starting to make tutorials for SwarmUI as well. #StableSwarmUI is officially developed by the StabilityAI and your mind will be blown after you watch this tutorial and learn its amazing features. StableSwarmUI uses #ComfyUI as the back end thus it has all the good features of ComfyUI and it brings you easy to use features of Automatic1111 #StableDiffusion Web UI with them. I really liked SwarmUI and planning to do more tutorials for it.",
"raw": "Do not skip any part of this tutorial to master how to use Stable Diffusion 3 (SD3) with the most advanced generative AI open source APP SwarmUI. Automatic1111 SD Web UI or Fooocus are not supporting the #SD3 yet. Therefore, I am starting to make tutorials for SwarmUI as well. #StableSwarmUI is officially developed by the StabilityAI and your mind will be blown after you watch this tutorial and learn its amazing features. StableSwarmUI uses #ComfyUI as the back end thus it has all the good features of ComfyUI and it brings you easy to use features of Automatic1111 #StableDiffusion Web UI with them. I really liked SwarmUI and planning to do more tutorials for it.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔗 The Public Post (no login or account required) Shown In The Video With The Links ➡️ ",
"raw": "🔗 The Public Post (no login or account required) Shown In The Video With The Links ➡️ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.patreon.com/posts/stableswarmui-3-106135985",
"resource": null,
"url": null,
"href": "https://www.patreon.com/posts/stableswarmui-3-106135985",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "0:00 Introduction to the Stable Diffusion 3 (SD3) and SwarmUI and what is in the tutorial",
"raw": "0:00 Introduction to the Stable Diffusion 3 (SD3) and SwarmUI and what is in the tutorial",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "4:12 Architecture and features of SD3",
"raw": "4:12 Architecture and features of SD3",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "5:05 What each different model files of Stable Diffusion 3 means",
"raw": "5:05 What each different model files of Stable Diffusion 3 means",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "6:26 How to download and install SwarmUI on Windows for SD3 and all other Stable Diffusion models",
"raw": "6:26 How to download and install SwarmUI on Windows for SD3 and all other Stable Diffusion models",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "8:42 What kind of folder path you should use when installing SwarmUI",
"raw": "8:42 What kind of folder path you should use when installing SwarmUI",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "10:28 If you get installation error how to notice and fix it",
"raw": "10:28 If you get installation error how to notice and fix it",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "11:49 Installation has been completed and now how to start using SwarmUI",
"raw": "11:49 Installation has been completed and now how to start using SwarmUI",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "12:29 Which settings I change before start using SwarmUI and how to change your theme like dark, white, gray",
"raw": "12:29 Which settings I change before start using SwarmUI and how to change your theme like dark, white, gray",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "12:56 How to make SwarmUI save generated images as PNG",
"raw": "12:56 How to make SwarmUI save generated images as PNG",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "13:08 How to find description of each settings and configuration",
"raw": "13:08 How to find description of each settings and configuration",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "13:28 How to download SD3 model and start using on Windows",
"raw": "13:28 How to download SD3 model and start using on Windows",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "13:38 How to use model downloader utility of SwarmUI",
"raw": "13:38 How to use model downloader utility of SwarmUI",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "14:17 How to set models folder paths and link your existing models folders in SwarmUI",
"raw": "14:17 How to set models folder paths and link your existing models folders in SwarmUI",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "14:35 Explanation of Root folder path in SwarmUI",
"raw": "14:35 Explanation of Root folder path in SwarmUI",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "14:52 VAE of SD3 do we need to download?",
"raw": "14:52 VAE of SD3 do we need to download?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Zero to Hero Stable Diffusion 3 Tutorial with Amazing SwarmUI SD Web UI that Utilizes ComfyUI
https://youtu.be/HKX8_F1Er_w
Do not skip any part of this tutorial to master how to use Stable Diffusion 3 (SD3) with the most advanced generative AI open source APP SwarmUI. Automatic1111 SD Web UI or Fooocus are not supporting the #SD3 yet. Therefore, I am starting to make tutorials for SwarmUI as well. #StableSwarmUI is officially developed by the StabilityAI and your mind will be blown after you watch this tutorial and learn its amazing features. StableSwarmUI uses #ComfyUI as the back end thus it has all the good features of ComfyUI and it brings you easy to use features of Automatic1111 #StableDiffusion Web UI with them. I really liked SwarmUI and planning to do more tutorials for it.
🔗 The Public Post (no login or account required) Shown In The Video With The Links ➡️ https://www.patreon.com/posts/stableswarmui-3-106135985
0:00 Introduction to the Stable Diffusion 3 (SD3) and SwarmUI and what is in the tutorial
4:12 Architecture and features of SD3
5:05 What each different model files of Stable Diffusion 3 means
6:26 How to download and install SwarmUI on Windows for SD3 and all other Stable Diffusion models
8:42 What kind of folder path you should use when installing SwarmUI
10:28 If you get installation error how to notice and fix it
11:49 Installation has been completed and now how to start using SwarmUI
12:29 Which settings I change before start using SwarmUI and how to change your theme like dark, white, gray
12:56 How to make SwarmUI save generated images as PNG
13:08 How to find description of each settings and configuration
13:28 How to download SD3 model and start using on Windows
13:38 How to use model downloader utility of SwarmUI
14:17 How to set models folder paths and link your existing models folders in SwarmUI
14:35 Explanation of Root folder path in SwarmUI
14:52 VAE of SD3 do we need to download? | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png",
"fullname": "Furkan Gözükara",
"name": "MonsterMMORPG",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 355,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/Yifqu3JeZwKM8DvoOlXdp.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/AGfMPv9BIMhuq13kTfs5R.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/sc8xqWH5oIVNe6DfYQAiu.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/kkbbhcIXs3ELkBylqFPLt.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/tvSJLxyEfHnvOph0TaVHm.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/_QjFQHM2-W4KPXrW9ohP8.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/Pd4B4wlpxk39q50tlKAc0.png"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"MonsterMMORPG",
"arun5k1095",
"ssergorp",
"faisalbsl21",
"Ramikan-BR",
"alielfilali01",
"ucsahin",
"Xeven7",
"UfukHurriyetoglu",
"Ougrid-D",
"clem",
"ihsass"
],
"count": 12
},
{
"reaction": "🚀",
"users": [
"MonsterMMORPG",
"prithivMLmods",
"Jaward",
"Ramikan-BR",
"clem"
],
"count": 5
},
{
"reaction": "👀",
"users": [
"MonsterMMORPG",
"Ramikan-BR",
"louisbrulenaudet"
],
"count": 3
},
{
"reaction": "👍",
"users": [
"MonsterMMORPG",
"Ramikan-BR",
"Ougrid-D"
],
"count": 3
},
{
"reaction": "🔥",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "🤗",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "😎",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "➕",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "🧠",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "🤝",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "🤯",
"users": [
"MonsterMMORPG",
"Ramikan-BR"
],
"count": 2
}
] | 2024-06-22T14:38:51.000Z | 2024-06-22T14:38:51.110Z | [] | /posts/MonsterMMORPG/461231991332860 | 6,949 | 0 |
445166361535551 | [
{
"type": "text",
"value": "I've made an on device AI comparison between open source, Apple Intelligence, and Microsoft Copilot+ PC. This OS and applications level integration will bring GenAI to everyone, be it consumers or businesses, over the next year. ",
"raw": "I've made an on device AI comparison between open source, Apple Intelligence, and Microsoft Copilot+ PC. This OS and applications level integration will bring GenAI to everyone, be it consumers or businesses, over the next year. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Communities and BigTech hold divergent visions regarding the problems they aim to solve, ways to lock in users and enterprises, as well as their commercialization and GTM strategies.",
"raw": "Communities and BigTech hold divergent visions regarding the problems they aim to solve, ways to lock in users and enterprises, as well as their commercialization and GTM strategies.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I'm aware that this table has the potential to expand into an epic 30-page saga during an in-depth analysis, but hey, it's a beginning. Do you think I should throw in a few more comparisons? I'm all ears for your thoughts and critiques!",
"raw": "I'm aware that this table has the potential to expand into an epic 30-page saga during an in-depth analysis, but hey, it's a beginning. Do you think I should throw in a few more comparisons? I'm all ears for your thoughts and critiques!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it",
"raw": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I've made an on device AI comparison between open source, Apple Intelligence, and Microsoft Copilot+ PC. This OS and applications level integration will bring GenAI to everyone, be it consumers or businesses, over the next year.
Communities and BigTech hold divergent visions regarding the problems they aim to solve, ways to lock in users and enterprises, as well as their commercialization and GTM strategies.
I'm aware that this table has the potential to expand into an epic 30-page saga during an in-depth analysis, but hey, it's a beginning. Do you think I should throw in a few more comparisons? I'm all ears for your thoughts and critiques!
Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png",
"fullname": "Mitko Vasilev",
"name": "mitkox",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 117,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63f731c7d36951307fcca6bf/2J2u_ftO271_mUEpjcY10.png"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"Ramikan-BR",
"not-lain",
"ucsahin",
"fabiodr",
"shaising",
"Narsil",
"SidharthanRajendran",
"Nymbo"
],
"count": 8
},
{
"reaction": "😎",
"users": [
"YaTharThShaRma999",
"Ramikan-BR",
"hugbean",
"gregoutlaw",
"not-lain",
"Nymbo"
],
"count": 6
},
{
"reaction": "👀",
"users": [
"Ramikan-BR",
"not-lain",
"Nymbo"
],
"count": 3
}
] | 2024-06-22T13:22:23.000Z | 2024-06-25T12:58:42.367Z | [
{
"avatarUrl": "/avatars/250fa1367af184832fe56ecf8a44ea2f.svg",
"fullname": "Sidharthan Rajendran",
"name": "SidharthanRajendran",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
}
] | /posts/mitkox/445166361535551 | 3,402 | 1 |
857502992845439 | [
{
"type": "text",
"value": "What is your favorite part of our Diffusers integration of Stable Diffusion 3? ",
"raw": "What is your favorite part of our Diffusers integration of Stable Diffusion 3? ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "My personal favorite is the ability to run it on a variety of different GPUs with minimal code changes. ",
"raw": "My personal favorite is the ability to run it on a variety of different GPUs with minimal code changes. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Learn more about them here:",
"raw": "Learn more about them here:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/sd3",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/sd3",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | What is your favorite part of our Diffusers integration of Stable Diffusion 3?
My personal favorite is the ability to run it on a variety of different GPUs with minimal code changes.
Learn more about them here:
https://huggingface.co/blog/sd3 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1649681653581-5f7fbd813e94f16a85448745.jpeg",
"fullname": "Sayak Paul",
"name": "sayakpaul",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 445,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f7fbd813e94f16a85448745/yEe5emwYuqmEjKjYpq23p.png"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"prithivMLmods",
"KingNish",
"osanseviero",
"jasstionzyf",
"Ramikan-BR",
"radames",
"GPT007"
],
"count": 7
}
] | 2024-06-22T03:46:48.000Z | 2024-06-22T03:46:48.619Z | [] | /posts/sayakpaul/857502992845439 | 3,113 | 0 |
729661224905079 | [
{
"type": "text",
"value": "Updated the Journalists on 🤗 community page:",
"raw": "Updated the Journalists on 🤗 community page:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- new text-to-speech tools collection ",
"raw": "- new text-to-speech tools collection ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/JournalistsonHF/text-to-speech-6675c4dccdaa11e86928a15b",
"resource": {
"type": "collection",
"id": "JournalistsonHF/text-to-speech-6675c4dccdaa11e86928a15b",
"discussionNum": null
},
"url": "https://huggingface.co/collections/JournalistsonHF/text-to-speech-6675c4dccdaa11e86928a15b",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- additional leaderboards in the eval collection: ",
"raw": "- additional leaderboards in the eval collection: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/TTS-AGI/TTS-Arena",
"resource": {
"type": "space",
"id": "TTS-AGI/TTS-Arena",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/TTS-AGI/TTS-Arena",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/dylanebert/3d-arena",
"resource": {
"type": "space",
"id": "dylanebert/3d-arena",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/dylanebert/3d-arena",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- new tools in the Text-Analysis collection: ",
"raw": "- new tools in the Text-Analysis collection: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/gokaygokay/Florence-2",
"resource": {
"type": "space",
"id": "gokaygokay/Florence-2",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/gokaygokay/Florence-2",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/pdf2dataset/pdf2dataset",
"resource": {
"type": "space",
"id": "pdf2dataset/pdf2dataset",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/pdf2dataset/pdf2dataset",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/cvachet/pdf-chatbot",
"resource": {
"type": "space",
"id": "cvachet/pdf-chatbot",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/cvachet/pdf-chatbot",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/Xenova/realtime-whisper-webgpu",
"resource": {
"type": "space",
"id": "Xenova/realtime-whisper-webgpu",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/Xenova/realtime-whisper-webgpu",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " in the Transcription collection",
"raw": " in the Transcription collection",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/radames/flash-sd3-taesd3",
"resource": {
"type": "space",
"id": "radames/flash-sd3-taesd3",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/radames/flash-sd3-taesd3",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " in the Image Tools collection",
"raw": " in the Image Tools collection",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Last but not least, ",
"raw": "- Last but not least, ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/okaris/omni-zero",
"resource": {
"type": "space",
"id": "okaris/omni-zero",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/okaris/omni-zero",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " in the fun collection for zero-shot stylized portrait creation",
"raw": " in the fun collection for zero-shot stylized portrait creation",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Is there any tool you would like to see added?",
"raw": "Is there any tool you would like to see added?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Find all the curated tools here: ",
"raw": "Find all the curated tools here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/collections/JournalistsonHF/",
"resource": null,
"url": null,
"href": "https://huggingface.co/collections/JournalistsonHF/",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Updated the Journalists on 🤗 community page:
- new text-to-speech tools collection https://huggingface.co/collections/JournalistsonHF/text-to-speech-6675c4dccdaa11e86928a15b
- additional leaderboards in the eval collection: https://huggingface.co/spaces/TTS-AGI/TTS-Arena and https://huggingface.co/spaces/dylanebert/3d-arena
- new tools in the Text-Analysis collection: https://huggingface.co/spaces/gokaygokay/Florence-2, https://huggingface.co/spaces/pdf2dataset/pdf2dataset, https://huggingface.co/spaces/cvachet/pdf-chatbot
- https://huggingface.co/spaces/Xenova/realtime-whisper-webgpu in the Transcription collection
- https://huggingface.co/spaces/radames/flash-sd3-taesd3 in the Image Tools collection
- Last but not least, https://huggingface.co/spaces/okaris/omni-zero in the fun collection for zero-shot stylized portrait creation
Is there any tool you would like to see added?
Find all the curated tools here: https://huggingface.co/collections/JournalistsonHF/ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 345,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"YaTharThShaRma999",
"xi0v",
"prithivMLmods",
"Taylor658",
"iamrobotbear",
"Ramikan-BR",
"YannisTevissen"
],
"count": 7
},
{
"reaction": "❤️",
"users": [
"cedpsam",
"osanseviero",
"Javedalam",
"Ramikan-BR"
],
"count": 4
},
{
"reaction": "🚀",
"users": [
"Ramikan-BR",
"fffiloni"
],
"count": 2
},
{
"reaction": "👍",
"users": [
"Ramikan-BR",
"YannisTevissen"
],
"count": 2
},
{
"reaction": "👀",
"users": [
"Ramikan-BR"
],
"count": 1
}
] | 2024-06-21T18:40:40.000Z | 2024-06-21T18:40:40.278Z | [] | /posts/fdaudens/729661224905079 | 3,373 | 0 |
991766553836950 | [
{
"type": "text",
"value": "Finally, a good handwriting recognition tool? ",
"raw": "Finally, a good handwriting recognition tool? ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I'm impressed by Microsoft's latest vision model, Florence-2 ",
"raw": "I'm impressed by Microsoft's latest vision model, Florence-2 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/microsoft/Florence-2-large",
"resource": {
"type": "model",
"id": "microsoft/Florence-2-large",
"discussionNum": null
},
"url": "https://huggingface.co/microsoft/Florence-2-large",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The results are really good, boasting a remarkably low error rate, as you can see with this letter from George W. Bush to Bill Clinton!",
"raw": "The results are really good, boasting a remarkably low error rate, as you can see with this letter from George W. Bush to Bill Clinton!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🚀🔒 What’s even better? You can run it locally on your device, ensuring your data stays 100% safe. ",
"raw": "🚀🔒 What’s even better? You can run it locally on your device, ensuring your data stays 100% safe. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👉 Try it out here: ",
"raw": "👉 Try it out here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/gokaygokay/Florence-2",
"resource": {
"type": "space",
"id": "gokaygokay/Florence-2",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/gokaygokay/Florence-2",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Finally, a good handwriting recognition tool?
I'm impressed by Microsoft's latest vision model, Florence-2 https://huggingface.co/microsoft/Florence-2-large
The results are really good, boasting a remarkably low error rate, as you can see with this letter from George W. Bush to Bill Clinton!
🚀🔒 What’s even better? You can run it locally on your device, ensuring your data stays 100% safe.
👉 Try it out here: https://huggingface.co/spaces/gokaygokay/Florence-2 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 345,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/q9BMV2It4IV2ZpCONVcGa.mp4"
}
] | [] | [
{
"reaction": "👍",
"users": [
"gruhit-patel",
"ben11997",
"ehottl",
"John6666",
"Utochi",
"aizazkhowaja",
"Ramikan-BR",
"SaylorTwift"
],
"count": 8
}
] | 2024-06-21T16:22:31.000Z | 2024-06-21T23:21:38.775Z | [
{
"avatarUrl": "/avatars/54483699273ac58a4a6fe1fa4aab65fe.svg",
"fullname": "Robert Sinclair",
"name": "ZeroWw",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 75,
"isFollowing": false
}
] | /posts/fdaudens/991766553836950 | 2,581 | 1 |
263282152101643 | [
{
"type": "mention",
"value": null,
"raw": "@Be-Bo",
"resource": null,
"url": null,
"href": null,
"user": "Be-Bo",
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Dear Mr. Bahaa Shamoon Atia,",
"raw": "Dear Mr. Bahaa Shamoon Atia,",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "My name is Krischan Schoeninger, and I am very impressed with your Llama 3-70B Chatbot that you have made available on Hugging Face. I have been trying to use both your chatbot and the model from Hugging Face via API for a project, and I have found that your model produces significantly better results.",
"raw": "My name is Krischan Schoeninger, and I am very impressed with your Llama 3-70B Chatbot that you have made available on Hugging Face. I have been trying to use both your chatbot and the model from Hugging Face via API for a project, and I have found that your model produces significantly better results.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Could you please let me know what changes or optimizations you have made to your model that make it so powerful? Additionally, I am very interested in learning how I can host such a model myself. Could you assist me with this?",
"raw": "Could you please let me know what changes or optimizations you have made to your model that make it so powerful? Additionally, I am very interested in learning how I can host such a model myself. Could you assist me with this?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I would greatly appreciate your feedback.",
"raw": "I would greatly appreciate your feedback.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Best regards,",
"raw": "Best regards,",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Krischan Schoeninger",
"raw": "Krischan Schoeninger",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | @Be-Bo
Dear Mr. Bahaa Shamoon Atia,
My name is Krischan Schoeninger, and I am very impressed with your Llama 3-70B Chatbot that you have made available on Hugging Face. I have been trying to use both your chatbot and the model from Hugging Face via API for a project, and I have found that your model produces significantly better results.
Could you please let me know what changes or optimizations you have made to your model that make it so powerful? Additionally, I am very interested in learning how I can host such a model myself. Could you assist me with this?
I would greatly appreciate your feedback.
Best regards,
Krischan Schoeninger
| {
"avatarUrl": "/avatars/cc343c5f59e05c2a061f8474c6dad278.svg",
"fullname": "Krischan Schoeninger",
"name": "Smoke666",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
} | [] | [
{
"avatarUrl": "/avatars/625b9697c6b2e3c30e97524a0eae6c8b.svg",
"fullname": "Bahaa Shamoon Atia",
"name": "Be-Bo",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 7
}
] | [] | 2024-06-21T15:46:14.000Z | 2024-06-21T22:36:43.977Z | [
{
"avatarUrl": "/avatars/cc343c5f59e05c2a061f8474c6dad278.svg",
"fullname": "Krischan Schoeninger",
"name": "Smoke666",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641a05a7f5e9c66105fec9b2/INWVc96PQFO0ZPciozg7w.jpeg",
"fullname": "Artur Lauche",
"name": "Artples",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 29,
"isFollowing": false
},
{
"avatarUrl": "/avatars/c82779fdf94f80cdb5020504f83c818b.svg",
"fullname": "Yatharth Sharma",
"name": "YaTharThShaRma999",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 13,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61bf84c8ca59d6d196a1b4e8/L_NvUwlMYcye9X35z6f7e.jpeg",
"fullname": "Amir Hossein Kargaran",
"name": "kargaranamir",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 36,
"isFollowing": false
}
] | /posts/Smoke666/263282152101643 | 660 | 5 |
813446846184364 | [
{
"type": "text",
"value": "Several methods/models have recently been shared to generate synthetic data from minimal or no initial seeds, essentially creating data directly from raw text.",
"raw": "Several methods/models have recently been shared to generate synthetic data from minimal or no initial seeds, essentially creating data directly from raw text.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "IMO, these approaches that rely on smaller models for synthetic data generation are quite valuable for scaling up synthetic data and democratizing access to creating domain-specific synthetic datasets. ",
"raw": "IMO, these approaches that rely on smaller models for synthetic data generation are quite valuable for scaling up synthetic data and democratizing access to creating domain-specific synthetic datasets. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I've compiled a collection of Gradio demos showcasing some of these methods here: ",
"raw": "I've compiled a collection of Gradio demos showcasing some of these methods here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/davanstrien/synthetic-data-generation-demos-667573f248b97360ff3668a5",
"resource": {
"type": "collection",
"id": "davanstrien/synthetic-data-generation-demos-667573f248b97360ff3668a5",
"discussionNum": null
},
"url": "https://huggingface.co/collections/davanstrien/synthetic-data-generation-demos-667573f248b97360ff3668a5",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Several methods/models have recently been shared to generate synthetic data from minimal or no initial seeds, essentially creating data directly from raw text.
IMO, these approaches that rely on smaller models for synthetic data generation are quite valuable for scaling up synthetic data and democratizing access to creating domain-specific synthetic datasets.
I've compiled a collection of Gradio demos showcasing some of these methods here: https://huggingface.co/collections/davanstrien/synthetic-data-generation-demos-667573f248b97360ff3668a5 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg",
"fullname": "Daniel van Strien",
"name": "davanstrien",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 401,
"isFollowing": false
} | [] | [] | [
{
"reaction": "❤️",
"users": [
"instruction-pretrain",
"Clausss",
"Taylor658",
"nihalnayak",
"osanseviero",
"nanyy1025"
],
"count": 6
}
] | 2024-06-21T13:32:58.000Z | 2024-06-25T09:38:29.081Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg",
"fullname": "atayloraerospace",
"name": "Taylor658",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 74,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60d0e7ff0c9ba111563b81d7/MudCH3WtpBIQGuodc7GND.jpeg",
"fullname": "Nihal Nayak",
"name": "nihalnayak",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 4,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg",
"fullname": "Daniel van Strien",
"name": "davanstrien",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 401,
"isFollowing": false
}
] | /posts/davanstrien/813446846184364 | 2,312 | 5 |
181714694113305 | [
{
"type": "text",
"value": "EPFL and Apple (at ",
"raw": "EPFL and Apple (at ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@EPFL-VILAB",
"resource": null,
"url": null,
"href": null,
"user": "EPFL-VILAB",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ") just released 4M-21: single any-to-any model that can do anything from text-to-image generation to generating depth masks! 🙀",
"raw": ") just released 4M-21: single any-to-any model that can do anything from text-to-image generation to generating depth masks! 🙀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "4M is a multimodal training framework introduced by Apple and EPFL.",
"raw": "4M is a multimodal training framework introduced by Apple and EPFL.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Resulting model takes image and text and output image and text 🤩",
"raw": "Resulting model takes image and text and output image and text 🤩",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Models: ",
"raw": "Models: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742",
"resource": {
"type": "collection",
"id": "EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742",
"discussionNum": null
},
"url": "https://huggingface.co/collections/EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Demo: ",
"raw": "Demo: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/EPFL-VILAB/4M",
"resource": {
"type": "space",
"id": "EPFL-VILAB/4M",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/EPFL-VILAB/4M",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2406.09406",
"resource": {
"type": "paper",
"id": "2406.09406",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2406.09406",
"href": null,
"user": null,
"label": "4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities (2406.09406)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This model consists of transformer encoder and decoder, where the key to multimodality lies in input and output data:",
"raw": "This model consists of transformer encoder and decoder, where the key to multimodality lies in input and output data:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "input and output tokens are decoded to generate bounding boxes, generated image's pixels, captions and more!",
"raw": "input and output tokens are decoded to generate bounding boxes, generated image's pixels, captions and more!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This model also learnt to generate canny maps, SAM edges and other things for steerable text-to-image generation 🖼️",
"raw": "This model also learnt to generate canny maps, SAM edges and other things for steerable text-to-image generation 🖼️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The authors only added image-to-all capabilities for the demo, but you can try to use this model for text-to-image generation as well ☺️",
"raw": "The authors only added image-to-all capabilities for the demo, but you can try to use this model for text-to-image generation as well ☺️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | EPFL and Apple (at @EPFL-VILAB) just released 4M-21: single any-to-any model that can do anything from text-to-image generation to generating depth masks! 🙀
4M is a multimodal training framework introduced by Apple and EPFL.
Resulting model takes image and text and output image and text 🤩
Models: https://huggingface.co/collections/EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742
Demo: https://huggingface.co/spaces/EPFL-VILAB/4M
Paper: https://huggingface.co/papers/2406.09406
This model consists of transformer encoder and decoder, where the key to multimodality lies in input and output data:
input and output tokens are decoded to generate bounding boxes, generated image's pixels, captions and more!
