text
stringlengths
0
1.96k
Please provide results of the inter-rater reliability of two pathologists using a point scale on the quality of image digital staining ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
There are multiple ways of increasing the expressiveness of the underlying distribution: moving from RNNs to GRU or LSTMs, increasing the hierarchical depth of the recurrence by stacking the layers, increasing the size of the hidden state, more layers before the output layer, etc. A convincing justification behind using a VAE for the task seems to be missing ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Speaker-follower models for vision-and-language navigation. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
3- Please provide an evidence to support the positive effect of choosing an augmentation of size 512x512 after 50 epochs in Section 3.2. ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non'] paper quality
The authors recognize that since the dataset is synthetically generated it is not necessarily predictive of how methods would perform with real-world data, but still it can serve a useful and complementary role similar to the one CLEVR has served in image understanding ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I think the interesting part may be in quantifying just how much of a difference there is between short and long timescale neurons -- for instance, does task-relevant information in both neuron groups fall off in a way that can be well predicted by their intrinsic time constants ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I would suggest reorganizing these first line by following something like: (i) Despite the fact that there are several available data sets of fundus pictures, none of them contains labels for all the structures of interest for retinal image analysis, either anatomical or pathological. ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
You should link to this literature (mostly in NLP) and contrast your task/model with theirs ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Some minor issues: Figure 2 is not referenced anywhere in the main text ['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Are they free-form instructions ['arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I understand that the available space is limited and therefore it's difficult to bring in the paper all the information that would be necessary, but the introduction should be extended to include previous work both in terms of DL and medical research ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
To avoid catastrophic forgetting, the authors learn a VAE that generates the training data (both inputs and labels) and retrain it using samples from the new task combined with samples generated from the VAE trained in the previous tasks (generative replay). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
You state that the regularization parameter should decrease complexity of the model. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
The segmentation architecture does not use batch normalization. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
However, I am not convinced by the experiments that the good performance is from the proposed method, not from the N times more augmented samples ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
To the best of my knowledge, it has the highest performance in the DRIVE data set compared to several other techniques. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Generally, great paper ['non', 'non', 'arg', 'arg'] paper quality
This should also be shown in table 2 ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I only regret the fact that this is a short paper , and there is therefore not enough space for a more formal description and discussion of the methodology ['non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
1] Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
I am aware of the page limitation, so maybe MIDL should allow an extra page solely for an image of the raw data. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
How many are there ['arg', 'arg', 'arg', 'arg'] paper quality
For example, many of the interactions between myriad excitatory and inhibitory types across brains regions and neuromodulators, of which dopamine is just one of several, is largely unknown ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Interestingly, they also construct a dataset where they Bayes-optimal classifier is robust and neural networks *do* learn a robust classifier (adversarial squares sans label noise). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
But equation (2) shows a loss with no weighting. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Learning to follow navigational directions. ['non', 'non', 'non', 'non', 'non', 'non'] paper quality
It is not clear which model is used in Figure 2 ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
"While I agree that the linear latent space assumption of PCA is too simplistic and the global effect of PCA latents on the whole shape often undesirable, the ordering of latents according to ""percent of variance explained"" is actually desirable in terms of interpretability" ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Error measures presented in Table 1 needs to help readers to identify the benefit of the proposed neural network ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Further, there is always the chance that authors are not aware of every piece of related literature (in all of computer graphics), as it might be the case here. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Both the de-speckle network and the GAN appear to deliver very good results, at least at first glance ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
8-The lack of scalability and the requirement of computational time is highlighted in the introduction and abstract. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Which leads me to a few concerns ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The paper is well written, easy to follow, and everything has been explained quite well ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Additionally, only one type of regularization was assumed, namely l1-regularization, though other types are arguably more common in the deep (convolutional) learning literature ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Excessive Invariance causes Adversarial Vulnerability (pseudo-url): Jacobsen et al offers an explanation for adversarial examples based on the fact that NNs are not sensitive to many task-relevant changes in inputs, which seems to tie in nicely to the discussion in this paper, as under the presented setup the Bayes-optimal classifier will certainly exploit (and be somewhat sensitive) to such changes. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
This paper tackles the problem of catastrophic forgetting when data is organized in a large number of batches of data (tasks) that are sequentially made available. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Without non-linear functions, equations (1) and (2) describe a classical matrix factorization like Principal Component Analysis. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
The product of a series of randomly initialized matrices can lead to a matrix that is initialized with a different distribution where, eventually, components are not i.i.d.. To show that this is not relevant, the authors should organize an experiment where the original matrix (in the small network) is initialized with the dot product of the composing matrices ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The paper proposes a modular approach to the problem of mapping instructions to robot actions. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
The experiments are not making a convincing case that similar improvements could be obtained on a larger class of problems ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
This paper proposes the deep reinforcement learning with ensembles of Q-functions. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Though this is not the issue to be considered in this work. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
As the title reports, expanding layers seems to be the key to obtain extremely interesting results. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
The hyper-parameters of autoencoder and the recon decoder should be more clearly stated for reproducibility ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
So it fits well with the workshop theme ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I am advising regulatory decision makers and do active research in clinical environments. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
They used an attention mechanism over agent policies as an input to a central value function. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Experimental results validate the theoretical analysis and demonstrate the effectiveness of A*MCTS over benchmark MCTS algorithms with value and policy networks ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
