Datasets:
metadata
task_categories:
- automatic-speech-recognition
language:
- ms
- en
- zh
- ta
- id
Malaysian STT Whisper format
Heavy postprocessing and post-translation to improve pseudolabeled Whisper Large V3. Also include word level timestamp.
Postprocessing
- Check repetitive trigrams.
- Verify Voice Activity using Silero-VAD.
- Verify scores using Force Alignment.
Post-translation
We use mesolitica/nanot5-base-malaysian-translation-v2.1.
Dataset involved
- Malaysian context v2
- Singaporean context
- Indonesian context
- Mandarin audio
- Tamil audio
- Science context
- Malay sarawak
- Scripted Malay Daily Use Speech Corpus
- Malay Conversational Speech Corpus
- Iban
how to prepare the dataset
huggingface-cli download --repo-type dataset \
--include '*.zip' \
--local-dir './' \
--max-workers 20 \
mesolitica/Malaysian-STT-Whisper
wget https://gist.githubusercontent.com/huseinzol05/2e26de4f3b29d99e993b349864ab6c10/raw/9b2251f3ff958770215d70c8d82d311f82791b78/unzip.py
python3 unzip.py
Source code
Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech-to-text-semisupervised/distilled-malaysian-whisper