This model also learnt to generate canny maps, SAM edges and other things for steerable text-to-image generation 🖼️
The authors only added image-to-all capabilities for the demo, but you can try to use this model for text-to-image generation as well ☺️
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/2HyJV8kCBZPp7EX7z3Dzc.png"
}
] | [] | [
{
"reaction": "🤯",
"users": [
"Tonic",
"YaTharThShaRma999",
"radames",
"KingNish",
"LeroyDyer",
"Jebadiah",
"Ramikan-BR",
"louisbrulenaudet"
],
"count": 8
},
{
"reaction": "👀",
"users": [
"Tonic",
"YaTharThShaRma999",
"Taylor658",
"radames",
"LeroyDyer",
"Jebadiah",
"Ukdah",
"Ramikan-BR"
],
"count": 8
},
{
"reaction": "👍",
"users": [
"Tonic",
"YaTharThShaRma999",
"LeroyDyer",
"Jebadiah",
"Norod78",
"Ramikan-BR"
],
"count": 6
},
{
"reaction": "😎",
"users": [
"Tonic",
"YaTharThShaRma999",
"LeroyDyer",
"Jebadiah",
"Ramikan-BR"
],
"count": 5
},
{
"reaction": "🧠",
"users": [
"Tonic",
"YaTharThShaRma999",
"Jebadiah",
"Ramikan-BR"
],
"count": 4
},
{
"reaction": "🤝",
"users": [
"Ukdah",
"Ramikan-BR"
],
"count": 2
},
{
"reaction": "🔥",
"users": [
"Ramikan-BR"
],
"count": 1
}
] | 2024-06-21T13:11:37.000Z | 2024-06-21T13:11:37.163Z | [] | /posts/merve/181714694113305 | 3,558 | 0 |
746271131430293 | [
{
"type": "text",
"value": "The new Claude Sonnet 3.5 model from Anthropic AI has been getting good reviews on since last night. It is quite good at coding related tasks. We tried it on the Static Analysis Eval benchmark (",
"raw": "The new Claude Sonnet 3.5 model from Anthropic AI has been getting good reviews on since last night. It is quite good at coding related tasks. We tried it on the Static Analysis Eval benchmark (",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/patched-codes/static-analysis-eval",
"resource": {
"type": "dataset",
"id": "patched-codes/static-analysis-eval",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/patched-codes/static-analysis-eval",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ") which measures the ability of a LLM to fix vulnerabilities. The model scores 59.21% which is good but not better than other frontier models (like GPT-4, Gemini-1.5 and LLama-3).",
"raw": ") which measures the ability of a LLM to fix vulnerabilities. The model scores 59.21% which is good but not better than other frontier models (like GPT-4, Gemini-1.5 and LLama-3).",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | The new Claude Sonnet 3.5 model from Anthropic AI has been getting good reviews on since last night. It is quite good at coding related tasks. We tried it on the Static Analysis Eval benchmark (https://huggingface.co/datasets/patched-codes/static-analysis-eval) which measures the ability of a LLM to fix vulnerabilities. The model scores 59.21% which is good but not better than other frontier models (like GPT-4, Gemini-1.5 and LLama-3). | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png",
"fullname": "Asankhaya Sharma",
"name": "codelion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👀",
"users": [
"codelion",
"John6666",
"sbarman25",
"lemon-mint",
"den0620",
"sroecker"
],
"count": 6
},
{
"reaction": "🧠",
"users": [
"codelion",
"phanerozoic",
"pduf",
"xi0v"
],
"count": 4
},
{
"reaction": "👍",
"users": [
"codelion",
"joseEjmendez"
],
"count": 2
},
{
"reaction": "🚀",
"users": [
"codelion"
],
"count": 1
}
] | 2024-06-21T11:20:27.000Z | 2024-11-11T08:11:38.913Z | [
{
"avatarUrl": "/avatars/066a250e5f73c4f37c9436e60aa8c861.svg",
"fullname": "Minoru Tanaka ",
"name": "Minorutanaka14052005",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1671634255137-noauth.png",
"fullname": "diego lopoez",
"name": "D1360VR",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "/avatars/8ee8dc056adbf361e79f577ce801e163.svg",
"fullname": "JacketJacket",
"name": "Jacket1119",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "/avatars/0fbd78ac044ee1fa6248ab1119021956.svg",
"fullname": "Fuji Santoso",
"name": "FujiAILearner",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "/avatars/cbd018187d5909d2173357f46bff030f.svg",
"fullname": "امیر مرادی",
"name": "Ettdghh",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "/avatars/2b3abd4d9045b68fc213946950bdf4cd.svg",
"fullname": "Rich'Art Dely ",
"name": "Richartvrai",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "/avatars/f3fc9a8fa17c76dfc4d5c3d7a89a6956.svg",
"fullname": "MEDDEB",
"name": "NOBODY204",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/codelion/746271131430293 | 7,166 | 11 |
857171391930523 | [
{
"type": "text",
"value": "Hey all!",
"raw": "Hey all!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Here I take a somewhat strong stance and am petitioning to revisit the default training parameters on the Diffusers LoRA page.",
"raw": "Here I take a somewhat strong stance and am petitioning to revisit the default training parameters on the Diffusers LoRA page.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "In my opinion and after observing and testing may training pipelines shared by startups and resources, I have found that many of them exhibit the same types of issues. Upon discussing with some of these founders and creators, the common theme has been working backwards from the Diffusers LoRA page.",
"raw": "In my opinion and after observing and testing may training pipelines shared by startups and resources, I have found that many of them exhibit the same types of issues. Upon discussing with some of these founders and creators, the common theme has been working backwards from the Diffusers LoRA page.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "In this article, I explain why the defaults in the Diffuser LoRA code produce some positive results, which can be initially misleading, and a suggestion on how that could be improved.",
"raw": "In this article, I explain why the defaults in the Diffuser LoRA code produce some positive results, which can be initially misleading, and a suggestion on how that could be improved.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/alvdansen/revisit-diffusers-default-params",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/alvdansen/revisit-diffusers-default-params",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hey all!
Here I take a somewhat strong stance and am petitioning to revisit the default training parameters on the Diffusers LoRA page.
In my opinion and after observing and testing may training pipelines shared by startups and resources, I have found that many of them exhibit the same types of issues. Upon discussing with some of these founders and creators, the common theme has been working backwards from the Diffusers LoRA page.
In this article, I explain why the defaults in the Diffuser LoRA code produce some positive results, which can be initially misleading, and a suggestion on how that could be improved.
https://huggingface.co/blog/alvdansen/revisit-diffusers-default-params | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
} | [] | [] | [] | 2024-06-21T09:45:59.000Z | 2024-06-21T17:53:22.249Z | [
{
"avatarUrl": "/avatars/5f967031612cba5c89ebd3ede1aee392.svg",
"fullname": "Cedric Roux",
"name": "djcedr",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
}
] | /posts/alvdansen/857171391930523 | 972 | 4 |
965061553506061 | [
{
"type": "text",
"value": "We’re thrilled to share our latest technical paper on the multi-task GLiNER model. Our research dives into the following exciting and forward-thinking topics:",
"raw": "We’re thrilled to share our latest technical paper on the multi-task GLiNER model. Our research dives into the following exciting and forward-thinking topics:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔍 Zero-shot NER & Information Extraction: We demonstrate that with diverse and ample data, paired with the right architecture, encoders can achieve impressive results across various extraction tasks;",
"raw": "🔍 Zero-shot NER & Information Extraction: We demonstrate that with diverse and ample data, paired with the right architecture, encoders can achieve impressive results across various extraction tasks;",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🛠️ Synthetic Data Generation: Leveraging open labelling by LLMs like Llama, we generated high-quality training data. Our student model even outperformed the teacher model, highlighting the potential of this approach.",
"raw": "🛠️ Synthetic Data Generation: Leveraging open labelling by LLMs like Llama, we generated high-quality training data. Our student model even outperformed the teacher model, highlighting the potential of this approach.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🤖 Self-Learning: Our model showed consistent improvements in performance without labelled data, achieving up to a 12% increase in F1 score for initially challenging topics. This ability to learn and improve autonomously is a very perspective direction of future research!",
"raw": "🤖 Self-Learning: Our model showed consistent improvements in performance without labelled data, achieving up to a 12% increase in F1 score for initially challenging topics. This ability to learn and improve autonomously is a very perspective direction of future research!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2406.12925",
"resource": {
"type": "paper",
"id": "2406.12925",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2406.12925",
"href": null,
"user": null,
"label": "GLiNER multi-task: Generalist Lightweight Model for Various Information\n Extraction Tasks (2406.12925)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/knowledgator/gliner-multitask-large-v0.5",
"resource": {
"type": "model",
"id": "knowledgator/gliner-multitask-large-v0.5",
"discussionNum": null
},
"url": "https://huggingface.co/knowledgator/gliner-multitask-large-v0.5",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab",
"resource": {
"type": "space",
"id": "knowledgator/GLiNER_HandyLab",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```\n#!pip install gliner -U\n\nfrom gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"knowledgator/gliner-multitask-large-v0.5\")\n\ntext = \"\"\"\nMicrosoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. \n\"\"\"\n\nlabels = [\"founder\", \"computer\", \"software\", \"position\", \"date\"]\n\nentities = model.predict_entities(text, labels)\n\nfor entity in entities:\n print(entity[\"text\"], \"=>\", entity[\"label\"])\n```",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "#!pip install gliner -U\n\nfrom gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"knowledgator/gliner-multitask-large-v0.5\")\n\ntext = \"\"\"\nMicrosoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. \n\"\"\"\n\nlabels = [\"founder\", \"computer\", \"software\", \"position\", \"date\"]\n\nentities = model.predict_entities(text, labels)\n\nfor entity in entities:\n print(entity[\"text\"], \"=>\", entity[\"label\"])",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | We’re thrilled to share our latest technical paper on the multi-task GLiNER model. Our research dives into the following exciting and forward-thinking topics:
🔍 Zero-shot NER & Information Extraction: We demonstrate that with diverse and ample data, paired with the right architecture, encoders can achieve impressive results across various extraction tasks;
🛠️ Synthetic Data Generation: Leveraging open labelling by LLMs like Llama, we generated high-quality training data. Our student model even outperformed the teacher model, highlighting the potential of this approach.
🤖 Self-Learning: Our model showed consistent improvements in performance without labelled data, achieving up to a 12% increase in F1 score for initially challenging topics. This ability to learn and improve autonomously is a very perspective direction of future research!
https://huggingface.co/papers/2406.12925
https://huggingface.co/knowledgator/gliner-multitask-large-v0.5
https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab
```
#!pip install gliner -U
from gliner import GLiNER
model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5")
text = """
Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800.
"""
labels = ["founder", "computer", "software", "position", "date"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
```
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658166666371-noauth.png",
"fullname": "Stepanov",
"name": "Ihor",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 15,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"YaTharThShaRma999"
],
"count": 1
}
] | 2024-06-21T08:53:27.000Z | 2024-06-21T08:54:47.439Z | [] | /posts/Ihor/965061553506061 | 594 | 0 |
795270205684056 | [
{
"type": "text",
"value": "I'm about to start storing files in my TFLOPS count..",
"raw": "I'm about to start storing files in my TFLOPS count..",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I'm about to start storing files in my TFLOPS count.. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 137,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"mazenandmariah",
"YaTharThShaRma999",
"lunarflu",
"not-lain"
],
"count": 4
}
] | 2024-06-20T19:14:37.000Z | 2024-06-21T16:48:31.799Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 137,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/634262af8d8089ebaefd410e/pr6KcEebXTo5V2XAlpQNw.png",
"fullname": "Fizz 🏳️⚧️",
"name": "Fizzarolli",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png",
"fullname": "Samuel L Meyers",
"name": "MrOvkill",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 31,
"isFollowing": false
}
] | /posts/nroggendorff/795270205684056 | 2,479 | 38 |
379857675340435 | [
{
"type": "text",
"value": "I am excited to share Synthetic Data Workshop, a Space that aims to simplify creating synthetic datasets! ",
"raw": "I am excited to share Synthetic Data Workshop, a Space that aims to simplify creating synthetic datasets! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✅ Pre-configured environment",
"raw": "✅ Pre-configured environment",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✅ Ready-to-use notebooks",
"raw": "✅ Ready-to-use notebooks",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✅ No local GPU needed",
"raw": "✅ No local GPU needed",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "You can try the Space here: ",
"raw": "You can try the Space here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/davanstrien/synthetic-data-workshop",
"resource": {
"type": "space",
"id": "davanstrien/synthetic-data-workshop",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/davanstrien/synthetic-data-workshop",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I also wrote a blog post going into more detail about the motivations for the Space: ",
"raw": "I also wrote a blog post going into more detail about the motivations for the Space: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/davanstrien/synthetic-data-workshop",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/davanstrien/synthetic-data-workshop",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I am excited to share Synthetic Data Workshop, a Space that aims to simplify creating synthetic datasets!
✅ Pre-configured environment
✅ Ready-to-use notebooks
✅ No local GPU needed
You can try the Space here: https://huggingface.co/spaces/davanstrien/synthetic-data-workshop
I also wrote a blog post going into more detail about the motivations for the Space: https://huggingface.co/blog/davanstrien/synthetic-data-workshop | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg",
"fullname": "Daniel van Strien",
"name": "davanstrien",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 401,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"osanseviero",
"xi0v",
"yjernite"
],
"count": 3
}
] | 2024-06-20T15:47:03.000Z | 2024-06-21T06:22:12.802Z | [] | /posts/davanstrien/379857675340435 | 2,019 | 1 |
730848617257487 | [
{
"type": "text",
"value": "🔍 A recently published technical report introduces MINT-1T, a dataset that will considerably expand open-source multimodal data. It features one trillion text tokens and three billion images and is scheduled for release in July 2024.",
"raw": "🔍 A recently published technical report introduces MINT-1T, a dataset that will considerably expand open-source multimodal data. It features one trillion text tokens and three billion images and is scheduled for release in July 2024.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Researcher Affiliation: ",
"raw": "Researcher Affiliation: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "University of Washington",
"raw": "University of Washington",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Salesforce Research",
"raw": "Salesforce Research",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Stanford University",
"raw": "Stanford University",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "University of Texas at Austin",
"raw": "University of Texas at Austin",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "University of California, Berkeley",
"raw": "University of California, Berkeley",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper:",
"raw": "Paper:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens",
"raw": "MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/pdf/2406.11271v1.pdf",
"resource": null,
"url": null,
"href": "https://arxiv.org/pdf/2406.11271v1.pdf",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "GitHub:",
"raw": "GitHub:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/mlfoundations/MINT-1T",
"resource": null,
"url": null,
"href": "https://github.com/mlfoundations/MINT-1T",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Highlights:",
"raw": "Highlights:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "MINT-1T Dataset: Largest open-source multimodal interleaved dataset with 1 trillion text tokens & 3 billion images. 📊🖼️",
"raw": "MINT-1T Dataset: Largest open-source multimodal interleaved dataset with 1 trillion text tokens & 3 billion images. 📊🖼️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Diverse Sources: Incorporates data from HTML, PDFs, and ArXiv documents. 📄📚",
"raw": "Diverse Sources: Incorporates data from HTML, PDFs, and ArXiv documents. 📄📚",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Open Source: Dataset and code will be released at ",
"raw": "Open Source: Dataset and code will be released at ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/mlfoundations/MINT-1T",
"resource": null,
"url": null,
"href": "https://github.com/mlfoundations/MINT-1T",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ". 🌐🔓",
"raw": ". 🌐🔓",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Broader Domain Representation: Uses diverse data sources for balanced domain representation. 🌍📚",
"raw": "Broader Domain Representation: Uses diverse data sources for balanced domain representation. 🌍📚",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Performance in Multimodal Tasks: The dataset’s scale and diversity should enhance multimodal task performance. 🤖💡",
"raw": "Performance in Multimodal Tasks: The dataset’s scale and diversity should enhance multimodal task performance. 🤖💡",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Datasheet Information:",
"raw": "Datasheet Information:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Motivation: Addresses the gap in large-scale open-source multimodal datasets. 🌐📊",
"raw": "Motivation: Addresses the gap in large-scale open-source multimodal datasets. 🌐📊",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Composition: 927.6 million documents, including HTML, PDF, and ArXiv sources. 📄📚",
"raw": "Composition: 927.6 million documents, including HTML, PDF, and ArXiv sources. 📄📚",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Collection Process: Gathered from CommonCrawl WARC and WAT dumps, with rigorous filtering. 🗂️🔍",
"raw": "Collection Process: Gathered from CommonCrawl WARC and WAT dumps, with rigorous filtering. 🗂️🔍",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Preprocessing/Cleaning: Removal of low-quality text, duplicates and anonymization of sensitive information. 🧹🔒",
"raw": "Preprocessing/Cleaning: Removal of low-quality text, duplicates and anonymization of sensitive information. 🧹🔒",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Ethical Considerations: Measures to ensure privacy and avoid bias. ⚖️🔏",
"raw": "Ethical Considerations: Measures to ensure privacy and avoid bias. ⚖️🔏",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Uses: Training multimodal models, generating interleaved image-text sequences, and building retrieval systems. 🤖📖",
"raw": "Uses: Training multimodal models, generating interleaved image-text sequences, and building retrieval systems. 🤖📖",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🔍 A recently published technical report introduces MINT-1T, a dataset that will considerably expand open-source multimodal data. It features one trillion text tokens and three billion images and is scheduled for release in July 2024.
Researcher Affiliation:
University of Washington
Salesforce Research
Stanford University
University of Texas at Austin
University of California, Berkeley
Paper:
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens
https://arxiv.org/pdf/2406.11271v1.pdf
GitHub:
https://github.com/mlfoundations/MINT-1T
Highlights:
MINT-1T Dataset: Largest open-source multimodal interleaved dataset with 1 trillion text tokens & 3 billion images. 📊🖼️
Diverse Sources: Incorporates data from HTML, PDFs, and ArXiv documents. 📄📚
Open Source: Dataset and code will be released at https://github.com/mlfoundations/MINT-1T. 🌐🔓
Broader Domain Representation: Uses diverse data sources for balanced domain representation. 🌍📚
Performance in Multimodal Tasks: The dataset’s scale and diversity should enhance multimodal task performance. 🤖💡
Datasheet Information:
Motivation: Addresses the gap in large-scale open-source multimodal datasets. 🌐📊
Composition: 927.6 million documents, including HTML, PDF, and ArXiv sources. 📄📚
Collection Process: Gathered from CommonCrawl WARC and WAT dumps, with rigorous filtering. 🗂️🔍
Preprocessing/Cleaning: Removal of low-quality text, duplicates and anonymization of sensitive information. 🧹🔒
Ethical Considerations: Measures to ensure privacy and avoid bias. ⚖️🔏
Uses: Training multimodal models, generating interleaved image-text sequences, and building retrieval systems. 🤖📖
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg",
"fullname": "atayloraerospace",
"name": "Taylor658",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 74,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/meW29kMUUadt1nmS79PJN.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/np_DuLHU3dz1wYpDenXwj.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"YaTharThShaRma999",
"anas-awadalla"
],
"count": 2
}
] | 2024-06-20T15:19:49.000Z | 2024-06-20T15:31:17.817Z | [] | /posts/Taylor658/730848617257487 | 934 | 0 |
597673567444043 | [
{
"type": "text",
"value": "Towards a Dynamic 2.0 Model of Generative Intelligence",
"raw": "Towards a Dynamic 2.0 Model of Generative Intelligence",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://empereur-pirate.medium.com/towards-a-dynamic-2-0-model-of-generative-intelligence-6128d64fb523",
"resource": null,
"url": null,
"href": "https://empereur-pirate.medium.com/towards-a-dynamic-2-0-model-of-generative-intelligence-6128d64fb523",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This article explores the limitations of current AI language models, which do not allow user contributions and restrict freedom of expression through corporate censorship. It argues for a participatory approach to AI development, emphasizing the need for open and transparent models that integrate user feedback and contributions. The article highlights the importance of network neutrality and the potential of AI to enhance creativity and collective intelligence. It calls for political and institutional support to foster innovation in AI, ensuring that these technologies respect fundamental rights and promote qualitative performance through inclusivity and transparency.",
"raw": "This article explores the limitations of current AI language models, which do not allow user contributions and restrict freedom of expression through corporate censorship. It argues for a participatory approach to AI development, emphasizing the need for open and transparent models that integrate user feedback and contributions. The article highlights the importance of network neutrality and the potential of AI to enhance creativity and collective intelligence. It calls for political and institutional support to foster innovation in AI, ensuring that these technologies respect fundamental rights and promote qualitative performance through inclusivity and transparency.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Towards a Dynamic 2.0 Model of Generative Intelligence
https://empereur-pirate.medium.com/towards-a-dynamic-2-0-model-of-generative-intelligence-6128d64fb523
This article explores the limitations of current AI language models, which do not allow user contributions and restrict freedom of expression through corporate censorship. It argues for a participatory approach to AI development, emphasizing the need for open and transparent models that integrate user feedback and contributions. The article highlights the importance of network neutrality and the potential of AI to enhance creativity and collective intelligence. It calls for political and institutional support to foster innovation in AI, ensuring that these technologies respect fundamental rights and promote qualitative performance through inclusivity and transparency. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678038324479-noauth.jpeg",
"fullname": "Empereur Pirate",
"name": "Empereur-Pirate",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 7,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"Empereur-Pirate",
"osanseviero"
],
"count": 2
}
] | 2024-06-20T15:01:48.000Z | 2024-06-20T15:01:48.531Z | [] | /posts/Empereur-Pirate/597673567444043 | 1,458 | 0 |
422173022604565 | [
{
"type": "text",
"value": "Florence-2 is a new vision foundation model capable of a wide variety of tasks 🤯 ",
"raw": "Florence-2 is a new vision foundation model capable of a wide variety of tasks 🤯 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Demo 👉🏻 ",
"raw": "Demo 👉🏻 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/gokaygokay/Florence-2",
"resource": {
"type": "space",
"id": "gokaygokay/Florence-2",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/gokaygokay/Florence-2",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Collection 👉🏻 ",
"raw": "Collection 👉🏻 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/microsoft/florence-6669f44df0d87d9c3bfb76de",
"resource": {
"type": "collection",
"id": "microsoft/florence-6669f44df0d87d9c3bfb76de",
"discussionNum": null
},
"url": "https://huggingface.co/collections/microsoft/florence-6669f44df0d87d9c3bfb76de",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This model can handle tasks that vary from OCR to semantic segmentation. ",
"raw": "This model can handle tasks that vary from OCR to semantic segmentation. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The difference from previous models is that the authors have compiled a dataset consisting of 126M images with 5.4B annotations labelled with their own data engine pseudolabelled by smaller specialized models and APIs. ",
"raw": "The difference from previous models is that the authors have compiled a dataset consisting of 126M images with 5.4B annotations labelled with their own data engine pseudolabelled by smaller specialized models and APIs. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The model has a similar architecture to previous models: an image encoder and a multimodality encoder with a text decoder. The authors have compiled the multitask dataset with prompts for each task. ",
"raw": "The model has a similar architecture to previous models: an image encoder and a multimodality encoder with a text decoder. The authors have compiled the multitask dataset with prompts for each task. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "You can also fine-tune this model on any task of choice. The authors also released different results on downstream tasks and reported their results when un/freezing the vision encoder 🤓📉 ",
"raw": "You can also fine-tune this model on any task of choice. The authors also released different results on downstream tasks and reported their results when un/freezing the vision encoder 🤓📉 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "They have released fine-tuned models too, you can find them in the collection above 🤗 ",
"raw": "They have released fine-tuned models too, you can find them in the collection above 🤗 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Florence-2 is a new vision foundation model capable of a wide variety of tasks 🤯
Demo 👉🏻 https://huggingface.co/spaces/gokaygokay/Florence-2
Collection 👉🏻 https://huggingface.co/collections/microsoft/florence-6669f44df0d87d9c3bfb76de
This model can handle tasks that vary from OCR to semantic segmentation.
The difference from previous models is that the authors have compiled a dataset consisting of 126M images with 5.4B annotations labelled with their own data engine pseudolabelled by smaller specialized models and APIs.
The model has a similar architecture to previous models: an image encoder and a multimodality encoder with a text decoder. The authors have compiled the multitask dataset with prompts for each task.