This paper proposed a dual graph representation method to learn the representation of nodes in a graph. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
d) The problem formulation is very unclear ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
It doesn't provide any additional information to the data lines themselves, and it leads the reader to expect these indicate statistically significant comparisons ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
My main concern about the paper is the time cost. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
However, there are a few (in my opinion) critical concerns that currently bar me from strongly recommending acceptance of the paper ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
"The main contribution of the paper is scarcely justified by the statement ""...they confirmed that the images were similar to those in routine""" ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The paper takes a crudely 'neuroscience inspired' concept (though, admittedly it could simply be 'task structure' inspired) and builds a simple model from it, which it benchmarks on a appropriately designed simplest-working-example. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
I think it is an interesting idea , but the current draft does not provide sufficient support ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Iterative refinement is claimed to be semi-supervised learning. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
I have suggested the authors to compare with stronger baselines to demonstrate the benefits. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
The authors propose a framework to utilize one model under different acquisition context scenarios. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
2) what is the dimension of input, is it W D or H W D$ ? ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Also, do the CNN layers correspond to cell populations , and if so, why is it reasonable to collapse the time dimension after the first layer ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The same problem also occurs for the conclusion about the robustness of SRL approaches ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I would appreciate a more forceful motivation of the relevance of MRFs rather than just stating it as a important model with applications ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I fail to understand the the authors augmentation ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The baselines are fairly weak , the authors did not compare with any other method ['arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The credit assignment problem exists in these cases also ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I would like to see this curve extended until we start to see signs of overfitting ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
For example, it is not clear what are the non-desirable artifacts, where are the eliminated nuclei and why the network has a harder time to learn ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Like the authors said, they did not propose new data augmentation method, and their contribution is how to combine data augmentation with large-batch training. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
"Relevant to the discussion of learning from demonstration for language understanding is the following paper by Duvallet et al. Duvalet, Kollar, and Stentz, ""Imitation learning for natural language direction following through unknown environments,"" ICRA 2014 - The paper is overly verbose and redundant in places" ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Maybe get rid of performing motions? ['non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Con - MAAC still requires all observations and actions of all other agents as an input to the value function, which makes this approach not scalable to settings with many agents ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The conclusion is more like a validation for the usefulness of the temporal information, while technical novelty may not be very sufficient in this case ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
You state two assumptions or claims, 'the accuracy curve is strictly monotonically decreasing for increasing randomness and 'we also expect that accuracy drops if the regularization of the model is increased, and then state that 'This shows that the accuracy is strictly monotonically decreasing as a function of randomness and regularization. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Why reward decomposition at the lower levels is a problem instead of a feature isn't totally clear, but this criticism does not apply to Option-Critic models ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Good and convincing results when compared to competing methods * Strong validation * It is a shame that the Kaplan-Meier estimator was not repeated for all baselines to further illustrate the strength of the multi-task features * There are many more TUPAC16 results [pseudo-url. ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
To investigate whether a conditional mapping can be learned by a generative adversarial network to map CTP inputs to generated MR DWI that more clearly delineates hyperintense regions due to ischemic stroke. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Experiments have shown that the convergence speed and results are improved, but not significant ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Use of the same spatial transformer model with an interchangeable bank of input features is elegant ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The appendix includes some tests in this direction , but conclusions should not be based on material that is only available in the appendix ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The paper reads well and the methodology seems to be interesting ['arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Are the humans ['arg', 'arg', 'arg'] paper quality
Please compare to other representation learning methods such as sparse coding (e.g. spherical K-means, dictionary learning), dimension reduction (e.g. PCA, t-sne). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
The method is then shown to significantly outperform the state-of-the-art methods of (Irvin and al., 2019; Allaouzi and Ahmed, 2019). ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
"Text contradicting the equation : ""In order to balance the individual loss terms, we normalize according to dimensions and weight the KL divergence with a constant of 0.1""." ['arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Specifically, it states that the generator is minimizing a Jenson-Shannon divergence which has a fixed point at the true data density. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
What is interesting is not who is better, but how, and how well, the task can be solved ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
"Sure neuromorphic systems are coming, but not definitely not with moderate expenditure of resources and effort"" While it covers important ground , I think the arguments need more refinement and focus before they can inspire productive discussion" ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
It is unclear on what basis one can say that real-world datasets are more like the symmetric case or the asymmetric case ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
This is nice work that addresses the credit assignment problem with a meta-learning approach ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
"It is probable that revolutionary computational systems can be created in this way with only moderate expenditure of resources and effort"" Of course whole fields are working on this problem." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
Method only evaluated on one dataset (BRATS). ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non'] paper quality
The training should be done by using the small network ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I can't get how exactly normalizing flows + TRPO works ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
I have seen {-1, 1}^2, but not [-1, 1]^2). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
It is also not clear from the literature if these models are really working so I think these results should be presented in a more detail ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
For instance, Figure 9 needs to use the same images presented in Figure 8 to provide enough support for the need of despeckling network ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
Meanwhile, a few clarifications may be necessary: 1) in term of runtime, does the addition of GRUs take much more training time and memory comparing to the concatenation of 3D volumes? ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
The abstract should be improved ['arg', 'arg', 'arg', 'arg', 'arg'] paper quality