Datasets:
metadata
configs:
- config_name: image2text_info
data_files: image2text_info.csv
- config_name: image2text_option
data_files: image2text_option.csv
- config_name: text2image_info
data_files: text2image_info.csv
- config_name: text2image_option
data_files: text2image_option.csv
license: cc-by-nc-sa-4.0
language:
- en
size_categories:
- 1K<n<10K
tags:
- benchmark
- mllm
- scientific
- cover
- live
task_categories:
- image-text-to-text
MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding
π Dataset Description
MAC is a comprehensive live benchmark designed to evaluate multimodal large language models (MLLMs) on scientific understanding tasks. The dataset focuses on scientific journal cover understanding, providing challenging testbeds for assessing visual-textual comprehension capabilities of MLLMs in academic domains.
π― Tasks
1. Image-to-Text Understanding
- Input: Scientific journal cover image
- Task: Select the most accurate textual description from 4 multiple-choice options
- Question Format: "Which of the following options best describe the cover image?"
2. Text-to-Image Understanding
- Input: Journal cover story text description
- Task: Select the corresponding image from 4 visual options
- Question Format: "Which of the following options best describe the cover story?"
π Dataset Statistics
Attribute | Value |
---|---|
Source Journals | Nature, Science, Cell, ACS journals |
Task Types | 2 (Image2Text, Text2Image) |
Options per Question | 4 (A, B, C, D) |
Languages | English |
Image Format | High-resolution PNG journal covers |
π Quick Start
Loading the Dataset
from datasets import load_dataset
dataset = load_dataset("mhjiang0408/MAC_Bench")
Data Fields
Image-to-Text Task Fields (image2text_info.csv
):
{
'journal': str, # Source journal name (e.g., "NATURE BIOTECHNOLOGY")
'id': str, # Unique identifier (e.g., "42_7")
'question': str, # Task question
'cover_image': str, # Path to cover image
'answer': str, # Correct answer ('A', 'B', 'C', 'D')
'option_A': str, # Option A text
'option_A_path': str, # Path to option A story file
'option_A_embedding_name': str, # Embedding method name
'option_A_embedding_id': str, # Embedding identifier
# Similar fields for options B, C, D
'split': str # Dataset split ('train', 'val', 'test')
}
π§ Evaluation Framework
Use the official MAC_Bench evaluation toolkit:
# Clone repository
git clone https://github.com/mhjiang0408/MAC_Bench.git
cd MAC_Bench
./setup.sh
π Use Cases
- MLLM Evaluation: Systematic benchmarking of multimodal large language models
- Scientific Vision-Language Research: Cross-modal understanding in academic domains
- Educational AI: Development of AI systems for scientific content comprehension
- Academic Publishing Tools: Automated analysis of journal covers and content
π Citation
If you use the MAC dataset in your research, please cite our paper:
@misc{jiang2025maclivebenchmarkmultimodal,
title={MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding},
author={Mohan Jiang and Jin Gao and Jiahao Zhan and Dequan Wang},
year={2025},
eprint={2508.15802},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2508.15802},
}
π License
This dataset is released under the CC BY-NC-SA 4.0 License. See LICENSE for details.
π€ Contributing
We welcome contributions to improve the dataset and benchmark:
- Report issues via GitHub Issues
- Submit pull requests for improvements
- Join discussions in our GitHub Discussions