You can also fine-tune this model on any task of choice. The authors also released different results on downstream tasks and reported their results when un/freezing the vision encoder 🤓📉
They have released fine-tuned models too, you can find them in the collection above 🤗 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/cKwqeIUVmdMM9GDeVu7z2.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"osanseviero",
"afondiel",
"victor",
"gokaygokay",
"John6666",
"leduckhai",
"louisbrulenaudet",
"KingNish",
"Linksplayer",
"jlzhou"
],
"count": 10
},
{
"reaction": "👀",
"users": [
"osanseviero",
"Taylor658",
"victor",
"gokaygokay",
"John6666",
"omaryshchenko"
],
"count": 6
},
{
"reaction": "❤️",
"users": [
"anakin87",
"KnutJaegersberg"
],
"count": 2
}
] | 2024-06-20T12:49:10.000Z | 2024-06-22T10:18:39.766Z | [
{
"avatarUrl": "/avatars/54483699273ac58a4a6fe1fa4aab65fe.svg",
"fullname": "Robert Sinclair",
"name": "ZeroWw",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 75,
"isFollowing": false
},
{
"avatarUrl": "/avatars/9fbbb8eaaa7b19752b336cf228d4679e.svg",
"fullname": "lucasjin",
"name": "lucasjin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 8,
"isFollowing": false
},
{
"avatarUrl": "/avatars/a69b6f3e1f5e04937fe9500ca9b31af7.svg",
"fullname": "pollies",
"name": "polles",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/merve/422173022604565 | 4,319 | 3 |
106001158662393 | [
{
"type": "text",
"value": "Check out AutoRound, SOTA LLM quantization algorithm across 2-4 bits without adding any inference overhead to any model",
"raw": "Check out AutoRound, SOTA LLM quantization algorithm across 2-4 bits without adding any inference overhead to any model",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "paper: ",
"raw": "paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2309.05516",
"resource": null,
"url": null,
"href": "https://arxiv.org/abs/2309.05516",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "github: ",
"raw": "github: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/intel/auto-round",
"resource": null,
"url": null,
"href": "https://github.com/intel/auto-round",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "lowbits leaderboard: ",
"raw": "lowbits leaderboard: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/Intel/low-bit-leaderboard",
"resource": null,
"url": null,
"href": "https://huggingface.co/spaces/Intel/low-bit-leaderboard",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Check out AutoRound, SOTA LLM quantization algorithm across 2-4 bits without adding any inference overhead to any model
paper: https://arxiv.org/abs/2309.05516
github: https://github.com/intel/auto-round
lowbits leaderboard: https://huggingface.co/spaces/Intel/low-bit-leaderboard
| {
"avatarUrl": "/avatars/2e88e32ac0d45a1c624026e497eb00b3.svg",
"fullname": "wenhua cheng",
"name": "wenhuach",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/634772780a9fa1ac49994510/eVfopROZjga1VmgywgayB.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/634772780a9fa1ac49994510/8XuToowlRbkpwtniEza_a.png"
}
] | [] | [] | 2024-06-20T09:38:56.000Z | 2024-06-20T09:38:56.679Z | [] | /posts/wenhuach/106001158662393 | 529 | 0 |
317212739158608 | [
{
"type": "text",
"value": "With the most recent workshop on Semantic Evaluation as a part of NAACL-2024, this year delighted to contribute with 🧪 on Chain-of-Thought fine-tuning concepts to push forward LLMs reasoning capabilities in: ",
"raw": "With the most recent workshop on Semantic Evaluation as a part of NAACL-2024, this year delighted to contribute with 🧪 on Chain-of-Thought fine-tuning concepts to push forward LLMs reasoning capabilities in: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🧪 1. Reading Comprehension of Numerals in texts 🇨🇳 ",
"raw": "🧪 1. Reading Comprehension of Numerals in texts 🇨🇳 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "⭐ ",
"raw": "⭐ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/GavinZhao19/SemEval24-NumAnalysis-CN",
"resource": null,
"url": null,
"href": "https://github.com/GavinZhao19/SemEval24-NumAnalysis-CN",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔒 ",
"raw": "🔒 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/GavinZhao23/NumAnalysis-Chatglm3-6B",
"resource": null,
"url": null,
"href": "https://huggingface.co/GavinZhao23/NumAnalysis-Chatglm3-6B",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🧪 2. Extracting Emotion-Causes using Reasoning Revision (RR)",
"raw": "🧪 2. Extracting Emotion-Causes using Reasoning Revision (RR)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "⭐ ",
"raw": "⭐ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/nicolay-r/THOR-ECAC",
"resource": null,
"url": null,
"href": "https://github.com/nicolay-r/THOR-ECAC",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔓 ",
"raw": "🔓 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base",
"resource": {
"type": "model",
"id": "nicolay-r/flan-t5-emotion-cause-thor-base",
"discussionNum": null
},
"url": "https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.03361",
"resource": {
"type": "paper",
"id": "2404.03361",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.03361",
"href": null,
"user": null,
"label": "nicolay-r at SemEval-2024 Task 3: Using Flan-T5 for Reasoning Emotion\n Cause in Conversations with Chain-of-Thought on Emotion States (2404.03361)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔑 In short, there are three major takeaways:",
"raw": "🔑 In short, there are three major takeaways:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✅ 1. The scale of the backboned LLM for SFT matters (>1.1B is preferable)",
"raw": "✅ 1. The scale of the backboned LLM for SFT matters (>1.1B is preferable)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✅ 2. The language of the input data matters in LLM reasoning capabilities: transfering data in English and picking English-based LLM is crucial for the most cases!",
"raw": "✅ 2. The language of the input data matters in LLM reasoning capabilities: transfering data in English and picking English-based LLM is crucial for the most cases!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✅ 3. CoT and RR takes more time ⏳ for inferring and fine-tuning, proportionally to abount of steps in chain / amount of revisions in reasoning 🧠",
"raw": "✅ 3. CoT and RR takes more time ⏳ for inferring and fine-tuning, proportionally to abount of steps in chain / amount of revisions in reasoning 🧠",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | With the most recent workshop on Semantic Evaluation as a part of NAACL-2024, this year delighted to contribute with 🧪 on Chain-of-Thought fine-tuning concepts to push forward LLMs reasoning capabilities in:
🧪 1. Reading Comprehension of Numerals in texts 🇨🇳
⭐ https://github.com/GavinZhao19/SemEval24-NumAnalysis-CN
🔒 https://huggingface.co/GavinZhao23/NumAnalysis-Chatglm3-6B
🧪 2. Extracting Emotion-Causes using Reasoning Revision (RR)
⭐ https://github.com/nicolay-r/THOR-ECAC
🔓 https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base
https://huggingface.co/papers/2404.03361
🔑 In short, there are three major takeaways:
✅ 1. The scale of the backboned LLM for SFT matters (>1.1B is preferable)
✅ 2. The language of the input data matters in LLM reasoning capabilities: transfering data in English and picking English-based LLM is crucial for the most cases!
✅ 3. CoT and RR takes more time ⏳ for inferring and fine-tuning, proportionally to abount of steps in chain / amount of revisions in reasoning 🧠 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg",
"fullname": "Nicolay Rusnachenko",
"name": "nicolay-r",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 48,
"isFollowing": false
} | [] | [] | [] | 2024-06-20T09:18:29.000Z | 2024-06-20T09:19:29.195Z | [] | /posts/nicolay-r/317212739158608 | 451 | 0 |
330069080161256 | [
{
"type": "text",
"value": "🚀 Exciting news about ",
"raw": "🚀 Exciting news about ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/as-cle-bert/proteinviz",
"resource": {
"type": "space",
"id": "as-cle-bert/proteinviz",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/as-cle-bert/proteinviz",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", your fully open-source protein structure prediction tool!",
"raw": ", your fully open-source protein structure prediction tool!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🧬 I'm thrilled to announce 𝘽𝙪𝙡𝙠𝙋𝙧𝙤𝙩𝙚𝙞𝙣𝙫𝙞𝙯, a new functionality which supports multiple structure predictions at once: you just need to upload a FASTA file with all the amino-acidic sequences, and you'll be done in minutes!",
"raw": "🧬 I'm thrilled to announce 𝘽𝙪𝙡𝙠𝙋𝙧𝙤𝙩𝙚𝙞𝙣𝙫𝙞𝙯, a new functionality which supports multiple structure predictions at once: you just need to upload a FASTA file with all the amino-acidic sequences, and you'll be done in minutes!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🏃 This can be really helpful in speeding up your research: give it a shot, if you are curious!🤗",
"raw": "🏃 This can be really helpful in speeding up your research: give it a shot, if you are curious!🤗",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "(Demo in the attached video)",
"raw": "(Demo in the attached video)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🚀 Exciting news about https://huggingface.co/spaces/as-cle-bert/proteinviz, your fully open-source protein structure prediction tool!
🧬 I'm thrilled to announce 𝘽𝙪𝙡𝙠𝙋𝙧𝙤𝙩𝙚𝙞𝙣𝙫𝙞𝙯, a new functionality which supports multiple structure predictions at once: you just need to upload a FASTA file with all the amino-acidic sequences, and you'll be done in minutes!
🏃 This can be really helpful in speeding up your research: give it a shot, if you are curious!🤗
(Demo in the attached video)
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e330e7edc2f7306e252448/ucpk9c8x0UafGM4mXTrRy.jpeg",
"fullname": "Astra Clelia Bertelli",
"name": "as-cle-bert",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 623,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/65e330e7edc2f7306e252448/OYJ_QG3_nKGPXWC5tvS-o.mp4"
}
] | [] | [
{
"reaction": "🚀",
"users": [
"louisbrulenaudet"
],
"count": 1
}
] | 2024-06-20T07:39:35.000Z | 2024-06-20T07:42:55.286Z | [] | /posts/as-cle-bert/330069080161256 | 530 | 0 |
381892915091977 | [
{
"type": "mention",
"value": null,
"raw": "@ehartford",
"resource": null,
"url": null,
"href": null,
"user": "ehartford",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " hey eric, i have been following u since your first dolphin model.... i realy appreciate you doing what you do. none the less, i have a quick question. i was wondering what is your favorite smaller uncensored dolphin model that would run well on my m1 -8gb macbook air.. and what user interface do you suggest? thanks so much, and i hope to hear from you soon.",
"raw": " hey eric, i have been following u since your first dolphin model.... i realy appreciate you doing what you do. none the less, i have a quick question. i was wondering what is your favorite smaller uncensored dolphin model that would run well on my m1 -8gb macbook air.. and what user interface do you suggest? thanks so much, and i hope to hear from you soon.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | @ehartford hey eric, i have been following u since your first dolphin model.... i realy appreciate you doing what you do. none the less, i have a quick question. i was wondering what is your favorite smaller uncensored dolphin model that would run well on my m1 -8gb macbook air.. and what user interface do you suggest? thanks so much, and i hope to hear from you soon. | {
"avatarUrl": "/avatars/09decdf06b4494f6e834fb57d3d66c23.svg",
"fullname": "paul",
"name": "ki11b451c",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63111b2d88942700629f5771/u2a9y-yx6TG0N31OhMSHI.png",
"fullname": "Eric Hartford",
"name": "ehartford",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3240
}
] | [
{
"reaction": "👍",
"users": [
"FAU57",
"maheedhar1998",
"Imtiazhashmi",
"John6666",
"theblackcat102"
],
"count": 5
},
{
"reaction": "🤯",
"users": [
"ki11b451c"
],
"count": 1
},
{
"reaction": "🤝",
"users": [
"ki11b451c"
],
"count": 1
}
] | 2024-06-19T18:40:43.000Z | 2024-07-02T04:28:25.295Z | [
{
"avatarUrl": "/avatars/09decdf06b4494f6e834fb57d3d66c23.svg",
"fullname": "paul",
"name": "ki11b451c",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6,
"isFollowing": false
}
] | /posts/ki11b451c/381892915091977 | 2,627 | 1 |
275559570184677 | [
{
"type": "text",
"value": "🔥 🔥 Releasing our new paper on AI safety alignment -- Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations 🎯 with Sayan Layek, Somnath Banerjee and Soujanya Poria.",
"raw": "🔥 🔥 Releasing our new paper on AI safety alignment -- Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations 🎯 with Sayan Layek, Somnath Banerjee and Soujanya Poria.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👉 We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal (HDR) to avoid harmful content and Safety Alignment to promote safe responses.",
"raw": "👉 We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal (HDR) to avoid harmful content and Safety Alignment to promote safe responses.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👉 Paper: ",
"raw": "👉 Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2406.11801v1",
"resource": null,
"url": null,
"href": "https://arxiv.org/abs/2406.11801v1",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👉 Code: ",
"raw": "👉 Code: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/declare-lab/safety-arithmetic",
"resource": null,
"url": null,
"href": "https://github.com/declare-lab/safety-arithmetic",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🔥 🔥 Releasing our new paper on AI safety alignment -- Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations 🎯 with Sayan Layek, Somnath Banerjee and Soujanya Poria.
👉 We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal (HDR) to avoid harmful content and Safety Alignment to promote safe responses.
👉 Paper: https://arxiv.org/abs/2406.11801v1
👉 Code: https://github.com/declare-lab/safety-arithmetic
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64be339512afb2f11951b217/B-O3HH0lG0BOdmEE4sTAV.png",
"fullname": "RIMA HAZRA",
"name": "rimahazra",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
} | [] | [] | [] | 2024-06-19T18:19:07.000Z | 2024-06-19T18:19:07.089Z | [] | /posts/rimahazra/275559570184677 | 757 | 0 |
958678432239203 | [
{
"type": "text",
"value": "Forget about all the captioning datasets you've tried before!",
"raw": "Forget about all the captioning datasets you've tried before!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "PixelProse is a captioning dataset of 16M image-caption pairs, with less toxicity and higher details ✨ ",
"raw": "PixelProse is a captioning dataset of 16M image-caption pairs, with less toxicity and higher details ✨ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/tomg-group-umd/pixelprose",
"resource": {
"type": "dataset",
"id": "tomg-group-umd/pixelprose",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/tomg-group-umd/pixelprose",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The existing suite of captioning datasets consists of web scrapes that have alt text that is either irrelevant or not descriptive. The authors of this paper have taken those datasets, filtered for CSAM, passed it with a prompt to Gemini Vision Pro. They also removed PII and detoxified the resulting dataset. ",
"raw": "The existing suite of captioning datasets consists of web scrapes that have alt text that is either irrelevant or not descriptive. The authors of this paper have taken those datasets, filtered for CSAM, passed it with a prompt to Gemini Vision Pro. They also removed PII and detoxified the resulting dataset. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Forget about all the captioning datasets you've tried before!
PixelProse is a captioning dataset of 16M image-caption pairs, with less toxicity and higher details ✨
https://huggingface.co/datasets/tomg-group-umd/pixelprose
The existing suite of captioning datasets consists of web scrapes that have alt text that is either irrelevant or not descriptive. The authors of this paper have taken those datasets, filtered for CSAM, passed it with a prompt to Gemini Vision Pro. They also removed PII and detoxified the resulting dataset. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/OqNm4RDrjxCq1F9jYJCpJ.png"
}
] | [] | [
{
"reaction": "😎",
"users": [
"darknoon",
"KingNish",
"AtAndDev",
"louisbrulenaudet"
],
"count": 4
},
{
"reaction": "➕",
"users": [
"Zigshau",
"AtAndDev",
"LeroyDyer"
],
"count": 3
},
{
"reaction": "👍",
"users": [
"ijohn07",
"Arakinas",
"AtAndDev"
],
"count": 3
},
{
"reaction": "👀",
"users": [
"osanseviero",
"AtAndDev"
],
"count": 2
}
] | 2024-06-19T12:52:21.000Z | 2024-06-19T12:52:21.555Z | [] | /posts/merve/958678432239203 | 3,274 | 0 |
218789131577811 | [
{
"type": "text",
"value": "⚗️ Looking to get started with Synthetic data and AI Feedback? ",
"raw": "⚗️ Looking to get started with Synthetic data and AI Feedback? ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I created this cool notebook for a workshop ",
"raw": "I created this cool notebook for a workshop ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@davanstrien",
"resource": null,
"url": null,
"href": null,
"user": "davanstrien",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " and I gave it a couple of weeks back. It uses ",
"raw": " and I gave it a couple of weeks back. It uses ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://distilabel.argilla.io/dev/",
"resource": null,
"url": null,
"href": "https://distilabel.argilla.io/dev/",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " and I think it is a good entry point for anyone with a practical interest in the topic.",
"raw": " and I think it is a good entry point for anyone with a practical interest in the topic.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://colab.research.google.com/github/davanstrien/data-for-fine-tuning-llms/blob/main/03-synthetic-data-generation.ipynb",
"resource": null,
"url": null,
"href": "https://colab.research.google.com/github/davanstrien/data-for-fine-tuning-llms/blob/main/03-synthetic-data-generation.ipynb",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | ⚗️ Looking to get started with Synthetic data and AI Feedback?
I created this cool notebook for a workshop @davanstrien and I gave it a couple of weeks back. It uses https://distilabel.argilla.io/dev/ and I think it is a good entry point for anyone with a practical interest in the topic.
https://colab.research.google.com/github/davanstrien/data-for-fine-tuning-llms/blob/main/03-synthetic-data-generation.ipynb | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677141720071-634ff41ff32062e9eb7b06a3.jpeg",
"fullname": "David Berenstein",
"name": "davidberenstein1957",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 147,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg",
"fullname": "Daniel van Strien",
"name": "davanstrien",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 401
}
] | [
{
"reaction": "🔥",
"users": [
"burtenshaw",
"osanseviero",
"pcuenq",
"dvilasuero",
"gabrielmbmb"
],
"count": 5
},
{
"reaction": "🚀",
"users": [
"dvilasuero",
"Auxon"
],
"count": 2
},
{
"reaction": "🧠",
"users": [
"dvilasuero",
"gabrielmbmb"
],
"count": 2
},
{
"reaction": "🤝",
"users": [
"jeanflop"
],
"count": 1
}
] | 2024-06-19T09:27:12.000Z | 2024-06-20T18:40:08.355Z | [
{
"avatarUrl": "/avatars/fe5aceade87d93b9050407977fe92ef7.svg",
"fullname": "sharkr",
"name": "Zigshau",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
},
{
"avatarUrl": "/avatars/a531b52b89543ec6ea1d72912656a82e.svg",
"fullname": "lompo",
"name": "jeanflop",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 7,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677141720071-634ff41ff32062e9eb7b06a3.jpeg",
"fullname": "David Berenstein",
"name": "davidberenstein1957",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 147,
"isFollowing": false
}
] | /posts/davidberenstein1957/218789131577811 | 2,363 | 5 |
791804707913711 | [
{
"type": "text",
"value": "On-Device deployment ready MobileNet-V4 models:",
"raw": "On-Device deployment ready MobileNet-V4 models:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63",
"resource": {
"type": "collection",
"id": "byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63",
"discussionNum": null
},
"url": "https://huggingface.co/collections/byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Models converted from timm's pretrained Pytorch weights to TFLite (fp32 & fp16). ",
"raw": "Models converted from timm's pretrained Pytorch weights to TFLite (fp32 & fp16). ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "All conv models fully compatible with TFLite Gpu Delegate on Android for fast on-device inference 🚀",
"raw": "All conv models fully compatible with TFLite Gpu Delegate on Android for fast on-device inference 🚀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Can also run super fast on Google-Edge-TPU on Pixel phones 🚀",
"raw": "Can also run super fast on Google-Edge-TPU on Pixel phones 🚀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | On-Device deployment ready MobileNet-V4 models:
https://huggingface.co/collections/byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63
Models converted from timm's pretrained Pytorch weights to TFLite (fp32 & fp16).
All conv models fully compatible with TFLite Gpu Delegate on Android for fast on-device inference 🚀
Can also run super fast on Google-Edge-TPU on Pixel phones 🚀 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678864953699-63638e4b2e11f41bc8168b20.jpeg",
"fullname": "youssef boulaouane",
"name": "byoussef",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 7,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"osanseviero"
],
"count": 1
}
] | 2024-06-19T08:00:08.000Z | 2024-06-19T08:00:08.997Z | [] | /posts/byoussef/791804707913711 | 919 | 0 |
756619808319174 | [
{
"type": "text",
"value": "🤯🤯🤯VERY ROBUST TOOL to control camera motion for videos!!!",
"raw": "🤯🤯🤯VERY ROBUST TOOL to control camera motion for videos!!!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Even doesn't need any additional finetuning! It uses inference process of video diffusion directly!!",
"raw": "Even doesn't need any additional finetuning! It uses inference process of video diffusion directly!!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Try it on your own video diffusion model and generate CINEMATIC SHOTS!📸🎥🫢",
"raw": "Try it on your own video diffusion model and generate CINEMATIC SHOTS!📸🎥🫢",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Check at ",
"raw": "Check at ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lifedecoder.github.io/CamTrol/",
"resource": null,
"url": null,
"href": "https://lifedecoder.github.io/CamTrol/",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🤯🤯🤯VERY ROBUST TOOL to control camera motion for videos!!!
Even doesn't need any additional finetuning! It uses inference process of video diffusion directly!!
Try it on your own video diffusion model and generate CINEMATIC SHOTS!📸🎥🫢
Check at https://lifedecoder.github.io/CamTrol/ | {
"avatarUrl": "/avatars/7a79a12d9f67100b0ea2dfb19dc695d0.svg",
"fullname": "Chen Hou",
"name": "LegolasS",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/660a367942025e0a8b8a2de5/zTAJay-sv15VbqYOQoAl8.qt"
}
] | [] | [
{
"reaction": "🤯",
"users": [
"chchnii",
"victor",
"shadinpira80",
"KingNish",
"dillfrescott",
"netynet",
"LegolasS",
"Ramikan-BR",
"GPT007",
"PetrLe"
],
"count": 10
},
{
"reaction": "🚀",
"users": [
"chchnii",
"Taylor658",
"victor",
"rreed-pha",
"KingNish",
"LegolasS",
"Ramikan-BR",
"ucyang"
],
"count": 8
},
{
"reaction": "🔥",
"users": [
"chchnii",
"LegolasS",
"ibvhim",
"Ramikan-BR",
"PetrLe"
],
"count": 5
},
{
"reaction": "👍",
"users": [
"dillfrescott",
"Ramikan-BR",
"LegolasS",
"kramp",
"PetrLe"
],
"count": 5
},
{
"reaction": "👀",
"users": [
"chchnii",
"dillfrescott",
"Ramikan-BR"
],
"count": 3
},
{
"reaction": "❤️",
"users": [
"Ramikan-BR",
"shaising",
"PetrLe"
],
"count": 3
},
{
"reaction": "🤗",
"users": [
"LegolasS",
"PetrLe"
],
"count": 2
}
] | 2024-06-19T03:31:30.000Z | 2024-06-25T09:40:13.870Z | [] | /posts/LegolasS/756619808319174 | 4,041 | 0 |
471891899352409 | [
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2312.16171",
"resource": {
"type": "paper",
"id": "2312.16171",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2312.16171",
"href": null,
"user": null,
"label": "Principled Instructions Are All You Need for Questioning LLaMA-1/2,\n GPT-3.5/4 (2312.16171)",
"code": null,
"lang": null
},
{
"type": "text",
"value": " I normally use this to make prompts in the form of a RAG (Retrieval Augmented Generation). For example, here's one from Gemma 7B about articles. ",
"raw": " I normally use this to make prompts in the form of a RAG (Retrieval Augmented Generation). For example, here's one from Gemma 7B about articles. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "\"Please summarize the main ideas of the article '[Article Title]' in a concise and informative manner. Focus on highlighting the key points and arguments presented in the article. Keep the summary to around [desired length] words.\"",
"raw": "\"Please summarize the main ideas of the article '[Article Title]' in a concise and informative manner. Focus on highlighting the key points and arguments presented in the article. Keep the summary to around [desired length] words.\"",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Has anyone else tried this? Do you like the results you are getting?",
"raw": "Has anyone else tried this? Do you like the results you are getting?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | https://huggingface.co/papers/2312.16171 I normally use this to make prompts in the form of a RAG (Retrieval Augmented Generation). For example, here's one from Gemma 7B about articles.
"Please summarize the main ideas of the article '[Article Title]' in a concise and informative manner. Focus on highlighting the key points and arguments presented in the article. Keep the summary to around [desired length] words."
Has anyone else tried this? Do you like the results you are getting? | {
"avatarUrl": "/avatars/b82eaad6ac45182aa489ff247fe6a00c.svg",
"fullname": "NB",
"name": "Skier8402",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 11,
"isFollowing": false
} | [] | [] | [] | 2024-06-19T02:47:04.000Z | 2024-06-19T02:47:04.374Z | [] | /posts/Skier8402/471891899352409 | 725 | 0 |
632509301461247 | [
{
"type": "text",
"value": "⚗️ distilabel 1.2.0 is out and it comes with improved support for structured generation, new tasks for generating datasets for training embedding models, new steps for loading data, MixtureOfAgentsLLM and improved docs.",
"raw": "⚗️ distilabel 1.2.0 is out and it comes with improved support for structured generation, new tasks for generating datasets for training embedding models, new steps for loading data, MixtureOfAgentsLLM and improved docs.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We would love to see a few new datasets for training embedding models built with distilabel on the Hub! ❤️",
"raw": "We would love to see a few new datasets for training embedding models built with distilabel on the Hub! ❤️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | ⚗️ distilabel 1.2.0 is out and it comes with improved support for structured generation, new tasks for generating datasets for training embedding models, new steps for loading data, MixtureOfAgentsLLM and improved docs.
We would love to see a few new datasets for training embedding models built with distilabel on the Hub! ❤️ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60f2fc91b92afccb7c34b8ed/whF6nGtyTAhbtiWJJnL9e.png",
"fullname": "Gabriel Martín Blázquez",
"name": "gabrielmbmb",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 87,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"monsoon-nlp",
"clem",
"osanseviero",
"victor",
"abunchofrandomwords"
],
"count": 5
}
] | 2024-06-18T17:20:04.000Z | 2024-06-18T17:20:04.566Z | [] | /posts/gabrielmbmb/632509301461247 | 2,503 | 0 |
847779810698714 | [
{
"type": "text",
"value": "I've fine-tuned three types of PaliGemma image captioner models for generating prompts for Text2Image models. They generate captions similar to prompts we give to the image generation models. I used google/docci and google/imageinwords datasets for fine-tuning. ",
"raw": "I've fine-tuned three types of PaliGemma image captioner models for generating prompts for Text2Image models. They generate captions similar to prompts we give to the image generation models. I used google/docci and google/imageinwords datasets for fine-tuning. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This one gives you longer captions. ",
"raw": "This one gives you longer captions. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner",
"resource": {
"type": "space",
"id": "gokaygokay/SD3-Long-Captioner",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This one gives you middle size captions. ",
"raw": "This one gives you middle size captions. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2",
"resource": null,
"url": null,
"href": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "And this one gives you shorter captions. ",
"raw": "And this one gives you shorter captions. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/gokaygokay/SDXL-Captioner",
"resource": null,
"url": null,
"href": "https://huggingface.co/spaces/gokaygokay/SDXL-Captioner",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I've fine-tuned three types of PaliGemma image captioner models for generating prompts for Text2Image models. They generate captions similar to prompts we give to the image generation models. I used google/docci and google/imageinwords datasets for fine-tuning.
This one gives you longer captions.
https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner
This one gives you middle size captions.
https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2
And this one gives you shorter captions.
https://huggingface.co/spaces/gokaygokay/SDXL-Captioner
| {
"avatarUrl": "/avatars/b9a6d8e11ec7a62ca2b819e0b6c37222.svg",
"fullname": "gokay aydogan",
"name": "gokaygokay",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
} | [] | [] | [
{
"reaction": "❤️",
"users": [
"clem",
"osanseviero",
"victor",
"OjciecTadeusz",
"emanuelevivoli",
"Warlord-K",
"John6666",
"pcuenq",
"FiditeNemini",
"AmmarNTNU12"
],
"count": 10
},
{
"reaction": "🔥",
"users": [
"gabrielchua",
"AIGCalien",
"John6666",
"pcuenq"
],
"count": 4
},
{
"reaction": "👍",
"users": [
"Norod78",
"John6666"
],
"count": 2
},
{
"reaction": "🚀",
"users": [
"prithivMLmods",
"John6666"
],
"count": 2
}
] | 2024-06-18T16:13:54.000Z | 2024-10-10T09:47:55.536Z | [
{
"avatarUrl": "/avatars/2079d5aa1e9bb5091fffe95468162aec.svg",
"fullname": "NULL",
"name": "ljnlonoljpiljm",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 8,
"isFollowing": false
},
{
"avatarUrl": "/avatars/b9a6d8e11ec7a62ca2b819e0b6c37222.svg",
"fullname": "gokay aydogan",
"name": "gokaygokay",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62f8ca074588fe31f4361dae/F2k343TPD7KVfW3P26IRs.jpeg",
"fullname": "Yatharth Gupta",
"name": "Warlord-K",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 32,
"isFollowing": false
},
{
"avatarUrl": "/avatars/751ab4b02b469b502d9a994d55d4df8a.svg",
"fullname": "Gomez",
"name": "raulgb",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/gokaygokay/847779810698714 | 5,917 | 10 |
808154088391506 | [
{
"type": "text",
"value": "With the CVPR conference (",
"raw": "With the CVPR conference (",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://cvpr.thecvf.com",
"resource": null,
"url": null,
"href": "https://cvpr.thecvf.com",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ") in full swing this week in Seattle 🏙️, the competition details for NeurIPS 2024 have just been released.🚀",
"raw": ") in full swing this week in Seattle 🏙️, the competition details for NeurIPS 2024 have just been released.🚀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Some of the competitions this year include:",
"raw": "Some of the competitions this year include:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🦾 MyoChallenge 2024: Physiological dexterity in bionic humans.",
"raw": "🦾 MyoChallenge 2024: Physiological dexterity in bionic humans.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🌌 FAIR Universe: Handling uncertainties in fundamental science.",
"raw": "🌌 FAIR Universe: Handling uncertainties in fundamental science.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🧪 BELKA: Chemical assessment through big encoded libraries.",
"raw": "🧪 BELKA: Chemical assessment through big encoded libraries.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🏆 HAC: Hacker-Cup AI competition.",
"raw": "🏆 HAC: Hacker-Cup AI competition.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "💰 Large-Scale Auction Challenge: Decision-making in competitive games.",
"raw": "💰 Large-Scale Auction Challenge: Decision-making in competitive games.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📶 URGENT Challenge: Signal reconstruction and enhancement.",
"raw": "📶 URGENT Challenge: Signal reconstruction and enhancement.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🛡️ LASC 2024: Safety in LLM and AI agents.",
"raw": "🛡️ LASC 2024: Safety in LLM and AI agents.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "For more details, check out: ",
"raw": "For more details, check out: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced",
"resource": null,
"url": null,
"href": "https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | With the CVPR conference (https://cvpr.thecvf.com) in full swing this week in Seattle 🏙️, the competition details for NeurIPS 2024 have just been released.🚀
Some of the competitions this year include:
🦾 MyoChallenge 2024: Physiological dexterity in bionic humans.
🌌 FAIR Universe: Handling uncertainties in fundamental science.
🧪 BELKA: Chemical assessment through big encoded libraries.
🏆 HAC: Hacker-Cup AI competition.
💰 Large-Scale Auction Challenge: Decision-making in competitive games.
📶 URGENT Challenge: Signal reconstruction and enhancement.
🛡️ LASC 2024: Safety in LLM and AI agents.
For more details, check out: https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg",
"fullname": "atayloraerospace",
"name": "Taylor658",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 74,
"isFollowing": false
} | [] | [] | [
{
"reaction": "❤️",
"users": [
"dai-tokyo"
],
"count": 1
}
] | 2024-06-18T15:53:14.000Z | 2024-06-18T15:53:14.239Z | [] | /posts/Taylor658/808154088391506 | 826 | 0 |
363479369380557 | [
{
"type": "text",
"value": "Impressive to see Depth Anything V2. See this example I just took with a lot of different depths. ",
"raw": "Impressive to see Depth Anything V2. See this example I just took with a lot of different depths. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "If you want to learn more about it, this TLDR by ",
"raw": "If you want to learn more about it, this TLDR by ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@merve",
"resource": null,
"url": null,
"href": null,
"user": "merve",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " is👌 ",
"raw": " is👌 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/posts/merve/568638914646708",
"resource": null,
"url": null,
"href": "https://huggingface.co/posts/merve/568638914646708",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Impressive to see Depth Anything V2. See this example I just took with a lot of different depths.
If you want to learn more about it, this TLDR by @merve is👌 https://huggingface.co/posts/merve/568638914646708 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 345,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/95iaI35bZQ72snHNRJm3j.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473
}
] | [] | 2024-06-18T15:21:14.000Z | 2024-06-18T15:21:14.963Z | [] | /posts/fdaudens/363479369380557 | 555 | 0 |
568638914646708 | [
{
"type": "text",
"value": "I love Depth Anything V2 😍 ",
"raw": "I love Depth Anything V2 😍 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "It’s Depth Anything, but scaled with both larger teacher model and a gigantic dataset! ",
"raw": "It’s Depth Anything, but scaled with both larger teacher model and a gigantic dataset! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Here's a small TLDR of paper with a lot of findings, experiments and more. ",
"raw": "Here's a small TLDR of paper with a lot of findings, experiments and more. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I have also created a collection that has the models, the dataset, the demo and CoreML converted model 😚 ",
"raw": "I have also created a collection that has the models, the dataset, the demo and CoreML converted model 😚 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/merve/depth-anything-v2-release-6671902e798cd404513ffbf5",
"resource": {
"type": "collection",
"id": "merve/depth-anything-v2-release-6671902e798cd404513ffbf5",
"discussionNum": null
},
"url": "https://huggingface.co/collections/merve/depth-anything-v2-release-6671902e798cd404513ffbf5",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The authors have analyzed Marigold, a diffusion based model against Depth Anything and found out what’s up with using synthetic images vs real images for MDE:",
"raw": "The authors have analyzed Marigold, a diffusion based model against Depth Anything and found out what’s up with using synthetic images vs real images for MDE:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔖 Real data has a lot of label noise, inaccurate depth maps (caused by depth sensors missing transparent objects etc) and there are many details overlooked ",
"raw": "🔖 Real data has a lot of label noise, inaccurate depth maps (caused by depth sensors missing transparent objects etc) and there are many details overlooked ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔖 Synthetic data have more precise and detailed depth labels and they are truly ground-truth, but there’s a distribution shift between real and synthetic images, and they have restricted scene coverage",
"raw": "🔖 Synthetic data have more precise and detailed depth labels and they are truly ground-truth, but there’s a distribution shift between real and synthetic images, and they have restricted scene coverage",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The authors train different image encoders only on synthetic images and find out unless the encoder is very large the model can’t generalize well (but large models generalize inherently anyway) 🧐",
"raw": "The authors train different image encoders only on synthetic images and find out unless the encoder is very large the model can’t generalize well (but large models generalize inherently anyway) 🧐",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "But they still fail encountering real images that have wide distribution in labels (e.g. diverse instances of objects) 🥲",
"raw": "But they still fail encountering real images that have wide distribution in labels (e.g. diverse instances of objects) 🥲",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Depth Anything v2 framework is to..",
"raw": "Depth Anything v2 framework is to..",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🦖 Train a teacher model based on DINOv2-G based on 595K synthetic images",
"raw": "🦖 Train a teacher model based on DINOv2-G based on 595K synthetic images",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🏷️ Label 62M real images using teacher model",
"raw": "🏷️ Label 62M real images using teacher model",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🦕 Train a student model using the real images labelled by teacher ",
"raw": "🦕 Train a student model using the real images labelled by teacher ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Result: 10x faster and more accurate than Marigold! ",
"raw": "Result: 10x faster and more accurate than Marigold! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The authors also construct a new benchmark called DA-2K that is less noisy, highly detailed and more diverse! ",
"raw": "The authors also construct a new benchmark called DA-2K that is less noisy, highly detailed and more diverse! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I love Depth Anything V2 😍
It’s Depth Anything, but scaled with both larger teacher model and a gigantic dataset!
Here's a small TLDR of paper with a lot of findings, experiments and more.
I have also created a collection that has the models, the dataset, the demo and CoreML converted model 😚 https://huggingface.co/collections/merve/depth-anything-v2-release-6671902e798cd404513ffbf5
The authors have analyzed Marigold, a diffusion based model against Depth Anything and found out what’s up with using synthetic images vs real images for MDE:
🔖 Real data has a lot of label noise, inaccurate depth maps (caused by depth sensors missing transparent objects etc) and there are many details overlooked
🔖 Synthetic data have more precise and detailed depth labels and they are truly ground-truth, but there’s a distribution shift between real and synthetic images, and they have restricted scene coverage
The authors train different image encoders only on synthetic images and find out unless the encoder is very large the model can’t generalize well (but large models generalize inherently anyway) 🧐
But they still fail encountering real images that have wide distribution in labels (e.g. diverse instances of objects) 🥲
Depth Anything v2 framework is to..
🦖 Train a teacher model based on DINOv2-G based on 595K synthetic images
🏷️ Label 62M real images using teacher model
🦕 Train a student model using the real images labelled by teacher
Result: 10x faster and more accurate than Marigold!
The authors also construct a new benchmark called DA-2K that is less noisy, highly detailed and more diverse!
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/UbIwAPTcbmYYkZidLXxJF.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"osanseviero",
"Ramikan-BR",
"fynnkroeger",
"SixOpen",
"kingabzpro",
"Taylor658",
"clem",
"Hev832",
"shadinpira80",
"xu3kev",
"radames",
"louisbrulenaudet"
],
"count": 12
},
{
"reaction": "🚀",
"users": [
"Ramikan-BR",
"Tuana",
"kramp",
"clem",
"super-cinnamon"
],
"count": 5
},
{
"reaction": "❤️",
"users": [
"Ramikan-BR",
"clem",
"melmass",
"shaising",
"radames"
],
"count": 5
},
{
"reaction": "👀",
"users": [
"Ramikan-BR",
"clem"
],
"count": 2
},
{
"reaction": "🤗",
"users": [
"kingabzpro",
"clem"
],
"count": 2
}
] | 2024-06-18T13:59:59.000Z | 2024-06-18T13:59:59.663Z | [] | /posts/merve/568638914646708 | 4,206 | 0 |
999224288136633 | [
{
"type": "text",
"value": "Hey All!",
"raw": "Hey All!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I've been asked a lot of share more on how I train LoRAs. The truth is I don't think my advice is very helpful without also including more contextual, theoretical commentary on how I **think** about training LoRAs for SDXL and other models. ",
"raw": "I've been asked a lot of share more on how I train LoRAs. The truth is I don't think my advice is very helpful without also including more contextual, theoretical commentary on how I **think** about training LoRAs for SDXL and other models. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I wrote a first article here about it - let me know what you think.",
"raw": "I wrote a first article here about it - let me know what you think.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-1",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-1",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Edit: Also people kept asking where to start so I made a list of possible resources:",
"raw": "Edit: Also people kept asking where to start so I made a list of possible resources:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-pt-2-training-services",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-pt-2-training-services",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hey All!
I've been asked a lot of share more on how I train LoRAs. The truth is I don't think my advice is very helpful without also including more contextual, theoretical commentary on how I **think** about training LoRAs for SDXL and other models.
I wrote a first article here about it - let me know what you think.
https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-1
Edit: Also people kept asking where to start so I made a list of possible resources:
https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-pt-2-training-services | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
} | [] | [] | [
{
"reaction": "❤️",
"users": [
"victor",
"shaising",
"merve",
"not-lain",
"netynet",
"dillfrescott",
"KingNish",
"philipp-zettl",
"kramp"
],
"count": 9
},
{
"reaction": "👍",
"users": [
"digiplay",
"victor",
"merve",
"not-lain",
"dillfrescott"
],
"count": 5
}
] | 2024-06-18T13:38:30.000Z | 2024-06-27T03:50:40.376Z | [
{
"avatarUrl": "/avatars/8473d30b909208e7dd5828620bcb4ce1.svg",
"fullname": "Wallow",
"name": "Viktor1233",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
},
{
"avatarUrl": "/avatars/7ca2d750fb67cc848dc07a9161bfa9dd.svg",
"fullname": "Martin Viewegger",
"name": "Viewegger",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6406a284a577649430c5bfdd/6mGZ3EOvkWWvUGVv04Tm9.jpeg",
"fullname": "Fihade",
"name": "Fihade",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
}
] | /posts/alvdansen/999224288136633 | 3,244 | 13 |
948457903511815 | [
{
"type": "text",
"value": "💰 𝗚𝗲𝘁 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜 𝗿𝗲𝗾𝘂𝗲𝘀𝘁 ⇒ 𝘁𝗼𝗸𝗲𝗻𝗰𝗼𝘀𝘁",
"raw": "💰 𝗚𝗲𝘁 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜 𝗿𝗲𝗾𝘂𝗲𝘀𝘁 ⇒ 𝘁𝗼𝗸𝗲𝗻𝗰𝗼𝘀𝘁",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I've just found out about 𝙰𝚐𝚎𝚗𝚝𝙾𝚙𝚜-𝙰𝙸/𝚝𝚘𝚔𝚎𝚗𝚌𝚘𝚜𝚝 (",
"raw": "I've just found out about 𝙰𝚐𝚎𝚗𝚝𝙾𝚙𝚜-𝙰𝙸/𝚝𝚘𝚔𝚎𝚗𝚌𝚘𝚜𝚝 (",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/AgentOps-AI/tokencost",
"resource": null,
"url": null,
"href": "https://github.com/AgentOps-AI/tokencost",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ").",
"raw": ").",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "𝗧𝗵𝗶𝘀 𝗹𝗶𝗯𝗿𝗮𝗿𝘆 𝗴𝗶𝘃𝗲𝘀 𝘆𝗼𝘂 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗰𝗮𝗹𝗹𝘀 𝘁𝗼 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜: OpenAI, Anthropic, Mistral, AWS or Databricks...",
"raw": "𝗧𝗵𝗶𝘀 𝗹𝗶𝗯𝗿𝗮𝗿𝘆 𝗴𝗶𝘃𝗲𝘀 𝘆𝗼𝘂 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗰𝗮𝗹𝗹𝘀 𝘁𝗼 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜: OpenAI, Anthropic, Mistral, AWS or Databricks...",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "For any model, you can use as input either string prompts or messages, and get as outputs either the price or token count.",
"raw": "For any model, you can use as input either string prompts or messages, and get as outputs either the price or token count.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Congrats to the AgentOps-AI team: this will be very useful when trying to get a ballpark estimate of a project's price, to compare APIs, or for precise monitoring of usage!",
"raw": "Congrats to the AgentOps-AI team: this will be very useful when trying to get a ballpark estimate of a project's price, to compare APIs, or for precise monitoring of usage!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "✨ Daily reminder: 𝗿𝘂𝗻𝗻𝗶𝗻𝗴 𝗮𝗻 𝗔𝟭𝟬𝟬 𝗰𝗼𝘀𝘁𝘀 𝘆𝗼𝘂 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 $𝟬.𝟬𝟬/𝗵𝗼𝘂𝗿 (or 0.00€ in current exchange rates) on a HF space with ZeroGPU!",
"raw": "✨ Daily reminder: 𝗿𝘂𝗻𝗻𝗶𝗻𝗴 𝗮𝗻 𝗔𝟭𝟬𝟬 𝗰𝗼𝘀𝘁𝘀 𝘆𝗼𝘂 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 $𝟬.𝟬𝟬/𝗵𝗼𝘂𝗿 (or 0.00€ in current exchange rates) on a HF space with ZeroGPU!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Learn more on ZeroGPU 👉 ",
"raw": "Learn more on ZeroGPU 👉 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.datacenterdynamics.com/en/news/hugging-face-launches-zerogpu-project-to-democratize-ai-gives-away-10-million-worth-of-compute/",
"resource": null,
"url": null,
"href": "https://www.datacenterdynamics.com/en/news/hugging-face-launches-zerogpu-project-to-democratize-ai-gives-away-10-million-worth-of-compute/",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 💰 𝗚𝗲𝘁 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜 𝗿𝗲𝗾𝘂𝗲𝘀𝘁 ⇒ 𝘁𝗼𝗸𝗲𝗻𝗰𝗼𝘀𝘁
I've just found out about 𝙰𝚐𝚎𝚗𝚝𝙾𝚙𝚜-𝙰𝙸/𝚝𝚘𝚔𝚎𝚗𝚌𝚘𝚜𝚝 (https://github.com/AgentOps-AI/tokencost).
𝗧𝗵𝗶𝘀 𝗹𝗶𝗯𝗿𝗮𝗿𝘆 𝗴𝗶𝘃𝗲𝘀 𝘆𝗼𝘂 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗰𝗮𝗹𝗹𝘀 𝘁𝗼 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜: OpenAI, Anthropic, Mistral, AWS or Databricks...
For any model, you can use as input either string prompts or messages, and get as outputs either the price or token count.
Congrats to the AgentOps-AI team: this will be very useful when trying to get a ballpark estimate of a project's price, to compare APIs, or for precise monitoring of usage!
✨ Daily reminder: 𝗿𝘂𝗻𝗻𝗶𝗻𝗴 𝗮𝗻 𝗔𝟭𝟬𝟬 𝗰𝗼𝘀𝘁𝘀 𝘆𝗼𝘂 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 $𝟬.𝟬𝟬/𝗵𝗼𝘂𝗿 (or 0.00€ in current exchange rates) on a HF space with ZeroGPU!
Learn more on ZeroGPU 👉 https://www.datacenterdynamics.com/en/news/hugging-face-launches-zerogpu-project-to-democratize-ai-gives-away-10-million-worth-of-compute/ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg",
"fullname": "Aymeric Roucher",
"name": "m-ric",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 453,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63d10d4e8eaa4831005e92b5/S0GpNkE2ZTHNMMi4jNgyv.png"
}
] | [] | [
{
"reaction": "👍",
"users": [
"umair894",
"Pavarissy",
"kramp",
"victor",
"gabrielmbmb",
"Taylor658",
"sigridjineth",
"maywell",
"radames",
"sosoai",
"prithivMLmods",
"introvoyz041"
],
"count": 12
},
{
"reaction": "😎",
"users": [
"GPT007"
],
"count": 1
},
{
"reaction": "🔥",
"users": [
"Vanos007"
],
"count": 1
}
] | 2024-06-18T13:08:27.000Z | 2024-09-11T09:57:59.491Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2560,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png",
"fullname": "Omar Sanseviero",
"name": "osanseviero",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2833,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg",
"fullname": "Aymeric Roucher",
"name": "m-ric",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 453,
"isFollowing": false
}
] | /posts/m-ric/948457903511815 | 3,122 | 5 |
853450311709108 | [
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/nevmenandr/incoming-students-ma-dh-hse-university",
"resource": {
"type": "dataset",
"id": "nevmenandr/incoming-students-ma-dh-hse-university",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/nevmenandr/incoming-students-ma-dh-hse-university",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Dataset visualized by datawrapper",
"raw": "Dataset visualized by datawrapper",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```html\n<div style=\"min-height:494px\"><script type=\"text/javascript\" defer src=\"https://datawrapper.dwcdn.net/q3waH/embed.js?v=2\" charset=\"utf-8\"></script><noscript><img src=\"https://datawrapper.dwcdn.net/q3waH/full.png\" alt=\"\" /></noscript></div>\n```",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "<div style=\"min-height:494px\"><script type=\"text/javascript\" defer src=\"https://datawrapper.dwcdn.net/q3waH/embed.js?v=2\" charset=\"utf-8\"></script><noscript><img src=\"https://datawrapper.dwcdn.net/q3waH/full.png\" alt=\"\" /></noscript></div>",
"lang": "html"
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Data from my talk in February: ",
"raw": "Data from my talk in February: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.youtube.com/watch?v=ZfXqvIzl5fo",
"resource": null,
"url": null,
"href": "https://www.youtube.com/watch?v=ZfXqvIzl5fo",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " . Slides: ",
"raw": " . Slides: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://nevmenandr.github.io/slides/2024-02-02/slides.pdf",
"resource": null,
"url": null,
"href": "https://nevmenandr.github.io/slides/2024-02-02/slides.pdf",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ".",
"raw": ".",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | https://huggingface.co/datasets/nevmenandr/incoming-students-ma-dh-hse-university
Dataset visualized by datawrapper
```html
<div style="min-height:494px"><script type="text/javascript" defer src="https://datawrapper.dwcdn.net/q3waH/embed.js?v=2" charset="utf-8"></script><noscript><img src="https://datawrapper.dwcdn.net/q3waH/full.png" alt="" /></noscript></div>
```
Data from my talk in February: https://www.youtube.com/watch?v=ZfXqvIzl5fo . Slides: https://nevmenandr.github.io/slides/2024-02-02/slides.pdf.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/664b25abfebdc298f724bdf0/pPb3xhDAOV_aLS642kPIW.png",
"fullname": "Boris Orekhov",
"name": "nevmenandr",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/664b25abfebdc298f724bdf0/SdpAVyGxnkZrd9SSuc9yL.png"
}
] | [] | [] | 2024-06-18T12:38:10.000Z | 2024-06-18T12:47:34.092Z | [] | /posts/nevmenandr/853450311709108 | 485 | 0 |
452616192049684 | [
{
"type": "text",
"value": "Remember Will Smith eating Spaghetti? 🍝😆",
"raw": "Remember Will Smith eating Spaghetti? 🍝😆",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "AI has come a long way from generating hilariously low-quality videos to almost unrealistic realistic videos 🎥✨",
"raw": "AI has come a long way from generating hilariously low-quality videos to almost unrealistic realistic videos 🎥✨",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "But most models like ",
"raw": "But most models like ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@OpenAI",
"resource": null,
"url": null,
"href": null,
"user": "OpenAI",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " Sora, @Kling_ai , etc are not publicly available. 🚫🖥️",
"raw": " Sora, @Kling_ai , etc are not publicly available. 🚫🖥️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "But now we have ",
"raw": "But now we have ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@LumaLabsAI",
"resource": null,
"url": null,
"href": null,
"user": "LumaLabsAI",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " Dream Machine, which is publicly available for free! 🎉🆓",
"raw": " Dream Machine, which is publicly available for free! 🎉🆓",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Here is the dilemma, Sora and Kling posted some excellent examples of what the AI was capable of, and so did Luma AI. 🌟🤖",
"raw": "Here is the dilemma, Sora and Kling posted some excellent examples of what the AI was capable of, and so did Luma AI. 🌟🤖",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "But in actual use, they leave so much to be desired. 😕 Are we back to cherry-picking examples and leaking benchmarks in training data? 🍒📊",
"raw": "But in actual use, they leave so much to be desired. 😕 Are we back to cherry-picking examples and leaking benchmarks in training data? 🍒📊",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Try Dream Machine 👉 ",
"raw": "Try Dream Machine 👉 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lumalabs.ai/dream-machine",
"resource": null,
"url": null,
"href": "https://lumalabs.ai/dream-machine",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " 🌐",
"raw": " 🌐",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Remember Will Smith eating Spaghetti? 🍝😆
AI has come a long way from generating hilariously low-quality videos to almost unrealistic realistic videos 🎥✨
But most models like @OpenAI Sora, @Kling_ai , etc are not publicly available. 🚫🖥️
But now we have @LumaLabsAI Dream Machine, which is publicly available for free! 🎉🆓
Here is the dilemma, Sora and Kling posted some excellent examples of what the AI was capable of, and so did Luma AI. 🌟🤖
But in actual use, they leave so much to be desired. 😕 Are we back to cherry-picking examples and leaking benchmarks in training data? 🍒📊
Try Dream Machine 👉 https://lumalabs.ai/dream-machine 🌐
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png",
"fullname": "Kuldeep Singh Sidhu",
"name": "singhsidhukuldeep",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 187,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/0RtLpJA4U7u41nTxo6F1n.mp4"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"john3huggingface"
],
"count": 1
}
] | 2024-06-18T09:18:58.000Z | 2024-06-18T09:18:58.833Z | [] | /posts/singhsidhukuldeep/452616192049684 | 544 | 0 |
426564568525559 | [
{
"type": "text",
"value": "Hey guys! ",
"raw": "Hey guys! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@mk230580",
"resource": null,
"url": null,
"href": null,
"user": "mk230580",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@wikeeyang",
"resource": null,
"url": null,
"href": null,
"user": "wikeeyang",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Yasirkh",
"resource": null,
"url": null,
"href": null,
"user": "Yasirkh",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " & others asked how to run the Hugging Face spaces outside of the HF environment locally with their source editor and Google Colab. Here is how to do that simply 👇👇.",
"raw": " & others asked how to run the Hugging Face spaces outside of the HF environment locally with their source editor and Google Colab. Here is how to do that simply 👇👇.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📍I have just created a step-by-step procedure with a Colab demo link also attached in the repository's README.md.",
"raw": "📍I have just created a step-by-step procedure with a Colab demo link also attached in the repository's README.md.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔗: ",
"raw": "🔗: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/prithivsakthiur/how-to-run-huggingface-spaces-on-local-machine-demo",
"resource": null,
"url": null,
"href": "https://github.com/prithivsakthiur/how-to-run-huggingface-spaces-on-local-machine-demo",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Thanks for a read !!",
"raw": "Thanks for a read !!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hey guys! @mk230580 @wikeeyang @Yasirkh & others asked how to run the Hugging Face spaces outside of the HF environment locally with their source editor and Google Colab. Here is how to do that simply 👇👇.
📍I have just created a step-by-step procedure with a Colab demo link also attached in the repository's README.md.
🔗: https://github.com/prithivsakthiur/how-to-run-huggingface-spaces-on-local-machine-demo
Thanks for a read !! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg",
"fullname": "Prithiv Sakthi",
"name": "prithivMLmods",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 317,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/CkgD2vzCzJAdsTDyfWYFE.png"
}
] | [
{
"avatarUrl": "/avatars/723d56fc40eb5da593bcf00159a4543f.svg",
"fullname": "Manoj K Chauhan",
"name": "mk230580",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64572eba95082f722d1a103a/Q4BuycjA0zi2zWKtirgj8.jpeg",
"fullname": "Wikee Yang",
"name": "wikeeyang",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1
},
{
"avatarUrl": "/avatars/ab73e02668aeb662d6460a2fe5418b91.svg",
"fullname": "Yasir hamid",
"name": "Yasirkh",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null
}
] | [
{
"reaction": "❤️",
"users": [
"wikeeyang",
"osanseviero",
"xi0v",
"ashail",
"mk230580",
"ezzdev",
"prithivMLmods"
],
"count": 7
}
] | 2024-06-18T04:56:12.000Z | 2024-06-25T12:17:18.247Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64572eba95082f722d1a103a/Q4BuycjA0zi2zWKtirgj8.jpeg",
"fullname": "Wikee Yang",
"name": "wikeeyang",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
},
{
"avatarUrl": "/avatars/723d56fc40eb5da593bcf00159a4543f.svg",
"fullname": "Manoj K Chauhan",
"name": "mk230580",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1669530082268-6332d879eb5a160f2240a45d.png",
"fullname": "Mo. Ezz",
"name": "ezzdev",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg",
"fullname": "Prithiv Sakthi",
"name": "prithivMLmods",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 317,
"isFollowing": false
}
] | /posts/prithivMLmods/426564568525559 | 4,821 | 6 |
214393344089717 | [
{
"type": "text",
"value": "🚀 Sarashina1-65B",
"raw": "🚀 Sarashina1-65B",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "SB Intuitions has announced the release of Japanese Large Language Models (LLMs) with 7 billion, 13 billion, and 65 billion parameters to aid academic and industrial research and development. The company plans to develop a 390 billion parameter model by the end of 2024. The models, named Sarashina1 and Sarashina2, show significant performance improvements, especially Sarashina2 which is an enhanced version of Sarashina1. ",
"raw": "SB Intuitions has announced the release of Japanese Large Language Models (LLMs) with 7 billion, 13 billion, and 65 billion parameters to aid academic and industrial research and development. The company plans to develop a 390 billion parameter model by the end of 2024. The models, named Sarashina1 and Sarashina2, show significant performance improvements, especially Sarashina2 which is an enhanced version of Sarashina1. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Performance evaluations using five Japanese language datasets reveal that Sarashina2 outperforms other models, including continued pre-trained models. The name \"Sarashina\" originates from a historical diary linked to the headquarters' location in Tokyo's Takeshiba area, symbolizing the company's ambition to create globally utilized models from Japan.",
"raw": "Performance evaluations using five Japanese language datasets reveal that Sarashina2 outperforms other models, including continued pre-trained models. The name \"Sarashina\" originates from a historical diary linked to the headquarters' location in Tokyo's Takeshiba area, symbolizing the company's ambition to create globally utilized models from Japan.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model URL:",
"raw": "Model URL:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/sbintuitions/sarashina1-65b",
"resource": {
"type": "model",
"id": "sbintuitions/sarashina1-65b",
"discussionNum": null
},
"url": "https://huggingface.co/sbintuitions/sarashina1-65b",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/sbintuitions/sarashina2-13b",
"resource": {
"type": "model",
"id": "sbintuitions/sarashina2-13b",
"discussionNum": null
},
"url": "https://huggingface.co/sbintuitions/sarashina2-13b",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Detailed press release (in Japanese):",
"raw": "Detailed press release (in Japanese):",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.sbintuitions.co.jp/news/press/20240614_01/",
"resource": null,
"url": null,
"href": "https://www.sbintuitions.co.jp/news/press/20240614_01/",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🚀 Sarashina1-65B
SB Intuitions has announced the release of Japanese Large Language Models (LLMs) with 7 billion, 13 billion, and 65 billion parameters to aid academic and industrial research and development. The company plans to develop a 390 billion parameter model by the end of 2024. The models, named Sarashina1 and Sarashina2, show significant performance improvements, especially Sarashina2 which is an enhanced version of Sarashina1.
Performance evaluations using five Japanese language datasets reveal that Sarashina2 outperforms other models, including continued pre-trained models. The name "Sarashina" originates from a historical diary linked to the headquarters' location in Tokyo's Takeshiba area, symbolizing the company's ambition to create globally utilized models from Japan.
Model URL:
- https://huggingface.co/sbintuitions/sarashina1-65b
- https://huggingface.co/sbintuitions/sarashina2-13b
Detailed press release (in Japanese):
https://www.sbintuitions.co.jp/news/press/20240614_01/ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61a32e422172c41f121589d2/8jExNd-9fenpqw_Z1rvL6.jpeg",
"fullname": "Kaito Sugimoto",
"name": "kaisugi",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 12,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"osanseviero",
"julien-c",
"victor",
"zafina",
"yjernite",
"Nulooper"
],
"count": 6
}
] | 2024-06-18T03:18:27.000Z | 2024-06-18T03:18:27.832Z | [] | /posts/kaisugi/214393344089717 | 2,265 | 0 |
693024356063149 | [
{
"type": "text",
"value": "Join us at our remaining CVPR presentations this week! Members of PRS-ETH will be around to connect with you and discuss our presented and ongoing works:",
"raw": "Join us at our remaining CVPR presentations this week! Members of PRS-ETH will be around to connect with you and discuss our presented and ongoing works:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "💐 Marigold: Discover our work on sharp diffusion-based computer vision techniques, presented in Orals 3A track on \"3D from Single View\", Thu, June 20, 9:00-9:15 AM. Also, drop by Poster Session 3 later that day for more tangible matters! 🌚 ",
"raw": "💐 Marigold: Discover our work on sharp diffusion-based computer vision techniques, presented in Orals 3A track on \"3D from Single View\", Thu, June 20, 9:00-9:15 AM. Also, drop by Poster Session 3 later that day for more tangible matters! 🌚 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Project page: ",
"raw": "Project page: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://marigoldmonodepth.github.io/",
"resource": null,
"url": null,
"href": "https://marigoldmonodepth.github.io/",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2312.02145",
"resource": {
"type": "paper",
"id": "2312.02145",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2312.02145",
"href": null,
"user": null,
"label": "Repurposing Diffusion-Based Image Generators for Monocular Depth\n Estimation (2312.02145)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Collection: ",
"raw": "Collection: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/collections/prs-eth/marigold-6669e9e3d3ee30f48214b9ba",
"resource": null,
"url": null,
"href": "https://huggingface.co/collections/prs-eth/marigold-6669e9e3d3ee30f48214b9ba",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Space: ",
"raw": "Space: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/prs-eth/marigold-lcm",
"resource": {
"type": "space",
"id": "prs-eth/marigold-lcm",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/prs-eth/marigold-lcm",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Diffusers 🧨 tutorial: ",
"raw": "Diffusers 🧨 tutorial: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage",
"resource": null,
"url": null,
"href": "https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "⚙️ Point2CAD: Learn about our mechanical CAD model reconstruction from point clouds, presented in Poster Session 1, Wed, June 19, 10:30 AM - 12:00 PM. ",
"raw": "⚙️ Point2CAD: Learn about our mechanical CAD model reconstruction from point clouds, presented in Poster Session 1, Wed, June 19, 10:30 AM - 12:00 PM. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Project page: ",
"raw": "Project page: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.obukhov.ai/point2cad.html",
"resource": null,
"url": null,
"href": "https://www.obukhov.ai/point2cad.html",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2312.04962",
"resource": {
"type": "paper",
"id": "2312.04962",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2312.04962",
"href": null,
"user": null,
"label": "Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds (2312.04962)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🎭 DGInStyle: Explore our generative data synthesis approach as a cost-efficient alternative to real and synthetic data, presented in the Workshop on Synthetic Data for Computer Vision, Tue, June 18, at Summit 423-425. ",
"raw": "🎭 DGInStyle: Explore our generative data synthesis approach as a cost-efficient alternative to real and synthetic data, presented in the Workshop on Synthetic Data for Computer Vision, Tue, June 18, at Summit 423-425. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Details and schedule: ",
"raw": "Details and schedule: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://syndata4cv.github.io/",
"resource": null,
"url": null,
"href": "https://syndata4cv.github.io/",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Project page: ",
"raw": "Project page: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://dginstyle.github.io/",
"resource": null,
"url": null,
"href": "https://dginstyle.github.io/",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2312.03048",
"resource": {
"type": "paper",
"id": "2312.03048",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2312.03048",
"href": null,
"user": null,
"label": "DGInStyle: Domain-Generalizable Semantic Segmentation with Image\n Diffusion Models and Stylized Semantic Control (2312.03048)",
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model: ",
"raw": "Model: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/yurujaja/DGInStyle",
"resource": {
"type": "model",
"id": "yurujaja/DGInStyle",
"discussionNum": null
},
"url": "https://huggingface.co/yurujaja/DGInStyle",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Join us at our remaining CVPR presentations this week! Members of PRS-ETH will be around to connect with you and discuss our presented and ongoing works:
💐 Marigold: Discover our work on sharp diffusion-based computer vision techniques, presented in Orals 3A track on "3D from Single View", Thu, June 20, 9:00-9:15 AM. Also, drop by Poster Session 3 later that day for more tangible matters! 🌚
Project page: https://marigoldmonodepth.github.io/
Paper: https://huggingface.co/papers/2312.02145
Collection: https://huggingface.co/collections/prs-eth/marigold-6669e9e3d3ee30f48214b9ba
Space: https://huggingface.co/spaces/prs-eth/marigold-lcm
Diffusers 🧨 tutorial: https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage
⚙️ Point2CAD: Learn about our mechanical CAD model reconstruction from point clouds, presented in Poster Session 1, Wed, June 19, 10:30 AM - 12:00 PM.
Project page: https://www.obukhov.ai/point2cad.html
Paper: https://huggingface.co/papers/2312.04962
🎭 DGInStyle: Explore our generative data synthesis approach as a cost-efficient alternative to real and synthetic data, presented in the Workshop on Synthetic Data for Computer Vision, Tue, June 18, at Summit 423-425.
Details and schedule: https://syndata4cv.github.io/
Project page: https://dginstyle.github.io/
Paper: https://huggingface.co/papers/2312.03048
Model: https://huggingface.co/yurujaja/DGInStyle | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62f93abbc4817cfc0756b6f8/rGYLaq-rmoJJYotkC1VXk.jpeg",
"fullname": "Anton Obukhov",
"name": "toshas",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 68,
"isFollowing": false
} | [] | [] | [] | 2024-06-17T21:07:33.000Z | 2024-06-17T21:07:33.492Z | [] | /posts/toshas/693024356063149 | 954 | 0 |
834281122109841 | [
{
"type": "text",
"value": "A nice improvement for Hugging Face on Sheets: You can now customize your prompt and select the model of your choice directly on the sheet.",
"raw": "A nice improvement for Hugging Face on Sheets: You can now customize your prompt and select the model of your choice directly on the sheet.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Thanks to ",
"raw": "Thanks to ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@louisbrulenaudet",
"resource": null,
"url": null,
"href": null,
"user": "louisbrulenaudet",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " for the contribution. Really cool to see the community improving this tool! ",
"raw": " for the contribution. Really cool to see the community improving this tool! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Try it here: ",
"raw": "Try it here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets",
"resource": {
"type": "space",
"id": "JournalistsonHF/huggingface-on-sheets",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | A nice improvement for Hugging Face on Sheets: You can now customize your prompt and select the model of your choice directly on the sheet.
Thanks to @louisbrulenaudet for the contribution. Really cool to see the community improving this tool!
Try it here: https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 345,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/aVkknz-S2_YGCcFoXChZc.gif"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg",
"fullname": "Louis Brulé Naudet",
"name": "louisbrulenaudet",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 168
}
] | [
{
"reaction": "❤️",
"users": [
"anakin87",
"osanseviero",
"davanstrien",
"Ramikan-BR",
"not-lain",
"thomwolf",
"cminja",
"thangvip",
"boapps"
],
"count": 9
},
{
"reaction": "😎",
"users": [
"louisbrulenaudet",
"Ramikan-BR",
"not-lain"
],
"count": 3
},
{
"reaction": "🔥",
"users": [
"Leemooon",
"Ramikan-BR",
"not-lain"
],
"count": 3
},
{
"reaction": "🚀",
"users": [
"Ramikan-BR",
"not-lain"
],
"count": 2
},
{
"reaction": "👀",
"users": [
"Ramikan-BR"
],
"count": 1
}
] | 2024-06-17T20:09:07.000Z | 2024-06-17T20:09:07.655Z | [] | /posts/fdaudens/834281122109841 | 3,411 | 0 |
405118229122059 | [
{
"type": "text",
"value": "📁✨ Meet Corpus Creator! ",
"raw": "📁✨ Meet Corpus Creator! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This Gradio app (",
"raw": "This Gradio app (",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/davanstrien/corpus-creator",
"resource": {
"type": "space",
"id": "davanstrien/corpus-creator",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/davanstrien/corpus-creator",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ") takes you from your local files to a Hugging Face Dataset via Llama Index. ",
"raw": ") takes you from your local files to a Hugging Face Dataset via Llama Index. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The goal of the tool is to make it quicker and easier to quickly get some local files you want to get ready for ML tasks into a Hugging Face Dataset. Perfect for building datasets for:",
"raw": "The goal of the tool is to make it quicker and easier to quickly get some local files you want to get ready for ML tasks into a Hugging Face Dataset. Perfect for building datasets for:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- synthetic data pipelines",
"raw": "- synthetic data pipelines",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- annotation",
"raw": "- annotation",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- RAG",
"raw": "- RAG",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Other ML tasks that start from a HF dataset ",
"raw": "- Other ML tasks that start from a HF dataset ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I'll share something more substantial that uses this tomorrow 🤗",
"raw": "I'll share something more substantial that uses this tomorrow 🤗",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📁✨ Meet Corpus Creator!
This Gradio app (https://huggingface.co/spaces/davanstrien/corpus-creator) takes you from your local files to a Hugging Face Dataset via Llama Index.
The goal of the tool is to make it quicker and easier to quickly get some local files you want to get ready for ML tasks into a Hugging Face Dataset. Perfect for building datasets for:
- synthetic data pipelines
- annotation
- RAG
- Other ML tasks that start from a HF dataset
I'll share something more substantial that uses this tomorrow 🤗 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg",
"fullname": "Daniel van Strien",
"name": "davanstrien",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 401,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👍",
"users": [
"osanseviero",
"Elouarn",
"Pclanglais",
"Nymbo"
],
"count": 4
},
{
"reaction": "🔥",
"users": [
"louisbrulenaudet"
],
"count": 1
}
] | 2024-06-17T17:04:32.000Z | 2024-06-17T17:04:54.912Z | [] | /posts/davanstrien/405118229122059 | 2,206 | 0 |
587491598259528 | [
{
"type": "text",
"value": "Finally ",
"raw": "Finally ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@CVPR2024",
"resource": null,
"url": null,
"href": null,
"user": "CVPR2024",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " is here! 🩷",
"raw": " is here! 🩷",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Have you claimed your papers and linked your ",
"raw": "Have you claimed your papers and linked your ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "models/datasets/demos",
"raw": "models/datasets/demos",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "? ",
"raw": "? ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This will increase visibility and impact of your paper 💫",
"raw": "This will increase visibility and impact of your paper 💫",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "To index your papers, go here",
"raw": "To index your papers, go here",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/CVPR2024/CVPR2024-papers",
"resource": {
"type": "space",
"id": "CVPR2024/CVPR2024-papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/CVPR2024/CVPR2024-papers",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Find your paper, click on paper page link, index the paper, then click on your name (workflow is below 👇🏻)",
"raw": "Find your paper, click on paper page link, index the paper, then click on your name (workflow is below 👇🏻)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "If you'd like to add links to your paper, go here ",
"raw": "If you'd like to add links to your paper, go here ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/CVPR2024/update-CVPR2024-papers",
"resource": {
"type": "space",
"id": "CVPR2024/update-CVPR2024-papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/CVPR2024/update-CVPR2024-papers",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "login, find your paper's id, retrieve the paper, fill in the info and submit!",
"raw": "login, find your paper's id, retrieve the paper, fill in the info and submit!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Finally @CVPR2024 is here! 🩷
Have you claimed your papers and linked your models/datasets/demos?
This will increase visibility and impact of your paper 💫
To index your papers, go here
https://huggingface.co/spaces/CVPR2024/CVPR2024-papers
Find your paper, click on paper page link, index the paper, then click on your name (workflow is below 👇🏻)
If you'd like to add links to your paper, go here https://huggingface.co/spaces/CVPR2024/update-CVPR2024-papers
login, find your paper's id, retrieve the paper, fill in the info and submit! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5473,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/1dPcVT8s4tim6fLr4nSis.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"KnutJaegersberg",
"Tonic",
"Hev832",
"KingNish"
],
"count": 4
}
] | 2024-06-17T17:00:16.000Z | 2024-06-17T17:00:16.422Z | [] | /posts/merve/587491598259528 | 3,010 | 0 |
387693543890506 | [
{
"type": "text",
"value": "🧪 RAG Evaluation with 🔥 Prometheus 2 + Haystack",
"raw": "🧪 RAG Evaluation with 🔥 Prometheus 2 + Haystack",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📝 Blog post: ",
"raw": "📝 Blog post: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://haystack.deepset.ai/blog/rag-evaluation-with-prometheus-2",
"resource": null,
"url": null,
"href": "https://haystack.deepset.ai/blog/rag-evaluation-with-prometheus-2",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📓 Notebook: ",
"raw": "📓 Notebook: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prometheus2_evaluation.ipynb",
"resource": null,
"url": null,
"href": "https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prometheus2_evaluation.ipynb",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "─── ⋆⋅☆⋅⋆ ───",
"raw": "─── ⋆⋅☆⋅⋆ ───",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "When evaluating LLMs' responses, 𝐩𝐫𝐨𝐩𝐫𝐢𝐞𝐭𝐚𝐫𝐲 𝐦𝐨𝐝𝐞𝐥𝐬 like GPT-4 are commonly used due to their strong performance.",
"raw": "When evaluating LLMs' responses, 𝐩𝐫𝐨𝐩𝐫𝐢𝐞𝐭𝐚𝐫𝐲 𝐦𝐨𝐝𝐞𝐥𝐬 like GPT-4 are commonly used due to their strong performance.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "However, relying on closed models presents challenges related to data privacy 🔒, transparency, controllability, and cost 💸.",
"raw": "However, relying on closed models presents challenges related to data privacy 🔒, transparency, controllability, and cost 💸.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "On the other hand, 𝐨𝐩𝐞𝐧 𝐦𝐨𝐝𝐞𝐥𝐬 typically do not correlate well with human judgments and lack flexibility.",
"raw": "On the other hand, 𝐨𝐩𝐞𝐧 𝐦𝐨𝐝𝐞𝐥𝐬 typically do not correlate well with human judgments and lack flexibility.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔥 Prometheus 2 is a new family of open-source models designed to address these gaps:",
"raw": "🔥 Prometheus 2 is a new family of open-source models designed to address these gaps:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔹 two variants: ",
"raw": "🔹 two variants: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/prometheus-eval/prometheus-7b-v2.0",
"resource": {
"type": "model",
"id": "prometheus-eval/prometheus-7b-v2.0",
"discussionNum": null
},
"url": "https://huggingface.co/prometheus-eval/prometheus-7b-v2.0",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "; ",
"raw": "; ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0",
"resource": {
"type": "model",
"id": "prometheus-eval/prometheus-8x7b-v2.0",
"discussionNum": null
},
"url": "https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔹 trained on open-source data",
"raw": "🔹 trained on open-source data",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔹 high correlation with human evaluations and proprietary models",
"raw": "🔹 high correlation with human evaluations and proprietary models",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔹 highly flexible: capable of performing direct assessments and pairwise rankings, and allowing the definition of custom evaluation criteria.",
"raw": "🔹 highly flexible: capable of performing direct assessments and pairwise rankings, and allowing the definition of custom evaluation criteria.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "See my experiments with RAG evaluation in the links above.",
"raw": "See my experiments with RAG evaluation in the links above.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🧪 RAG Evaluation with 🔥 Prometheus 2 + Haystack
📝 Blog post: https://haystack.deepset.ai/blog/rag-evaluation-with-prometheus-2
📓 Notebook: https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prometheus2_evaluation.ipynb
─── ⋆⋅☆⋅⋆ ───
When evaluating LLMs' responses, 𝐩𝐫𝐨𝐩𝐫𝐢𝐞𝐭𝐚𝐫𝐲 𝐦𝐨𝐝𝐞𝐥𝐬 like GPT-4 are commonly used due to their strong performance.
However, relying on closed models presents challenges related to data privacy 🔒, transparency, controllability, and cost 💸.
On the other hand, 𝐨𝐩𝐞𝐧 𝐦𝐨𝐝𝐞𝐥𝐬 typically do not correlate well with human judgments and lack flexibility.
🔥 Prometheus 2 is a new family of open-source models designed to address these gaps:
🔹 two variants: https://huggingface.co/prometheus-eval/prometheus-7b-v2.0; https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0
🔹 trained on open-source data
🔹 high correlation with human evaluations and proprietary models
🔹 highly flexible: capable of performing direct assessments and pairwise rankings, and allowing the definition of custom evaluation criteria.
See my experiments with RAG evaluation in the links above.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626505d493e0b04d75710566/9rfJc9ORXU9J5a42Ev3v6.png",
"fullname": "Stefano Fiorucci",
"name": "anakin87",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 65,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/626505d493e0b04d75710566/bBvFoOnzZdF7ZJLsCsvO6.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"leonardlin",
"Marvin73"
],
"count": 2
}
] | 2024-06-17T14:25:49.000Z | 2024-06-17T15:14:47.445Z | [] | /posts/anakin87/387693543890506 | 924 | 0 |
498473804740956 | [
{
"type": "text",
"value": "My weekened project ended up being doing some testing between torchtune, axolotl, and unsloth. I *think* it's a 1:1 comparison of what LoRA fine-tuning performance looks like between the different hardware I have in my dev boxes (4090, 3090, 7900 XTX, W7900) with a few other interesting tidbits.",
"raw": "My weekened project ended up being doing some testing between torchtune, axolotl, and unsloth. I *think* it's a 1:1 comparison of what LoRA fine-tuning performance looks like between the different hardware I have in my dev boxes (4090, 3090, 7900 XTX, W7900) with a few other interesting tidbits.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Tonight I wrote up a WandB report (the panel editor is super broken in Firefox 😔) that sums up some of the more interesting bits from the results: ",
"raw": "Tonight I wrote up a WandB report (the panel editor is super broken in Firefox 😔) that sums up some of the more interesting bits from the results: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://wandb.ai/augmxnt/train-bench/reports/torchtune-vs-axolotl-vs-unsloth-Trainer-Comparison--Vmlldzo4MzU3NTAx",
"resource": null,
"url": null,
"href": "https://wandb.ai/augmxnt/train-bench/reports/torchtune-vs-axolotl-vs-unsloth-Trainer-Comparison--Vmlldzo4MzU3NTAx",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | My weekened project ended up being doing some testing between torchtune, axolotl, and unsloth. I *think* it's a 1:1 comparison of what LoRA fine-tuning performance looks like between the different hardware I have in my dev boxes (4090, 3090, 7900 XTX, W7900) with a few other interesting tidbits.
Tonight I wrote up a WandB report (the panel editor is super broken in Firefox 😔) that sums up some of the more interesting bits from the results: https://wandb.ai/augmxnt/train-bench/reports/torchtune-vs-axolotl-vs-unsloth-Trainer-Comparison--Vmlldzo4MzU3NTAx | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63a7422854f1d0225b075bfc/XGYAcDPZG5ZEsNBWG6guw.jpeg",
"fullname": "lhl",
"name": "leonardlin",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 53,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63a7422854f1d0225b075bfc/LgeEK39znDpCXYpHu9txh.png"
}
] | [] | [
{
"reaction": "👍",
"users": [
"brainhome",
"louisbrulenaudet",
"Weyaxi",
"ManniX-ITA"
],
"count": 4
}
] | 2024-06-17T13:14:37.000Z | 2024-06-17T13:14:37.450Z | [] | /posts/leonardlin/498473804740956 | 1,846 | 0 |
507372006066673 | [
{
"type": "text",
"value": "🌟 Progress in the German FineWeb edu reproduction 🌟",
"raw": "🌟 Progress in the German FineWeb edu reproduction 🌟",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We're delighted to share the launch of our new Data Quality Classification Model, designed specifically for evaluating educational content in German. This tool uses advanced machine learning techniques to assess texts across all educational levels, from primary school to university.",
"raw": "We're delighted to share the launch of our new Data Quality Classification Model, designed specifically for evaluating educational content in German. This tool uses advanced machine learning techniques to assess texts across all educational levels, from primary school to university.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔍 Inspired by Huggingface's fine web edu dataset, we've worked hard to refine data classification methods ensuring educators and learners access top-quality resources.",
"raw": "🔍 Inspired by Huggingface's fine web edu dataset, we've worked hard to refine data classification methods ensuring educators and learners access top-quality resources.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We're excited about the future as we continue improving our models and expanding our datasets.",
"raw": "We're excited about the future as we continue improving our models and expanding our datasets.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Access the model here: ",
"raw": "Access the model here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/pL-Community/GermanEduScorer-Qwen2-1.5b",
"resource": {
"type": "model",
"id": "pL-Community/GermanEduScorer-Qwen2-1.5b",
"discussionNum": null
},
"url": "https://huggingface.co/pL-Community/GermanEduScorer-Qwen2-1.5b",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🙏 A huge thank you to David and Daryoush from Vago Solutions; Björn and Jan from Ellamind / DiscoResearch for their expert insights throughout this project. Your support has been crucial.",
"raw": "🙏 A huge thank you to David and Daryoush from Vago Solutions; Björn and Jan from Ellamind / DiscoResearch for their expert insights throughout this project. Your support has been crucial.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This project was made possible by the support of PrimeLine AI.",
"raw": "This project was made possible by the support of PrimeLine AI.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🌟 Progress in the German FineWeb edu reproduction 🌟
We're delighted to share the launch of our new Data Quality Classification Model, designed specifically for evaluating educational content in German. This tool uses advanced machine learning techniques to assess texts across all educational levels, from primary school to university.
🔍 Inspired by Huggingface's fine web edu dataset, we've worked hard to refine data classification methods ensuring educators and learners access top-quality resources.
We're excited about the future as we continue improving our models and expanding our datasets.
Access the model here: https://huggingface.co/pL-Community/GermanEduScorer-Qwen2-1.5b
🙏 A huge thank you to David and Daryoush from Vago Solutions; Björn and Jan from Ellamind / DiscoResearch for their expert insights throughout this project. Your support has been crucial.
This project was made possible by the support of PrimeLine AI. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/605b1cf890a4b6bc0eef99ad/LDP6-QcCGlzMi8n5IK4Y2.jpeg",
"fullname": "Florian Zimmermeister",
"name": "flozi00",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 79,
"isFollowing": false
} | [] | [] | [
{
"reaction": "❤️",
"users": [
"philschmid",
"radames",
"DavidGF",
"neuralworm"
],
"count": 4
},
{
"reaction": "🤝",
"users": [
"philschmid"
],
"count": 1
}
] | 2024-06-17T09:46:15.000Z | 2024-06-18T09:39:39.792Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1624629516652-5ff5d596f244529b3ec0fb89.png",
"fullname": "Philipp Schmid",
"name": "philschmid",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 647,
"isFollowing": false
}
] | /posts/flozi00/507372006066673 | 1,805 | 1 |
907095261791565 | [
{
"type": "text",
"value": "Mixtral or Llama 70B on Google Spreadsheet thanks to Hugging Face's Serverless Inference API 🤗",
"raw": "Mixtral or Llama 70B on Google Spreadsheet thanks to Hugging Face's Serverless Inference API 🤗",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The Add-on is now available on the HF repo \"Journalists on Hugging Face\" and allows rapid generation of synthetic data, automatic translation, answering questions and more from simple spreadsheet cells 🖥️",
"raw": "The Add-on is now available on the HF repo \"Journalists on Hugging Face\" and allows rapid generation of synthetic data, automatic translation, answering questions and more from simple spreadsheet cells 🖥️",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Link to the 🤗 Space : ",
"raw": "Link to the 🤗 Space : ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets",
"resource": {
"type": "space",
"id": "JournalistsonHF/huggingface-on-sheets",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Although this tool was initially developed for journalists, it actually finds a much wider inking among daily users of the Google suite and the remaining use cases to be explored are numerous.",
"raw": "Although this tool was initially developed for journalists, it actually finds a much wider inking among daily users of the Google suite and the remaining use cases to be explored are numerous.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Only a free Hugging Face API key is required to start using this no-code extension.",
"raw": "Only a free Hugging Face API key is required to start using this no-code extension.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Do not hesitate to submit ideas for features that we could add!",
"raw": "Do not hesitate to submit ideas for features that we could add!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Thanks to ",
"raw": "Thanks to ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@fdaudens",
"resource": null,
"url": null,
"href": null,
"user": "fdaudens",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " for initiating this development.",
"raw": " for initiating this development.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Mixtral or Llama 70B on Google Spreadsheet thanks to Hugging Face's Serverless Inference API 🤗
The Add-on is now available on the HF repo "Journalists on Hugging Face" and allows rapid generation of synthetic data, automatic translation, answering questions and more from simple spreadsheet cells 🖥️
Link to the 🤗 Space : https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets
Although this tool was initially developed for journalists, it actually finds a much wider inking among daily users of the Google suite and the remaining use cases to be explored are numerous.
Only a free Hugging Face API key is required to start using this no-code extension.
Do not hesitate to submit ideas for features that we could add!
Thanks to @fdaudens for initiating this development. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg",
"fullname": "Louis Brulé Naudet",
"name": "louisbrulenaudet",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 168,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6459fa0f5b3111fbe83286e1/KXbHC3pQ8sI9rXXa77GBp.qt"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 345
}
] | [
{
"reaction": "👍",
"users": [
"victor",
"meiaienable",
"JuliusSandmann",
"wsuff",
"SengTak",
"kargaranamir",
"umair894",
"Lucianocosta",
"aidystark",
"kramp"
],
"count": 10
},
{
"reaction": "🚀",
"users": [
"victor",
"JuliusSandmann",
"MaziyarPanahi",
"nvhf",
"louisbrulenaudet"
],
"count": 5
}
] | 2024-06-17T08:57:26.000Z | 2024-06-18T07:26:32.733Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65eee3cdc7a83c458f2c0eba/jlhGpJtInU0zCBU61fy2M.jpeg",
"fullname": "Julius Sandmann",
"name": "JuliusSandmann",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg",
"fullname": "Louis Brulé Naudet",
"name": "louisbrulenaudet",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 168,
"isFollowing": false
}
] | /posts/louisbrulenaudet/907095261791565 | 4,056 | 4 |
194006265320510 | [
{
"type": "text",
"value": "A great work based on ChemLLM from Open-source community!",
"raw": "A great work based on ChemLLM from Open-source community!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Automatic Scientific Discovery guided by LLM!",
"raw": "Automatic Scientific Discovery guided by LLM!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/zyzisastudyreallyhardguy/LLM4SD",
"resource": null,
"url": null,
"href": "https://github.com/zyzisastudyreallyhardguy/LLM4SD",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | A great work based on ChemLLM from Open-source community!
Automatic Scientific Discovery guided by LLM!
https://github.com/zyzisastudyreallyhardguy/LLM4SD | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png",
"fullname": "Di Zhang",
"name": "qq8933",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 105,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👀",
"users": [
"louisbrulenaudet"
],
"count": 1
}
] | 2024-06-17T08:55:49.000Z | 2024-06-17T08:56:44.419Z | [] | /posts/qq8933/194006265320510 | 734 | 0 |
702375370510170 | [
{
"type": "text",
"value": "📊 Lovely to share the unique reasoning capabilities 🧠 findings of Qwen2-7B 🇨🇳 in Target Sentiment Analysis (TSA) for original texts (🇷🇺) and their translated version in English (🇺🇸), in zero-shot-learning mode.",
"raw": "📊 Lovely to share the unique reasoning capabilities 🧠 findings of Qwen2-7B 🇨🇳 in Target Sentiment Analysis (TSA) for original texts (🇷🇺) and their translated version in English (🇺🇸), in zero-shot-learning mode.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Since the last update on 1.5, I have to say:",
"raw": "Since the last update on 1.5, I have to say:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "☑️ 1. Qwen2-7B is the first model in my list that reasons 🔥 better 🔥 in Russian rather than in English; it strongly surpasses other 7B LLMs and LLaMA3-70B by correctly distributing sentiment cases (F1(PN) metric).",
"raw": "☑️ 1. Qwen2-7B is the first model in my list that reasons 🔥 better 🔥 in Russian rather than in English; it strongly surpasses other 7B LLMs and LLaMA3-70B by correctly distributing sentiment cases (F1(PN) metric).",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "☑️ 2. Surprisingly, but Qwen2-7B significantly underperformed to the \"earlier bro\" Qwen1.5-7B on texts in English. The key problem is that ~17% of answers has mixed entries of labels, so for such cases the automatic and accurate assessment is difficult. Therefore, I believe it is more about particular evaluation, rather something wrong with the model in TSA domain.",
"raw": "☑️ 2. Surprisingly, but Qwen2-7B significantly underperformed to the \"earlier bro\" Qwen1.5-7B on texts in English. The key problem is that ~17% of answers has mixed entries of labels, so for such cases the automatic and accurate assessment is difficult. Therefore, I believe it is more about particular evaluation, rather something wrong with the model in TSA domain.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "What's next? I have to checkout ",
"raw": "What's next? I have to checkout ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/Qwen/Qwen2-72B-Instruct",
"resource": {
"type": "model",
"id": "Qwen/Qwen2-72B-Instruct",
"discussionNum": null
},
"url": "https://huggingface.co/Qwen/Qwen2-72B-Instruct",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " then 🧪 If you know the best hosting for infering, please let me know 🙏",
"raw": " then 🧪 If you know the best hosting for infering, please let me know 🙏",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model: ",
"raw": "Model: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat",
"resource": {
"type": "model",
"id": "Qwen/Qwen1.5-7B-Chat",
"discussionNum": null
},
"url": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📊 Lovely to share the unique reasoning capabilities 🧠 findings of Qwen2-7B 🇨🇳 in Target Sentiment Analysis (TSA) for original texts (🇷🇺) and their translated version in English (🇺🇸), in zero-shot-learning mode.
Since the last update on 1.5, I have to say:
☑️ 1. Qwen2-7B is the first model in my list that reasons 🔥 better 🔥 in Russian rather than in English; it strongly surpasses other 7B LLMs and LLaMA3-70B by correctly distributing sentiment cases (F1(PN) metric).
☑️ 2. Surprisingly, but Qwen2-7B significantly underperformed to the "earlier bro" Qwen1.5-7B on texts in English. The key problem is that ~17% of answers has mixed entries of labels, so for such cases the automatic and accurate assessment is difficult. Therefore, I believe it is more about particular evaluation, rather something wrong with the model in TSA domain.
What's next? I have to checkout https://huggingface.co/Qwen/Qwen2-72B-Instruct then 🧪 If you know the best hosting for infering, please let me know 🙏
Model: https://huggingface.co/Qwen/Qwen1.5-7B-Chat
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg",
"fullname": "Nicolay Rusnachenko",
"name": "nicolay-r",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 48,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/e_VBOz3jb7Jr6AkxrC1_C.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/xNtOWDuXhcDhUcL6EGcWX.png"
}
] | [] | [] | 2024-06-17T07:36:36.000Z | 2024-06-17T07:37:05.591Z | [] | /posts/nicolay-r/702375370510170 | 686 | 0 |
746490498971097 | [
{
"type": "text",
"value": "I had a backlog of LoRA model weights for SDXL that I decided to prioritize this weekend and publish. I know many are using SD3 right now, however if you have the time to try them, I hope you enjoy them.",
"raw": "I had a backlog of LoRA model weights for SDXL that I decided to prioritize this weekend and publish. I know many are using SD3 right now, however if you have the time to try them, I hope you enjoy them.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I intend to start writing more fully on the thought process behind my approach to curating and training style and subject finetuning, beginning this next week.",
"raw": "I intend to start writing more fully on the thought process behind my approach to curating and training style and subject finetuning, beginning this next week.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Thank you for reading this post! You can find the models on my page and I'll drop a few previews here.",
"raw": "Thank you for reading this post! You can find the models on my page and I'll drop a few previews here.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I had a backlog of LoRA model weights for SDXL that I decided to prioritize this weekend and publish. I know many are using SD3 right now, however if you have the time to try them, I hope you enjoy them.
I intend to start writing more fully on the thought process behind my approach to curating and training style and subject finetuning, beginning this next week.
Thank you for reading this post! You can find the models on my page and I'll drop a few previews here.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/HH1Tkb1iypD6tdzQ4Hex4.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/VQq46kKoXIXq4z4Anlg-t.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/zmh6iVKeofazeYzBCipQQ.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/AYb_cocrG0E9SzaZIzz-s.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/0DVxXtq3Ukar1-Q1jEOPc.jpeg"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"fffiloni",
"alvdansen",
"LaughterOnWater",
"mmarrder",
"thliang01",
"dicksondickson",
"MaziyarPanahi",
"victor",
"Brukolakos",
"s3nh",
"not-lain",
"xumijiezi622",
"Citaman",
"LizzyAsf",
"ijohn07",
"louisbrulenaudet",
"BennyKok",
"yagmurx",
"zhaoyafei",
"multimodalart",
"MQSI",
"adamelliotfields",
"dillfrescott",
"SengTak",
"milkowski",
"KingNish",
"comarproject",
"ZekiJ",
"E2GO",
"Cordobian",
"Viktor1233",
"clem"
],
"count": 32
},
{
"reaction": "👍",
"users": [
"Norod78",
"Brukolakos",
"clefourrier",
"Dennyanswer",
"s3nh",
"not-lain",
"zhaoyafei",
"multimodalart",
"dillfrescott",
"Cordobian",
"clem"
],
"count": 11
}
] | 2024-06-16T21:48:32.000Z | 2024-06-19T13:37:00.717Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 896,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png",
"fullname": "araminta_k",
"name": "alvdansen",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 493,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/FSEOb6LpQ2TSgQbl67Kpw.jpeg",
"fullname": "wangsai",
"name": "CHINAwangsai",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/alvdansen/746490498971097 | 6,781 | 4 |
459721346578286 | [
{
"type": "text",
"value": "Observability and Retrieval Augmented Generation in 10 lines of Code",
"raw": "Observability and Retrieval Augmented Generation in 10 lines of Code",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Tutorial: ",
"raw": "Tutorial: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.youtube.com/watch?v=VCQ0Cw-GF2U",
"resource": null,
"url": null,
"href": "https://www.youtube.com/watch?v=VCQ0Cw-GF2U",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This video covers:",
"raw": "This video covers:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Why we need observability?",
"raw": "- Why we need observability?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Implementation of RAG using BeyondLLM",
"raw": "- Implementation of RAG using BeyondLLM",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "- Monitor and Track LLM Observability using Phoenix ",
"raw": "- Monitor and Track LLM Observability using Phoenix ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Observability and Retrieval Augmented Generation in 10 lines of Code
Tutorial: https://www.youtube.com/watch?v=VCQ0Cw-GF2U
This video covers:
- Why we need observability?
- Implementation of RAG using BeyondLLM
- Monitor and Track LLM Observability using Phoenix | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630f3058236215d0b7078806/TRTdqAZpT1bJg_RvGgxlg.jpeg",
"fullname": "Tarun Jain",
"name": "lucifertrj",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 23,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🔥",
"users": [
"donovan0902"
],
"count": 1
}
] | 2024-06-16T13:02:49.000Z | 2024-06-16T13:02:49.101Z | [] | /posts/lucifertrj/459721346578286 | 1,679 | 0 |
279432787574723 | [
{
"type": "text",
"value": "🖥️ Do you have 1TB+ VRAM?",
"raw": "🖥️ Do you have 1TB+ VRAM?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🎉 Well, good news for you!",
"raw": "🎉 Well, good news for you!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👨🔬 Good folks at ",
"raw": "👨🔬 Good folks at ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@nvidia",
"resource": null,
"url": null,
"href": null,
"user": "nvidia",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " have released Nemotron 4 340B, the new open-source LLM king, rivalling GPT-4! 🚀",
"raw": " have released Nemotron 4 340B, the new open-source LLM king, rivalling GPT-4! 🚀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📊 340B parameter models in 3 flavours: base, reward, and instruct models",
"raw": "📊 340B parameter models in 3 flavours: base, reward, and instruct models",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🎯 It's a dense model, not MoE",
"raw": "🎯 It's a dense model, not MoE",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👓 4k context window",
"raw": "👓 4k context window",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📚 9T tokens training data, 2 phase training (8T pre-train + 1T continued pre-training)",
"raw": "📚 9T tokens training data, 2 phase training (8T pre-train + 1T continued pre-training)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🌍 Trained on 50+ languages and 40+ coding languages (70% training data is English, 15% multi-lingual, 15% code)",
"raw": "🌍 Trained on 50+ languages and 40+ coding languages (70% training data is English, 15% multi-lingual, 15% code)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📅 June 2023 training data cut-off",
"raw": "📅 June 2023 training data cut-off",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "💻 To deploy needs 8x H200/ 16x H100/ 16x A100 80GB for BF16 Inference (about 8x H100 in int4)",
"raw": "💻 To deploy needs 8x H200/ 16x H100/ 16x A100 80GB for BF16 Inference (about 8x H100 in int4)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🏆 Of course, it beats Llama 3 70B on MMLU (81.1), Arena Hard (54.2), and GSM8K (92.4) ",
"raw": "🏆 Of course, it beats Llama 3 70B on MMLU (81.1), Arena Hard (54.2), and GSM8K (92.4) ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🤖 But beaten by Qwen 2 on HumanEval and MTBench which is a 72B parameter model",
"raw": "🤖 But beaten by Qwen 2 on HumanEval and MTBench which is a 72B parameter model",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔧 Used SFT, DPO, and RPO. RLHF via Nemo Aligner framework to align the model",
"raw": "🔧 Used SFT, DPO, and RPO. RLHF via Nemo Aligner framework to align the model",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📊 98% of alignment data was synthetically generated",
"raw": "📊 98% of alignment data was synthetically generated",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📄 Nvidia open licence with commercial use allowed",
"raw": "📄 Nvidia open licence with commercial use allowed",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "¯\\_(ツ)_/¯",
"raw": "¯\\_(ツ)_/¯",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "😅 Glad to see more open models but this is one confusing fellow! ",
"raw": "😅 Glad to see more open models but this is one confusing fellow! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🤨340B parameter model that is narrowly beating 70B models? Starts failing against 72B models? Sounds like a model for synthetic data generation! But then it has 4k context?",
"raw": "🤨340B parameter model that is narrowly beating 70B models? Starts failing against 72B models? Sounds like a model for synthetic data generation! But then it has 4k context?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔗 Models: ",
"raw": "🔗 Models: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911",
"resource": {
"type": "collection",
"id": "nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911",
"discussionNum": null
},
"url": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📑 Paper: ",
"raw": "📑 Paper: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://research.nvidia.com/publication/2024-06_nemotron-4-340b",
"resource": null,
"url": null,
"href": "https://research.nvidia.com/publication/2024-06_nemotron-4-340b",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🖥️ Do you have 1TB+ VRAM?
🎉 Well, good news for you!
👨🔬 Good folks at @nvidia have released Nemotron 4 340B, the new open-source LLM king, rivalling GPT-4! 🚀
📊 340B parameter models in 3 flavours: base, reward, and instruct models
🎯 It's a dense model, not MoE
👓 4k context window
📚 9T tokens training data, 2 phase training (8T pre-train + 1T continued pre-training)
🌍 Trained on 50+ languages and 40+ coding languages (70% training data is English, 15% multi-lingual, 15% code)
📅 June 2023 training data cut-off
💻 To deploy needs 8x H200/ 16x H100/ 16x A100 80GB for BF16 Inference (about 8x H100 in int4)
🏆 Of course, it beats Llama 3 70B on MMLU (81.1), Arena Hard (54.2), and GSM8K (92.4)
🤖 But beaten by Qwen 2 on HumanEval and MTBench which is a 72B parameter model
🔧 Used SFT, DPO, and RPO. RLHF via Nemo Aligner framework to align the model
📊 98% of alignment data was synthetically generated
📄 Nvidia open licence with commercial use allowed
¯\_(ツ)_/¯
😅 Glad to see more open models but this is one confusing fellow!
🤨340B parameter model that is narrowly beating 70B models? Starts failing against 72B models? Sounds like a model for synthetic data generation! But then it has 4k context?
🔗 Models: https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911
📑 Paper: https://research.nvidia.com/publication/2024-06_nemotron-4-340b | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png",
"fullname": "Kuldeep Singh Sidhu",
"name": "singhsidhukuldeep",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 187,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/nZKkW8jBNopLPLWadsX1K.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"Carlainsworth",
"osanseviero"
],
"count": 2
}
] | 2024-06-16T05:29:04.000Z | 2024-06-16T05:29:04.427Z | [] | /posts/singhsidhukuldeep/279432787574723 | 1,669 | 0 |
814965230274582 | [
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/nevmenandr/w2v-russian-tolstoy",
"resource": {
"type": "model",
"id": "nevmenandr/w2v-russian-tolstoy",
"discussionNum": null
},
"url": "https://huggingface.co/nevmenandr/w2v-russian-tolstoy",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```python\nimport gensim\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n%matplotlib inline\n\nimport seaborn as sns\nsns.set_style(\"darkgrid\")\n\nfrom sklearn.decomposition import PCA\nfrom sklearn.manifold import TSNE\n\nmodelLNT2 = Word2Vec.load(\"cbow_300_10.model\")\n\n# skip some code... for full version see model's card\n\ntsnescatterplot(modelLNT2, 'жизнь_S', [i[0] for i in modelLNT2.wv.most_similar(negative=[\"жизнь_S\"])])\n```",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "import gensim\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n%matplotlib inline\n\nimport seaborn as sns\nsns.set_style(\"darkgrid\")\n\nfrom sklearn.decomposition import PCA\nfrom sklearn.manifold import TSNE\n\nmodelLNT2 = Word2Vec.load(\"cbow_300_10.model\")\n\n# skip some code... for full version see model's card\n\ntsnescatterplot(modelLNT2, 'жизнь_S', [i[0] for i in modelLNT2.wv.most_similar(negative=[\"жизнь_S\"])])",
"lang": "python"
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "life by Tolstoy (w2v):",
"raw": "life by Tolstoy (w2v):",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | https://huggingface.co/nevmenandr/w2v-russian-tolstoy
```python
import gensim
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set_style("darkgrid")
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
modelLNT2 = Word2Vec.load("cbow_300_10.model")
# skip some code... for full version see model's card
tsnescatterplot(modelLNT2, 'жизнь_S', [i[0] for i in modelLNT2.wv.most_similar(negative=["жизнь_S"])])
```
life by Tolstoy (w2v):
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/664b25abfebdc298f724bdf0/pPb3xhDAOV_aLS642kPIW.png",
"fullname": "Boris Orekhov",
"name": "nevmenandr",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/664b25abfebdc298f724bdf0/HTMZl_iQa7SN1ykAz_1gr.png"
}
] | [] | [] | 2024-06-16T01:06:57.000Z | 2024-06-16T01:06:57.721Z | [] | /posts/nevmenandr/814965230274582 | 1,311 | 0 |
778066171755094 | [
{
"type": "text",
"value": "Just published \"CryptGPT: A Simple Approach to Privacy-Preserving Language Models Using the Vigenere Cipher\".",
"raw": "Just published \"CryptGPT: A Simple Approach to Privacy-Preserving Language Models Using the Vigenere Cipher\".",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/diwank/cryptgpt-part1",
"resource": null,
"url": null,
"href": "https://huggingface.co/blog/diwank/cryptgpt-part1",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "tl;dr - we pretrained a gpt-2 tokenizer and model from scratch on a dataset encrypted with Vigenere cipher and it performs as well as regular gpt-2. Except in order to use it, you need to know the encryption key.",
"raw": "tl;dr - we pretrained a gpt-2 tokenizer and model from scratch on a dataset encrypted with Vigenere cipher and it performs as well as regular gpt-2. Except in order to use it, you need to know the encryption key.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "links:",
"raw": "links:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/creatorrr/cryptgpt",
"resource": null,
"url": null,
"href": "https://github.com/creatorrr/cryptgpt",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/diwank/cryptgpt",
"resource": {
"type": "model",
"id": "diwank/cryptgpt",
"discussionNum": null
},
"url": "https://huggingface.co/diwank/cryptgpt",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/diwank/cryptgpt-large",
"resource": {
"type": "model",
"id": "diwank/cryptgpt-large",
"discussionNum": null
},
"url": "https://huggingface.co/diwank/cryptgpt-large",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Just published "CryptGPT: A Simple Approach to Privacy-Preserving Language Models Using the Vigenere Cipher".
https://huggingface.co/blog/diwank/cryptgpt-part1
tl;dr - we pretrained a gpt-2 tokenizer and model from scratch on a dataset encrypted with Vigenere cipher and it performs as well as regular gpt-2. Except in order to use it, you need to know the encryption key.
links:
https://github.com/creatorrr/cryptgpt
https://huggingface.co/diwank/cryptgpt
https://huggingface.co/diwank/cryptgpt-large | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6093a02dc4a92d63a91c5236/yUte6V0FU0BvVFAbON-9n.jpeg",
"fullname": "Diwank Tomer",
"name": "diwank",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 28,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👍",
"users": [
"algorithm"
],
"count": 1
},
{
"reaction": "🤗",
"users": [
"pduf"
],
"count": 1
}
] | 2024-06-15T23:06:38.000Z | 2024-06-20T14:15:59.714Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6093a02dc4a92d63a91c5236/yUte6V0FU0BvVFAbON-9n.jpeg",
"fullname": "Diwank Tomer",
"name": "diwank",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 28,
"isFollowing": false
},
{
"avatarUrl": "/avatars/744eddaa7dfc34a57df9ce32a78059a0.svg",
"fullname": "Tyrone Pierce",
"name": "piercyy",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
}
] | /posts/diwank/778066171755094 | 2,141 | 2 |
379860890167829 | [
{
"type": "text",
"value": "I've tried out my new Space for copying Websites with Gemini 1.5 Flash and i gave it a image of Huggingchat. The results were interesting, but you can see it for yourself.",
"raw": "I've tried out my new Space for copying Websites with Gemini 1.5 Flash and i gave it a image of Huggingchat. The results were interesting, but you can see it for yourself.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Space:",
"raw": "Space:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/L-AI/Gemini-UI-Generator",
"resource": {
"type": "space",
"id": "L-AI/Gemini-UI-Generator",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/L-AI/Gemini-UI-Generator",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Website-Demo: ",
"raw": "Website-Demo: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://leunos.com/hf-chat-fake",
"resource": null,
"url": null,
"href": "https://leunos.com/hf-chat-fake",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Screenshot:",
"raw": "Screenshot:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I've tried out my new Space for copying Websites with Gemini 1.5 Flash and i gave it a image of Huggingchat. The results were interesting, but you can see it for yourself.
Space:
https://huggingface.co/spaces/L-AI/Gemini-UI-Generator
Website-Demo:
https://leunos.com/hf-chat-fake
Screenshot: | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641a05a7f5e9c66105fec9b2/INWVc96PQFO0ZPciozg7w.jpeg",
"fullname": "Artur Lauche",
"name": "Artples",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 29,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/641a05a7f5e9c66105fec9b2/0cnjG-eFIuwzV4zx7nQc9.png"
}
] | [] | [
{
"reaction": "➕",
"users": [
"victor"
],
"count": 1
},
{
"reaction": "👀",
"users": [
"victor"
],
"count": 1
},
{
"reaction": "🔥",
"users": [
"victor"
],
"count": 1
}
] | 2024-06-15T16:07:23.000Z | 2024-07-06T16:51:28.391Z | [
{
"avatarUrl": "/avatars/08bf9559d8046f18f608960dd08b6e8d.svg",
"fullname": "Roger C",
"name": "allknowingroger",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 53,
"isFollowing": false
}
] | /posts/Artples/379860890167829 | 2,727 | 1 |
502634149971890 | [
{
"type": "text",
"value": "Hello!",
"raw": "Hello!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I was experimenting with multi-bot interactions for practical solutions, such as code synthesis and editing. This has, so far, led to many well-made templates and no working code, but I still feel a template this lovely is worthy of use. Enjoy! 🤗 ",
"raw": "I was experimenting with multi-bot interactions for practical solutions, such as code synthesis and editing. This has, so far, led to many well-made templates and no working code, but I still feel a template this lovely is worthy of use. Enjoy! 🤗 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://colab.research.google.com/gist/SMeyersMrOvkill/2ed6cbc305bc5bd62fcf1f7aab15f7b9/voice_memos.ipynb",
"resource": null,
"url": null,
"href": "https://colab.research.google.com/gist/SMeyersMrOvkill/2ed6cbc305bc5bd62fcf1f7aab15f7b9/voice_memos.ipynb",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Hello!
I was experimenting with multi-bot interactions for practical solutions, such as code synthesis and editing. This has, so far, led to many well-made templates and no working code, but I still feel a template this lovely is worthy of use. Enjoy! 🤗
https://colab.research.google.com/gist/SMeyersMrOvkill/2ed6cbc305bc5bd62fcf1f7aab15f7b9/voice_memos.ipynb | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png",
"fullname": "Samuel L Meyers",
"name": "MrOvkill",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 31,
"isFollowing": false
} | [] | [] | [] | 2024-06-15T14:06:51.000Z | 2024-06-15T14:06:51.279Z | [] | /posts/MrOvkill/502634149971890 | 931 | 0 |
358807807171232 | [
{
"type": "text",
"value": "Together MoA is a really interesting approach based on open source models!",
"raw": "Together MoA is a really interesting approach based on open source models!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "\"We introduce Mixture of Agents (MoA), an approach to harness the collective strengths of multiple LLMs to improve state-of-the-art quality. And we provide a reference implementation, Together MoA, which leverages several open-source LLM agents to achieve a score of 65.1% on AlpacaEval 2.0, surpassing prior leader GPT-4o (57.5%).\"",
"raw": "\"We introduce Mixture of Agents (MoA), an approach to harness the collective strengths of multiple LLMs to improve state-of-the-art quality. And we provide a reference implementation, Together MoA, which leverages several open-source LLM agents to achieve a score of 65.1% on AlpacaEval 2.0, surpassing prior leader GPT-4o (57.5%).\"",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Read more here: ",
"raw": "Read more here: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.together.ai/blog/together-moa",
"resource": null,
"url": null,
"href": "https://www.together.ai/blog/together-moa",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "PS: they provide some demo code: (",
"raw": "PS: they provide some demo code: (",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/togethercomputer/MoA/blob/main/bot.py",
"resource": null,
"url": null,
"href": "https://github.com/togethercomputer/MoA/blob/main/bot.py",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ") - if someone release a Space for it it could go 🚀",
"raw": ") - if someone release a Space for it it could go 🚀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Together MoA is a really interesting approach based on open source models!
"We introduce Mixture of Agents (MoA), an approach to harness the collective strengths of multiple LLMs to improve state-of-the-art quality. And we provide a reference implementation, Together MoA, which leverages several open-source LLM agents to achieve a score of 65.1% on AlpacaEval 2.0, surpassing prior leader GPT-4o (57.5%)."
Read more here: https://www.together.ai/blog/together-moa
PS: they provide some demo code: (https://github.com/togethercomputer/MoA/blob/main/bot.py) - if someone release a Space for it it could go 🚀 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2560,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f17f0a0925b9863e28ad517/-xZS1DKoHtfjG0r_hfcl8.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"KingNish",
"GPT007",
"SixOpen",
"Choms",
"SizorCloud",
"nicolay-r",
"osanseviero",
"louisbrulenaudet"
],
"count": 8
},
{
"reaction": "❤️",
"users": [
"Jose7juanFdz",
"Carlainsworth"
],
"count": 2
},
{
"reaction": "😎",
"users": [
"Jose7juanFdz"
],
"count": 1
}
] | 2024-06-15T12:28:11.000Z | 2024-06-16T11:24:06.295Z | [
{
"avatarUrl": "/avatars/084b2b4c764adb79422f4ec7f604ffd9.svg",
"fullname": "E",
"name": "SixOpen",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 8,
"isFollowing": false
}
] | /posts/victor/358807807171232 | 3,996 | 1 |
258338325590711 | [
{
"type": "text",
"value": "📊 Just measured reasoning capabilities 🧠 of Qwen1.5-7B 🇨🇳 in Target Sentiment Analysis (TSA) both for original texts (🇷🇺) and translated in English (🇺🇸), in zero-shot-learning mode. Here is what I've noticed:",
"raw": "📊 Just measured reasoning capabilities 🧠 of Qwen1.5-7B 🇨🇳 in Target Sentiment Analysis (TSA) both for original texts (🇷🇺) and translated in English (🇺🇸), in zero-shot-learning mode. Here is what I've noticed:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "☑️ 1. Huge gap 📈 with the smaller Qwen1.5 and Qwen2 (1.8B and 1.8B). Qwen1.5-7B strongly outperforms their \"smaller bros\" so that case when scale of the model matters.",
"raw": "☑️ 1. Huge gap 📈 with the smaller Qwen1.5 and Qwen2 (1.8B and 1.8B). Qwen1.5-7B strongly outperforms their \"smaller bros\" so that case when scale of the model matters.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "☑️ 2. Qwen1.5-7B in english (🇺🇸) behaves similar but slightly underperforming 📉 to the most latest 7B alternatives ... and even including Phi-3-small (3.4B)",
"raw": "☑️ 2. Qwen1.5-7B in english (🇺🇸) behaves similar but slightly underperforming 📉 to the most latest 7B alternatives ... and even including Phi-3-small (3.4B)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "☑️ 3. On texts in (🇷🇺) there is a certain underperforming 📉 gap between the most latest 7B alternatives: F1=34.1, other 7B starts with 40.23.",
"raw": "☑️ 3. On texts in (🇷🇺) there is a certain underperforming 📉 gap between the most latest 7B alternatives: F1=34.1, other 7B starts with 40.23.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "In terms of responses, for non-english texts (🇷🇺) model answers strict and behaves similar to FlanT5. ",
"raw": "In terms of responses, for non-english texts (🇷🇺) model answers strict and behaves similar to FlanT5. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Curious about improvements in Qwen2-7B 🔥",
"raw": "Curious about improvements in Qwen2-7B 🔥",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model: ",
"raw": "Model: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat",
"resource": {
"type": "model",
"id": "Qwen/Qwen1.5-7B-Chat",
"discussionNum": null
},
"url": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Benchmark: ",
"raw": "Benchmark: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark",
"resource": null,
"url": null,
"href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Dataset: ",
"raw": "Dataset: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation",
"resource": null,
"url": null,
"href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)",
"raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Collection: ",
"raw": "Collection: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101",
"resource": null,
"url": null,
"href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📊 Just measured reasoning capabilities 🧠 of Qwen1.5-7B 🇨🇳 in Target Sentiment Analysis (TSA) both for original texts (🇷🇺) and translated in English (🇺🇸), in zero-shot-learning mode. Here is what I've noticed:
☑️ 1. Huge gap 📈 with the smaller Qwen1.5 and Qwen2 (1.8B and 1.8B). Qwen1.5-7B strongly outperforms their "smaller bros" so that case when scale of the model matters.
☑️ 2. Qwen1.5-7B in english (🇺🇸) behaves similar but slightly underperforming 📉 to the most latest 7B alternatives ... and even including Phi-3-small (3.4B)
☑️ 3. On texts in (🇷🇺) there is a certain underperforming 📉 gap between the most latest 7B alternatives: F1=34.1, other 7B starts with 40.23.
In terms of responses, for non-english texts (🇷🇺) model answers strict and behaves similar to FlanT5.
Curious about improvements in Qwen2-7B 🔥
Model: https://huggingface.co/Qwen/Qwen1.5-7B-Chat
Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark
Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation
Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)
Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg",
"fullname": "Nicolay Rusnachenko",
"name": "nicolay-r",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 48,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/7n8fhrAzRv_e8fcUaOqff.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/Br57pmXy2Hsi96wKlVwl-.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"victor"
],
"count": 1
}
] | 2024-06-15T11:06:27.000Z | 2024-06-15T15:18:06.539Z | [
{
"avatarUrl": "/avatars/d7fdc6472f7221dd56af8f3267605133.svg",
"fullname": "yaw",
"name": "megoyaw3",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg",
"fullname": "Nicolay Rusnachenko",
"name": "nicolay-r",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 48,
"isFollowing": false
}
] | /posts/nicolay-r/258338325590711 | 871 | 2 |
519779997448966 | [
{
"type": "text",
"value": "I've published several older versions of Vokan! Sometimes, they may sound more natural, but less like the target speaker.",
"raw": "I've published several older versions of Vokan! Sometimes, they may sound more natural, but less like the target speaker.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Please check em out!",
"raw": "Please check em out!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/Korakoe/Vokan-V0.5",
"resource": {
"type": "space",
"id": "Korakoe/Vokan-V0.5",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/Korakoe/Vokan-V0.5",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/ShoukanLabs/Vokan",
"resource": {
"type": "model",
"id": "ShoukanLabs/Vokan",
"discussionNum": null
},
"url": "https://huggingface.co/ShoukanLabs/Vokan",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I've published several older versions of Vokan! Sometimes, they may sound more natural, but less like the target speaker.
Please check em out!
https://huggingface.co/spaces/Korakoe/Vokan-V0.5
https://huggingface.co/ShoukanLabs/Vokan
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/616263112bae832775ff27bb/xhEDE94JRvG9r-FT5MTYE.jpeg",
"fullname": "Buttercream",
"name": "Korakoe",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 29,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🚀",
"users": [
"victor",
"YaTharThShaRma999",
"not-lain",
"Gatozu35",
"Kaiden423"
],
"count": 5
}
] | 2024-06-15T07:12:06.000Z | 2024-06-22T16:08:49.017Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2560,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 896,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/616263112bae832775ff27bb/xhEDE94JRvG9r-FT5MTYE.jpeg",
"fullname": "Buttercream",
"name": "Korakoe",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 29,
"isFollowing": false
}
] | /posts/Korakoe/519779997448966 | 2,884 | 4 |
546664231772692 | [
{
"type": "text",
"value": "🚀 llava-calm2-siglip",
"raw": "🚀 llava-calm2-siglip",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "CyberAgent Inc. has announced the public release of \"llava-calm2-siglip,\" a 7.5 billion parameter Vision Language Model (VLM) for Japanese, available for commercial use. This model, trained primarily on a high-quality Japanese dataset, is accessible on Hugging Face Hub under an Apache-2.0 license. The advancement aims to improve Japanese language-specific VLMs, which are fewer compared to English-centric models.",
"raw": "CyberAgent Inc. has announced the public release of \"llava-calm2-siglip,\" a 7.5 billion parameter Vision Language Model (VLM) for Japanese, available for commercial use. This model, trained primarily on a high-quality Japanese dataset, is accessible on Hugging Face Hub under an Apache-2.0 license. The advancement aims to improve Japanese language-specific VLMs, which are fewer compared to English-centric models.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Model URL:",
"raw": "Model URL:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/cyberagent/llava-calm2-siglip",
"resource": {
"type": "model",
"id": "cyberagent/llava-calm2-siglip",
"discussionNum": null
},
"url": "https://huggingface.co/cyberagent/llava-calm2-siglip",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Demo URL:",
"raw": "Demo URL:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/cyberagent/llava-calm2-preview",
"resource": {
"type": "space",
"id": "cyberagent/llava-calm2-preview",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/cyberagent/llava-calm2-preview",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Detailed press release (in Japanese): ",
"raw": "Detailed press release (in Japanese): ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.cyberagent.co.jp/news/detail/id=30344",
"resource": null,
"url": null,
"href": "https://www.cyberagent.co.jp/news/detail/id=30344",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🚀 llava-calm2-siglip
CyberAgent Inc. has announced the public release of "llava-calm2-siglip," a 7.5 billion parameter Vision Language Model (VLM) for Japanese, available for commercial use. This model, trained primarily on a high-quality Japanese dataset, is accessible on Hugging Face Hub under an Apache-2.0 license. The advancement aims to improve Japanese language-specific VLMs, which are fewer compared to English-centric models.
Model URL:
https://huggingface.co/cyberagent/llava-calm2-siglip
Demo URL:
https://huggingface.co/spaces/cyberagent/llava-calm2-preview
Detailed press release (in Japanese): https://www.cyberagent.co.jp/news/detail/id=30344 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61a32e422172c41f121589d2/8jExNd-9fenpqw_Z1rvL6.jpeg",
"fullname": "Kaito Sugimoto",
"name": "kaisugi",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 12,
"isFollowing": false
} | [] | [] | [
{
"reaction": "🚀",
"users": [
"victor",
"osanseviero"
],
"count": 2
}
] | 2024-06-15T05:49:23.000Z | 2024-06-15T06:49:48.023Z | [] | /posts/kaisugi/546664231772692 | 868 | 0 |
502102160707781 | [
{
"type": "text",
"value": "Chatting with llava is tricky",
"raw": "Chatting with llava is tricky",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/nroggendorff/llava",
"resource": {
"type": "space",
"id": "nroggendorff/llava",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/nroggendorff/llava",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Chatting with llava is tricky
https://huggingface.co/spaces/nroggendorff/llava | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 137,
"isFollowing": false
} | [] | [] | [
{
"reaction": "👀",
"users": [
"victor"
],
"count": 1
}
] | 2024-06-14T21:05:01.000Z | 2024-06-14T21:05:01.978Z | [] | /posts/nroggendorff/502102160707781 | 1,147 | 0 |
886963574754876 | [
{
"type": "text",
"value": "🔍 Remember Tensorboard graph visualizer?",
"raw": "🔍 Remember Tensorboard graph visualizer?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🚀 ",
"raw": "🚀 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Google",
"resource": null,
"url": null,
"href": null,
"user": "Google",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " just released Model Explorer, a Tensorboard graph visualizer on steroids 💪.",
"raw": " just released Model Explorer, a Tensorboard graph visualizer on steroids 💪.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🛠️ Model Explorer is a graph visualization tool designed to improve understanding, debugging, and optimizing machine learning (ML) models, especially large ones.",
"raw": "🛠️ Model Explorer is a graph visualization tool designed to improve understanding, debugging, and optimizing machine learning (ML) models, especially large ones.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🎯 It addresses challenges in traditional graph visualization tools by implementing a hierarchical layout and GPU-accelerated graph rendering, which enhances performance and usability.",
"raw": "🎯 It addresses challenges in traditional graph visualization tools by implementing a hierarchical layout and GPU-accelerated graph rendering, which enhances performance and usability.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🌐 The tool supports visualization of large-scale ML models by displaying hierarchical information, which simplifies understanding complex model architectures.",
"raw": "🌐 The tool supports visualization of large-scale ML models by displaying hierarchical information, which simplifies understanding complex model architectures.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔑 Key features include layer-by-layer exploration 🔍, side-by-side graph comparison for debugging conversion errors 🐛, and per-node data overlays for identifying performance issues 📈.",
"raw": "🔑 Key features include layer-by-layer exploration 🔍, side-by-side graph comparison for debugging conversion errors 🐛, and per-node data overlays for identifying performance issues 📈.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "👨💻 Originally developed for Google's internal use, Model Explorer is now available publicly as part of the Google AI Edge family of products and even runs directly in colab!",
"raw": "👨💻 Originally developed for Google's internal use, Model Explorer is now available publicly as part of the Google AI Edge family of products and even runs directly in colab!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "🔗 Colab: ",
"raw": "🔗 Colab: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/google-ai-edge/model-explorer/blob/main/example_colabs/quick_start.ipynb",
"resource": null,
"url": null,
"href": "https://github.com/google-ai-edge/model-explorer/blob/main/example_colabs/quick_start.ipynb",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "📰 Blog: ",
"raw": "📰 Blog: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://research.google/blog/model-explorer/",
"resource": null,
"url": null,
"href": "https://research.google/blog/model-explorer/",
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 🔍 Remember Tensorboard graph visualizer?
🚀 @Google just released Model Explorer, a Tensorboard graph visualizer on steroids 💪.
🛠️ Model Explorer is a graph visualization tool designed to improve understanding, debugging, and optimizing machine learning (ML) models, especially large ones.
🎯 It addresses challenges in traditional graph visualization tools by implementing a hierarchical layout and GPU-accelerated graph rendering, which enhances performance and usability.
🌐 The tool supports visualization of large-scale ML models by displaying hierarchical information, which simplifies understanding complex model architectures.
🔑 Key features include layer-by-layer exploration 🔍, side-by-side graph comparison for debugging conversion errors 🐛, and per-node data overlays for identifying performance issues 📈.
👨💻 Originally developed for Google's internal use, Model Explorer is now available publicly as part of the Google AI Edge family of products and even runs directly in colab!
🔗 Colab: https://github.com/google-ai-edge/model-explorer/blob/main/example_colabs/quick_start.ipynb
📰 Blog: https://research.google/blog/model-explorer/ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png",
"fullname": "Kuldeep Singh Sidhu",
"name": "singhsidhukuldeep",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 187,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/yIEFwrPxuBLJdaqumGF5f.mp4"
}
] | [] | [
{
"reaction": "👍",
"users": [
"victor"
],
"count": 1
}
] | 2024-06-14T21:00:34.000Z | 2024-06-15T12:37:26.597Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2560,
"isFollowing": false
}
] | /posts/singhsidhukuldeep/886963574754876 | 973 | 1 |
901426166160716 | [
{
"type": "text",
"value": "Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀",
"raw": "Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911",
"resource": {
"type": "collection",
"id": "nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911",
"discussionNum": null
},
"url": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀
https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/651e96991b97c9f33d26bde6/-Bqs6qrmz0yCfwtB2e-6q.jpeg",
"fullname": "Elie Bakouch",
"name": "eliebak",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 48,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/651e96991b97c9f33d26bde6/EX_C_dnpQGFJzhEhX07SF.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/651e96991b97c9f33d26bde6/-RHYI8wd5O1XkIJgEnDQ3.png"
}
] | [] | [
{
"reaction": "🤗",
"users": [
"paulglx"
],
"count": 1
}
] | 2024-06-14T18:51:23.000Z | 2024-06-14T18:51:23.515Z | [] | /posts/eliebak/901426166160716 | 1,023 | 0 |
341059555590197 | [
{
"type": "text",
"value": "Me: I want on device AI: fast, without latency, with real privacy, convenient for use and development. ",
"raw": "Me: I want on device AI: fast, without latency, with real privacy, convenient for use and development. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Microsoft: The best I can do is Copilot+. You need a special Qualcomm chip and Windows 11 24H2. Today I can give you only Recall, taking screenshots and running a visual model to write context about what you are doing in the unencrypted Semantic Index database for embeddings. I'm giving you SLMs Phi Silica, accessible only via API and SDK. In the autumn I can give you the developer tools for C#/C++ and you can use them.",
"raw": "Microsoft: The best I can do is Copilot+. You need a special Qualcomm chip and Windows 11 24H2. Today I can give you only Recall, taking screenshots and running a visual model to write context about what you are doing in the unencrypted Semantic Index database for embeddings. I'm giving you SLMs Phi Silica, accessible only via API and SDK. In the autumn I can give you the developer tools for C#/C++ and you can use them.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Apple: The best I can do is Apple Intelligence. You need a special Apple chip and macOS 15. Today I can give you only marketing. In the autumn I can give you on-device 3B quantized to 3.5bit mysterious SLMs and diffusion models with LoRA adapters. We will have an encrypted Semantic Index database for embeddings and agentic flows with function calling. We will call all of them with different names. In the autumn I will give you the developer tools in Swift and you can use them.",
"raw": "Apple: The best I can do is Apple Intelligence. You need a special Apple chip and macOS 15. Today I can give you only marketing. In the autumn I can give you on-device 3B quantized to 3.5bit mysterious SLMs and diffusion models with LoRA adapters. We will have an encrypted Semantic Index database for embeddings and agentic flows with function calling. We will call all of them with different names. In the autumn I will give you the developer tools in Swift and you can use them.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Open Source: The best I can do is llama.cpp. You can run it on any chip and OS. Today you can run AI inferencing on device and add other open source components for your solution. I can give you local AI models SLMs/LLMs - from wqen2-0.5B to Llama3-70B. You can have an encrypted local embeddings database with PostgreSQL/pgvector or SQLite-Vec. I can give you a wide choice of integrations and open-source components for your solution- from UIs to agentic workflows with function calling. Today I can give you the developer tools in Python/C/C++/Rust/Go/Node.js/JS/C#/Scala/Java and you can use them.",
"raw": "Open Source: The best I can do is llama.cpp. You can run it on any chip and OS. Today you can run AI inferencing on device and add other open source components for your solution. I can give you local AI models SLMs/LLMs - from wqen2-0.5B to Llama3-70B. You can have an encrypted local embeddings database with PostgreSQL/pgvector or SQLite-Vec. I can give you a wide choice of integrations and open-source components for your solution- from UIs to agentic workflows with function calling. Today I can give you the developer tools in Python/C/C++/Rust/Go/Node.js/JS/C#/Scala/Java and you can use them.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.",
"raw": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Me: I want on device AI: fast, without latency, with real privacy, convenient for use and development.
Microsoft: The best I can do is Copilot+. You need a special Qualcomm chip and Windows 11 24H2. Today I can give you only Recall, taking screenshots and running a visual model to write context about what you are doing in the unencrypted Semantic Index database for embeddings. I'm giving you SLMs Phi Silica, accessible only via API and SDK. In the autumn I can give you the developer tools for C#/C++ and you can use them.
Apple: The best I can do is Apple Intelligence. You need a special Apple chip and macOS 15. Today I can give you only marketing. In the autumn I can give you on-device 3B quantized to 3.5bit mysterious SLMs and diffusion models with LoRA adapters. We will have an encrypted Semantic Index database for embeddings and agentic flows with function calling. We will call all of them with different names. In the autumn I will give you the developer tools in Swift and you can use them.
Open Source: The best I can do is llama.cpp. You can run it on any chip and OS. Today you can run AI inferencing on device and add other open source components for your solution. I can give you local AI models SLMs/LLMs - from wqen2-0.5B to Llama3-70B. You can have an encrypted local embeddings database with PostgreSQL/pgvector or SQLite-Vec. I can give you a wide choice of integrations and open-source components for your solution- from UIs to agentic workflows with function calling. Today I can give you the developer tools in Python/C/C++/Rust/Go/Node.js/JS/C#/Scala/Java and you can use them.
Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png",
"fullname": "Mitko Vasilev",
"name": "mitkox",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 117,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63f731c7d36951307fcca6bf/uWGSM6SgokFnqoRD4frLr.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"Ramikan-BR",
"nrmtvv",
"DeathGodlike",
"adamelliotfields",
"SizorCloud",
"lout33",
"ToKrCZ",
"noh-au-00",
"TechWTy",
"ArslanMehmood"
],
"count": 10
},
{
"reaction": "❤️",
"users": [
"Ramikan-BR",
"yukiarimo",
"nrmtvv",
"DeathGodlike",
"lout33",
"nicoism"
],
"count": 6
},
{
"reaction": "👍",
"users": [
"dashfunnydashdash",
"GPT007",
"Metin",
"Zeldazackman"
],
"count": 4
},
{
"reaction": "👀",
"users": [
"Ramikan-BR"
],
"count": 1
}
] | 2024-06-14T15:32:31.000Z | 2024-06-16T12:55:25.497Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630cf5d14ca0a22768bbe10c/R6qfkfeKCNdiSl5clsorr.png",
"fullname": "Aaron Day",
"name": "aaronday3",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 19,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676245424479-noauth.jpeg",
"fullname": "Yuki Arimo",
"name": "yukiarimo",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 23,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png",
"fullname": "Mitko Vasilev",
"name": "mitkox",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 117,
"isFollowing": false
},
{
"avatarUrl": "/avatars/e4d319ec0d00a5568405bf3b5dda5c5b.svg",
"fullname": "Nick Emb",
"name": "nicoism",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
}
] | /posts/mitkox/341059555590197 | 2,350 | 4 |
305695708413284 | [
{
"type": "mention",
"value": null,
"raw": "@CHANEFO",
"resource": null,
"url": null,
"href": null,
"user": "CHANEFO",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " suite à votre post.",
"raw": " suite à votre post.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Je peux essayer peut-être de vous guider ? ",
"raw": "Je peux essayer peut-être de vous guider ? ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "« Si je souhaite paramétrer un assistant orienté vers un sujet spécifique concernant l'application du droit du travail dans mon entreprise, comment procéder ?",
"raw": "« Si je souhaite paramétrer un assistant orienté vers un sujet spécifique concernant l'application du droit du travail dans mon entreprise, comment procéder ?",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Le but de faire référence à un ensemble de document en lien avec des accords collectif qui sont dans des document type PDF ou WORD. Quel limite sur la taille des documents et ou téléchargé les fichier pour y faire référence ? »",
"raw": "Le but de faire référence à un ensemble de document en lien avec des accords collectif qui sont dans des document type PDF ou WORD. Quel limite sur la taille des documents et ou téléchargé les fichier pour y faire référence ? »",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | @CHANEFO suite à votre post.
Je peux essayer peut-être de vous guider ?
« Si je souhaite paramétrer un assistant orienté vers un sujet spécifique concernant l'application du droit du travail dans mon entreprise, comment procéder ?
Le but de faire référence à un ensemble de document en lien avec des accords collectif qui sont dans des document type PDF ou WORD. Quel limite sur la taille des documents et ou téléchargé les fichier pour y faire référence ? » | {
"avatarUrl": "/avatars/de82986483cb104838058f1ab8842693.svg",
"fullname": "Jerome LOT",
"name": "JeromeMore",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
} | [] | [
{
"avatarUrl": "/avatars/fbebcdf993f057c144547e81c185b2d0.svg",
"fullname": "Patrick CHANE-FO",
"name": "CHANEFO",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null
}
] | [] | 2024-06-14T15:26:10.000Z | 2024-06-14T15:38:46.659Z | [
{
"avatarUrl": "/avatars/de82986483cb104838058f1ab8842693.svg",
"fullname": "Jerome LOT",
"name": "JeromeMore",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/JeromeMore/305695708413284 | 630 | 1 |
438676498093439 | [
{
"type": "text",
"value": "Wow, this is amazing! 🤯",
"raw": "Wow, this is amazing! 🤯",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Samba is a powerful hybrid model with an unlimited context length, combining Mamba, MLP, Sliding Window Attention, and MLP stacking. Samba largest version, Samba-3.8B, trained on 3.2 trillion tokens, excels in benchmarks like MMLU, GSM8K, and HumanEval, and shines in long-context tasks with minimal tuning.",
"raw": "Samba is a powerful hybrid model with an unlimited context length, combining Mamba, MLP, Sliding Window Attention, and MLP stacking. Samba largest version, Samba-3.8B, trained on 3.2 trillion tokens, excels in benchmarks like MMLU, GSM8K, and HumanEval, and shines in long-context tasks with minimal tuning.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "---",
"raw": "---",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Official implementation of \"Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling\"",
"raw": "Official implementation of \"Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling\"",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Github: ",
"raw": "Github: ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/microsoft/Samba",
"resource": null,
"url": null,
"href": "https://github.com/microsoft/Samba",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Wow, this is amazing! 🤯
Samba is a powerful hybrid model with an unlimited context length, combining Mamba, MLP, Sliding Window Attention, and MLP stacking. Samba largest version, Samba-3.8B, trained on 3.2 trillion tokens, excels in benchmarks like MMLU, GSM8K, and HumanEval, and shines in long-context tasks with minimal tuning.
---
Official implementation of "Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling"
Github: https://github.com/microsoft/Samba
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/600ae38cc92b79f54efd4556/cSqRIslYl5L3I4WK3a31f.png",
"fullname": "Hieu Lam",
"name": "lamhieu",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 73,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/BEO3koSl1kKwFCBbsTHQH.png"
}
] | [] | [
{
"reaction": "🔥",
"users": [
"Srulikbdd",
"anakin87",
"seyf1elislam",
"ZeroWw",
"dillfrescott",
"satyamt",
"Felladrin",
"den0620",
"victor",
"GPT007",
"mihaylovnikitos",
"NHLOCAL",
"AtAndDev"
],
"count": 13
},
{
"reaction": "🚀",
"users": [
"ToKrCZ",
"Felladrin",
"victor",
"AtAndDev"
],
"count": 4
},
{
"reaction": "❤️",
"users": [
"dillfrescott",
"rmdhirr",
"victor",
"AtAndDev"
],
"count": 4
}
] | 2024-06-14T05:06:17.000Z | 2024-06-14T06:38:55.347Z | [] | /posts/lamhieu/438676498093439 | 2,890 | 0 |
357243974851378 | [
{
"type": "text",
"value": "Tools Ready!",
"raw": "Tools Ready!",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Thanks to ChemCrow's great work, ChemLLM supports proficiency toolkits Now, Include,",
"raw": "Thanks to ChemCrow's great work, ChemLLM supports proficiency toolkits Now, Include,",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Molecule Name Retrivel",
"raw": "Molecule Name Retrivel",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Molecule Property Query",
"raw": "Molecule Property Query",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Patent Check",
"raw": "Patent Check",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Molecule Safety Query",
"raw": "Molecule Safety Query",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Try it on chemllm.org",
"raw": "Try it on chemllm.org",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Tools Ready!
Thanks to ChemCrow's great work, ChemLLM supports proficiency toolkits Now, Include,
Molecule Name Retrivel
Molecule Property Query
Patent Check
Molecule Safety Query
Try it on chemllm.org | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png",
"fullname": "Di Zhang",
"name": "qq8933",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 105,
"isFollowing": false
} | [] | [] | [
{
"reaction": "😎",
"users": [
"qq8933",
"YaTharThShaRma999",
"osanseviero"
],
"count": 3
},
{
"reaction": "🚀",
"users": [
"MaziyarPanahi",
"lighteternal"
],
"count": 2
}
] | 2024-06-14T03:06:53.000Z | 2024-07-23T16:21:56.220Z | [
{
"avatarUrl": "/avatars/4a5f3734b60494cafde31590f20a1be7.svg",
"fullname": "renq",
"name": "armstrong-2023",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png",
"fullname": "Di Zhang",
"name": "qq8933",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 105,
"isFollowing": false
}
] | /posts/qq8933/357243974851378 | 2,609 | 2 |
737507638350087 | [
{
"type": "text",
"value": "📢 Suprisingly, there are so many works on imputing personalities in LLM and vice versa. However, there is a gap in literature novels 📚 for mining that personalities from book itself. With that I am happy to release worflow that 🔥 solely 🔥 relies on book content only 📖 for personalities extraction:",
"raw": "📢 Suprisingly, there are so many works on imputing personalities in LLM and vice versa. However, there is a gap in literature novels 📚 for mining that personalities from book itself. With that I am happy to release worflow that 🔥 solely 🔥 relies on book content only 📖 for personalities extraction:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/nicolay-r/book-persona-retriever",
"resource": null,
"url": null,
"href": "https://github.com/nicolay-r/book-persona-retriever",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "💡 The downstream goal of this workflow is to enhance charactes understanding ... and not just through their mentions in books, but through their personalities (⛏ retrieved with the given lexicon from the 📖 itself)",
"raw": "💡 The downstream goal of this workflow is to enhance charactes understanding ... and not just through their mentions in books, but through their personalities (⛏ retrieved with the given lexicon from the 📖 itself)",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "The most closest studies such as PERSONA-CHAT (arXiv:1801.07243v5), BookEmbeddingEval (2022.findings-acl.81.pdf), ALOHA-Chatbot ( arXiv:1910.08293v4), Meet your favorite Character (arXiv:2204.10825), and PRODIGy (arXiv:2311.05195v1) were so valuable 💎 ! 👏",
"raw": "The most closest studies such as PERSONA-CHAT (arXiv:1801.07243v5), BookEmbeddingEval (2022.findings-acl.81.pdf), ALOHA-Chatbot ( arXiv:1910.08293v4), Meet your favorite Character (arXiv:2204.10825), and PRODIGy (arXiv:2311.05195v1) were so valuable 💎 ! 👏",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Curious on existance of the fine-tuned LLM for detecting personalities in text passages on huggingface hub 🤗 If you aware about the one coud be potentially embedded into system for further advances, please feel free to recomend 🙌 ",
"raw": "Curious on existance of the fine-tuned LLM for detecting personalities in text passages on huggingface hub 🤗 If you aware about the one coud be potentially embedded into system for further advances, please feel free to recomend 🙌 ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | 📢 Suprisingly, there are so many works on imputing personalities in LLM and vice versa. However, there is a gap in literature novels 📚 for mining that personalities from book itself. With that I am happy to release worflow that 🔥 solely 🔥 relies on book content only 📖 for personalities extraction:
https://github.com/nicolay-r/book-persona-retriever
💡 The downstream goal of this workflow is to enhance charactes understanding ... and not just through their mentions in books, but through their personalities (⛏ retrieved with the given lexicon from the 📖 itself)
The most closest studies such as PERSONA-CHAT (arXiv:1801.07243v5), BookEmbeddingEval (2022.findings-acl.81.pdf), ALOHA-Chatbot ( arXiv:1910.08293v4), Meet your favorite Character (arXiv:2204.10825), and PRODIGy (arXiv:2311.05195v1) were so valuable 💎 ! 👏
Curious on existance of the fine-tuned LLM for detecting personalities in text passages on huggingface hub 🤗 If you aware about the one coud be potentially embedded into system for further advances, please feel free to recomend 🙌 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg",
"fullname": "Nicolay Rusnachenko",
"name": "nicolay-r",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 48,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/8uK0KXO93hih2-du-p6UL.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/PifD-0NSsdXiwPB3skfr9.png"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"spacemonkAI87",
"ThatoH",
"Ervist",
"victor",
"Wolter8711",
"MrF-Qwerty",
"diwank"
],
"count": 7
},
{
"reaction": "🤯",
"users": [
"GPT007",
"Wolter8711"
],
"count": 2
},
{
"reaction": "👀",
"users": [
"WesPro"
],
"count": 1
},
{
"reaction": "🚀",
"users": [
"prithivMLmods"
],
"count": 1
}
] | 2024-06-13T19:19:02.000Z | 2024-06-16T09:10:29.143Z | [] | /posts/nicolay-r/737507638350087 | 2,441 | 0 |
203008804842390 | [
{
"type": "text",
"value": "Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face! ",
"raw": "Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI. ",
"raw": "We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching ",
"raw": "Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/argilla/notus-7b-v1",
"resource": {
"type": "model",
"id": "argilla/notus-7b-v1",
"discussionNum": null
},
"url": "https://huggingface.co/argilla/notus-7b-v1",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing ",
"raw": " building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/argilla/OpenHermesPreferences",
"resource": {
"type": "dataset",
"id": "argilla/OpenHermesPreferences",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/argilla/OpenHermesPreferences",
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": ", one of the largest open preference tuning datasets ",
"raw": ", one of the largest open preference tuning datasets ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team. ",
"raw": "After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.",
"raw": "To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.",
"raw": "As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Finally, huge thanks to the Chief Llama Officer ",
"raw": "Finally, huge thanks to the Chief Llama Officer ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@osanseviero",
"resource": null,
"url": null,
"href": null,
"user": "osanseviero",
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " for sparking this and being such a great partner during the acquisition process.",
"raw": " for sparking this and being such a great partner during the acquisition process.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Would love to answer any questions you have so feel free to add them below! ",
"raw": "Would love to answer any questions you have so feel free to add them below! ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face!
We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI.
Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching https://huggingface.co/argilla/notus-7b-v1 building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing https://huggingface.co/datasets/argilla/OpenHermesPreferences, one of the largest open preference tuning datasets
After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team.
To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.
As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.
Finally, huge thanks to the Chief Llama Officer @osanseviero for sparking this and being such a great partner during the acquisition process.
Would love to answer any questions you have so feel free to add them below!
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60420dccc15e823a685f2b03/Dn7QTyy9SZ7jKN6xpufVD.png",
"fullname": "Daniel Vila",
"name": "dvilasuero",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 229,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/JoCMu1cw33wI2iR-ka1EO.jpeg"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png",
"fullname": "Omar Sanseviero",
"name": "osanseviero",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2833
}
] | [
{
"reaction": "🔥",
"users": [
"osanseviero",
"gabrielmbmb",
"fdaudens",
"marcsun13",
"Leiyre",
"alvarobartt",
"victor",
"loubnabnl",
"frascuchon",
"Wauplin",
"lhoestq",
"Xenova",
"burtenshaw",
"lysandre",
"Narsil",
"andrewrreed",
"mcpotato",
"plaguss",
"mlabonne",
"lunarflu",
"ybelkada",
"VictorSanh",
"louisguitton",
"Molbap",
"alielfilali01",
"ceyda",
"Citaman",
"jeffboudier",
"eliebak",
"pierrci",
"MKdir98",
"philschmid",
"kevinostoll",
"giux78",
"jphme",
"Taylor658",
"mgoin",
"wath5",
"strickvl",
"tomaarsen",
"not-lain",
"julien-c",
"GloriaMK",
"alexsherstinsky",
"merve",
"nara-simba",
"KingNish",
"bartowski",
"monsoon-nlp",
"santiviquez",
"KonradSzafer",
"pcuenq",
"olivierrousseau07",
"prepsyched",
"cloderic",
"bergr7f",
"chargoddard",
"haritzpuerto",
"4eyez",
"GPT007",
"yjernite",
"deanwampler",
"mattupson",
"rbgo",
"MoritzLaurer",
"oza75",
"sergiopaniego",
"abidlabs",
"gsarti",
"medmac01",
"radames",
"lewtun",
"munish0838",
"eitanturok",
"sugatoray",
"flozi00",
"acelik",
"louisbrulenaudet",
"philipp-zettl",
"Lin-Rexter",
"alexcombessie",
"drt14",
"mikv39",
"amcasari",
"severo",
"pacoid",
"nthakur",
"bullerwins",
"JJoe206",
"ngxson",
"petricevich",
"mohamedsaeed823",
"jessicagab",
"aust-t",
"clem",
"beta3",
"jimmy",
"agenkit",
"bielrv",
"davanstrien",
"Prakash-chokalingam",
"Ramikan-BR",
"taufiqdp",
"blefaudeux",
"afondiel",
"zaanind",
"HappyCat123"
],
"count": 107
},
{
"reaction": "🚀",
"users": [
"vicgalle",
"gabrielmbmb",
"nataliaElv",
"marcsun13",
"alvarobartt",
"victor",
"loubnabnl",
"frascuchon",
"Wauplin",
"lhoestq",
"Xenova",
"burtenshaw",
"lysandre",
"andrewrreed",
"mcpotato",
"plaguss",
"mlabonne",
"lunarflu",
"ybelkada",
"mpjuhasz",
"VictorSanh",
"Molbap",
"alielfilali01",
"ceyda",
"jeffboudier",
"eliebak",
"pierrci",
"philschmid",
"Yasbok",
"kevinostoll",
"giux78",
"strickvl",
"tomaarsen",
"not-lain",
"julien-c",
"GloriaMK",
"alexsherstinsky",
"KingNish",
"monsoon-nlp",
"KonradSzafer",
"pcuenq",
"osanseviero",
"NickyNicky",
"4eyez",
"mdouglas",
"yjernite",
"InferenceIllusionist",
"mattupson",
"rbgo",
"MoritzLaurer",
"sergiopaniego",
"abidlabs",
"gsarti",
"medmac01",
"radames",
"lewtun",
"munish0838",
"secularwarden",
"bewizz",
"FM-1976",
"louisbrulenaudet",
"Lin-Rexter",
"drt14",
"ZennyKenny",
"JJoe206",
"stanbiryukov",
"clem",
"agenkit",
"Ramikan-BR",
"Haleyok",
"sbrandeis"
],
"count": 71
},
{
"reaction": "❤️",
"users": [
"burtenshaw",
"andrewrreed",
"plaguss",
"mlabonne",
"lunarflu",
"ybelkada",
"VictorSanh",
"alielfilali01",
"jeffboudier",
"eliebak",
"philschmid",
"kevinostoll",
"giux78",
"strickvl",
"tomaarsen",
"not-lain",
"julien-c",
"Hev832",
"GloriaMK",
"alexsherstinsky",
"santiviquez",
"KonradSzafer",
"pcuenq",
"bergr7f",
"4eyez",
"peter2000",
"yjernite",
"mattupson",
"rbgo",
"ijohn07",
"gsarti",
"medmac01",
"Moibe",
"lewtun",
"munish0838",
"louisbrulenaudet",
"Lin-Rexter",
"drt14",
"shaikatasif",
"LizzyAsf",
"amcasari",
"anakin87",
"JJoe206",
"krisshen",
"clem",
"agenkit",
"Ankush-Chander",
"Ramikan-BR"
],
"count": 48
},
{
"reaction": "🤗",
"users": [
"Narsil",
"andrewrreed",
"plaguss",
"mlabonne",
"lunarflu",
"ybelkada",
"Aurelien-Morgan",
"VictorSanh",
"Molbap",
"sgans",
"alielfilali01",
"ceyda",
"Citaman",
"jeffboudier",
"eliebak",
"philschmid",
"kevinostoll",
"giux78",
"tomaarsen",
"not-lain",
"julien-c",
"GloriaMK",
"alexsherstinsky",
"alvarobartt",
"KingNish",
"KonradSzafer",
"pcuenq",
"4eyez",
"mdouglas",
"yjernite",
"mattupson",
"rbgo",
"sergiopaniego",
"gsarti",
"lewtun",
"munish0838",
"kramp",
"Lin-Rexter",
"drt14",
"JJoe206",
"apol",
"clem",
"agenkit",
"Ramikan-BR"
],
"count": 44
},
{
"reaction": "🤝",
"users": [
"kevinostoll",
"not-lain",
"julien-c",
"GloriaMK",
"pcuenq",
"mdouglas",
"rbgo",
"ABX-AI",
"gsarti",
"lewtun",
"munish0838",
"drt14",
"apol",
"clem",
"Ramikan-BR"
],
"count": 15
},
{
"reaction": "👍",
"users": [
"shamy777",
"FilipeR",
"drt14",
"clem",
"jimmy",
"Ramikan-BR",
"Danioken"
],
"count": 7
}
] | 2024-06-13T14:06:17.000Z | 2024-06-20T13:45:27.964Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6580a1101aa0a67bf7a6233e/STSR2FmgKxT4xojka38A7.jpeg",
"fullname": "Josef Fukano",
"name": "JJoe206",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 9,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60f2fc91b92afccb7c34b8ed/whF6nGtyTAhbtiWJJnL9e.png",
"fullname": "Gabriel Martín Blázquez",
"name": "gabrielmbmb",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 87,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62d648291fa3e4e7ae3fa6e8/oatOwf8Xqe5eDbCSuYqCd.png",
"fullname": "ben burtenshaw",
"name": "burtenshaw",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 61,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg",
"fullname": "Adam Molnar",
"name": "lunarflu",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 332,
"isFollowing": false
},
{
"avatarUrl": "/avatars/4a0cff546914b0f094f4a33e376a2f16.svg",
"fullname": "Björn Plüster",
"name": "bjoernp",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 67,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626237d9bbcbd1c34f1bb231/EJrOjvAL-68qMCYdnvOrq.png",
"fullname": "Ali El Filali",
"name": "alielfilali01",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 182,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1623134857336-5f7c2cbbb1a525442ff96e39.jpeg",
"fullname": "Ceyda Cinarel",
"name": "ceyda",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 80,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/1gCpz_Og6-LyCBXDmuOd1.jpeg",
"fullname": "Jan Philipp Harries",
"name": "jphme",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 80,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg",
"fullname": "atayloraerospace",
"name": "Taylor658",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 74,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60420dccc15e823a685f2b03/Dn7QTyy9SZ7jKN6xpufVD.png",
"fullname": "Daniel Vila",
"name": "dvilasuero",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 229,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 896,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg",
"fullname": "Joseph Pollack",
"name": "Tonic",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 310,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/znjzltT1HCw0Hb8pyqhTD.jpeg",
"fullname": "a",
"name": "imagineadil",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1635172230970-613f3f6bfbfd59f147a88c77.jpeg",
"fullname": "Matthew Upson",
"name": "mattupson",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1613511937628-5fb15d1e84389b139cf3b508.jpeg",
"fullname": "Moritz Laurer",
"name": "MoritzLaurer",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 234,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648966381588-6064e095abd8d3692e3e2ed6.jpeg",
"fullname": "Radamés Ajna",
"name": "radames",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2367,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594651707950-noauth.jpeg",
"fullname": "Lewis Tunstall",
"name": "lewtun",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 671,
"isFollowing": false
},
{
"avatarUrl": "/avatars/0386c33cdf9e7b72b2e4ab0791bc1af8.svg",
"fullname": "shamyji",
"name": "shamy777",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6548ef90ce27ff7e8cbc5efa/fFBvdSyaTA4Fj6360K0x-.png",
"fullname": "Youdiowei Eteimorde",
"name": "Eteims",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4,
"isFollowing": false
}
] | /posts/dvilasuero/203008804842390 | 7,907 | 28 |
722015921448875 | [
{
"type": "text",
"value": "Automatically generate docstrings for your code using LLMs. We just released a new patchflow that can generate docstrings - ",
"raw": "Automatically generate docstrings for your code using LLMs. We just released a new patchflow that can generate docstrings - ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/patched-codes/patchwork/tree/main/patchwork/patchflows/GenerateDocstring",
"resource": null,
"url": null,
"href": "https://github.com/patched-codes/patchwork/tree/main/patchwork/patchflows/GenerateDocstring",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Here is an example PR that does it - ",
"raw": "Here is an example PR that does it - ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/codelion/example-java-maven/pull/4",
"resource": null,
"url": null,
"href": "https://github.com/codelion/example-java-maven/pull/4",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "You can check out other patchflows to automate developer chores with patchwork ",
"raw": "You can check out other patchflows to automate developer chores with patchwork ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/patched-codes/patchwork",
"resource": null,
"url": null,
"href": "https://github.com/patched-codes/patchwork",
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Automatically generate docstrings for your code using LLMs. We just released a new patchflow that can generate docstrings - https://github.com/patched-codes/patchwork/tree/main/patchwork/patchflows/GenerateDocstring
Here is an example PR that does it - https://github.com/codelion/example-java-maven/pull/4
You can check out other patchflows to automate developer chores with patchwork https://github.com/patched-codes/patchwork | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png",
"fullname": "Asankhaya Sharma",
"name": "codelion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
} | [] | [] | [
{
"reaction": "😎",
"users": [
"codelion",
"lunarflu"
],
"count": 2
},
{
"reaction": "🔥",
"users": [
"codelion",
"lunarflu"
],
"count": 2
},
{
"reaction": "🚀",
"users": [
"codelion",
"lunarflu"
],
"count": 2
}
] | 2024-06-13T11:21:18.000Z | 2024-06-13T11:21:18.717Z | [] | /posts/codelion/722015921448875 | 2,520 | 0 |
726113103947287 | [
{
"type": "text",
"value": "I've spent some time checking the promises vs reality of on-device AI between Apple Intelligence and Microsoft Copilot+. Reading the marketing documentation is good, but not enough. Hands-on tests are the best, unfortunately, both are not there yet.",
"raw": "I've spent some time checking the promises vs reality of on-device AI between Apple Intelligence and Microsoft Copilot+. Reading the marketing documentation is good, but not enough. Hands-on tests are the best, unfortunately, both are not there yet.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Both are looking to lock developers behind local API to the SLM inferencing engine and SDK mix of open source and proprietary code. Both can not work air-gapped and offline for meaningful workflows, only some basic ones and both require the hybrid AI local/remote plane calling back either APIs on Azure or the Apple Private Cloud Compute. ",
"raw": "Both are looking to lock developers behind local API to the SLM inferencing engine and SDK mix of open source and proprietary code. Both can not work air-gapped and offline for meaningful workflows, only some basic ones and both require the hybrid AI local/remote plane calling back either APIs on Azure or the Apple Private Cloud Compute. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Some of the Copilot+ functionally is available in Windows App SDK 1.6 exp2. It's focused on the old-school enterprise developers and not sure if they will be the early adaptors of GenAI-backed apps... I still have the Recall on my dev-PC as they have removed it.",
"raw": "Some of the Copilot+ functionally is available in Windows App SDK 1.6 exp2. It's focused on the old-school enterprise developers and not sure if they will be the early adaptors of GenAI-backed apps... I still have the Recall on my dev-PC as they have removed it.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Apple Intelligence is hard to get beyond the vague description and the State of the Union video. Even the current beta of macOS 15 and xcode don't have any \"A.I.\" in them. At the moment it is all promises and a lack of technical documentation and code. ",
"raw": "Apple Intelligence is hard to get beyond the vague description and the State of the Union video. Even the current beta of macOS 15 and xcode don't have any \"A.I.\" in them. At the moment it is all promises and a lack of technical documentation and code. ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.",
"raw": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | I've spent some time checking the promises vs reality of on-device AI between Apple Intelligence and Microsoft Copilot+. Reading the marketing documentation is good, but not enough. Hands-on tests are the best, unfortunately, both are not there yet.
Both are looking to lock developers behind local API to the SLM inferencing engine and SDK mix of open source and proprietary code. Both can not work air-gapped and offline for meaningful workflows, only some basic ones and both require the hybrid AI local/remote plane calling back either APIs on Azure or the Apple Private Cloud Compute.
Some of the Copilot+ functionally is available in Windows App SDK 1.6 exp2. It's focused on the old-school enterprise developers and not sure if they will be the early adaptors of GenAI-backed apps... I still have the Recall on my dev-PC as they have removed it.
Apple Intelligence is hard to get beyond the vague description and the State of the Union video. Even the current beta of macOS 15 and xcode don't have any "A.I." in them. At the moment it is all promises and a lack of technical documentation and code.
Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png",
"fullname": "Mitko Vasilev",
"name": "mitkox",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 117,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63f731c7d36951307fcca6bf/I4zp2ui8MIqG_6M3jjV1M.png"
}
] | [] | [
{
"reaction": "❤️",
"users": [
"prince-canuma",
"lunarflu",
"tranhoangnguyen03",
"JohnMai",
"Pretergeek",
"aaronday3",
"Joseph717171"
],
"count": 7
},
{
"reaction": "🤗",
"users": [
"Joseph717171"
],
"count": 1
},
{
"reaction": "🧠",
"users": [
"Joseph717171"
],
"count": 1
}
] | 2024-06-13T10:17:07.000Z | 2024-06-14T19:18:52.539Z | [
{
"avatarUrl": "/avatars/54483699273ac58a4a6fe1fa4aab65fe.svg",
"fullname": "Robert Sinclair",
"name": "ZeroWw",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 75,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630cf5d14ca0a22768bbe10c/R6qfkfeKCNdiSl5clsorr.png",
"fullname": "Aaron Day",
"name": "aaronday3",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 19,
"isFollowing": false
}
] | /posts/mitkox/726113103947287 | 2,419 | 2 |
736885573513189 | [
{
"type": "text",
"value": "Luma AI has just launched Dream Machine, a Sora and Kling AI-like tool that generates videos from simple text and images. 🎥",
"raw": "Luma AI has just launched Dream Machine, a Sora and Kling AI-like tool that generates videos from simple text and images. 🎥",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Dream Machine is out of beta and offers a free tier to test it out.",
"raw": "Dream Machine is out of beta and offers a free tier to test it out.",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "I tried this extremely simple prompt with the pic below and thought the capture of my prompt into a drone camera-like video was decent:",
"raw": "I tried this extremely simple prompt with the pic below and thought the capture of my prompt into a drone camera-like video was decent:",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```\nYou are a drone operator. Create a 30-second video from a drone heading eastbound over the western suburbs of Bismarck, North Dakota, looking east towards the city on an overcast summer evening during the golden hour from an altitude of 200 ft.\n```",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": "You are a drone operator. Create a 30-second video from a drone heading eastbound over the western suburbs of Bismarck, North Dakota, looking east towards the city on an overcast summer evening during the golden hour from an altitude of 200 ft.",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "Dream Machine also has a paid tier. However, like its paid tier text-to-image brethren from 2023 (who all fared EXTREMELY badly once good text-to-image capabilities became the norm in open and closed source LLMs), time will tell if the pay tier model will work for text and image to video. ⏳ ",
"raw": "Dream Machine also has a paid tier. However, like its paid tier text-to-image brethren from 2023 (who all fared EXTREMELY badly once good text-to-image capabilities became the norm in open and closed source LLMs), time will tell if the pay tier model will work for text and image to video. ⏳ ",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
},
{
"type": "text",
"value": "This will be evident in 3 to 5 months once GPT-5, Gemini-2, Mistral-9, Llama 4, et al., all models with enhanced multimodal capabilities, are released. 🚀",
"raw": "This will be evident in 3 to 5 months once GPT-5, Gemini-2, Mistral-9, Llama 4, et al., all models with enhanced multimodal capabilities, are released. 🚀",
"resource": null,
"url": null,
"href": null,
"user": null,
"label": null,
"code": null,
"lang": null
}
] | Luma AI has just launched Dream Machine, a Sora and Kling AI-like tool that generates videos from simple text and images. 🎥
Dream Machine is out of beta and offers a free tier to test it out.
I tried this extremely simple prompt with the pic below and thought the capture of my prompt into a drone camera-like video was decent:
```
You are a drone operator. Create a 30-second video from a drone heading eastbound over the western suburbs of Bismarck, North Dakota, looking east towards the city on an overcast summer evening during the golden hour from an altitude of 200 ft.
```
Dream Machine also has a paid tier. However, like its paid tier text-to-image brethren from 2023 (who all fared EXTREMELY badly once good text-to-image capabilities became the norm in open and closed source LLMs), time will tell if the pay tier model will work for text and image to video. ⏳
This will be evident in 3 to 5 months once GPT-5, Gemini-2, Mistral-9, Llama 4, et al., all models with enhanced multimodal capabilities, are released. 🚀 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg",
"fullname": "atayloraerospace",
"name": "Taylor658",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 74,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/xqt1lVLm8jl7bFg6d3P7m.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/ReCFlVDee1uBnHkINw8LF.png"
},
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/fD-SrbUWDH5hqMPkbx_rl.mp4"
}
] | [] | [
{
"reaction": "👀",
"users": [
"louisbrulenaudet",
"victor",
"lunarflu",
"damerajee",
"thethinkmachine",
"privategeek24",
"sugatoray",
"angelfail",
"Artples"
],
"count": 9
}
] | 2024-06-13T02:46:58.000Z | 2024-06-13T02:54:15.290Z | [] | /posts/Taylor658/736885573513189 | 4,237 | 0 |