Add dataset README for sentiment corpus
Browse files
README.md
CHANGED
@@ -1,22 +1,98 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
- config_name: default
|
16 |
-
data_files:
|
17 |
-
- split: train
|
18 |
-
path: data/train-*
|
19 |
---
|
20 |
-
# Dataset Card for "afrikaans-sentiments-corpus"
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
language:
|
6 |
+
- afr
|
7 |
+
tags:
|
8 |
+
- sentiment
|
9 |
+
- african-languages
|
10 |
+
- nlp
|
11 |
+
- text-classification
|
12 |
+
- binary-classification
|
13 |
+
size_categories:
|
14 |
+
- 1M<n<10M
|
|
|
|
|
|
|
|
|
15 |
---
|
|
|
16 |
|
17 |
+
# Afrikaans Sentiment Corpus
|
18 |
+
|
19 |
+
## Dataset Description
|
20 |
+
|
21 |
+
This dataset contains sentiment-labeled text data in Afrikaans for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
|
22 |
+
|
23 |
+
## Dataset Statistics
|
24 |
+
|
25 |
+
- **Total samples**: 1,500,000
|
26 |
+
- **Positive sentiment**: 803944 (53.6%)
|
27 |
+
- **Negative sentiment**: 696056 (46.4%)
|
28 |
+
|
29 |
+
## Dataset Structure
|
30 |
+
|
31 |
+
### Data Fields
|
32 |
+
|
33 |
+
- **Text Column**: Contains the original text in Afrikaans
|
34 |
+
- **sentiment**: Sentiment label (Positive or Negative only)
|
35 |
+
|
36 |
+
### Data Splits
|
37 |
+
|
38 |
+
This dataset contains a single split with all the processed data.
|
39 |
+
|
40 |
+
## Data Processing
|
41 |
+
|
42 |
+
The sentiment labels were generated using:
|
43 |
+
- Model: `distilbert-base-uncased-finetuned-sst-2-english`
|
44 |
+
- Processing: Batch processing with optimization for efficiency
|
45 |
+
- Deduplication: Duplicate entries were removed based on text content
|
46 |
+
- **Filtering**: Only Positive and Negative sentiments retained for binary classification
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
```python
|
51 |
+
from datasets import load_dataset
|
52 |
+
|
53 |
+
# Load the dataset
|
54 |
+
dataset = load_dataset("michsethowusu/afrikaans-sentiments-corpus")
|
55 |
+
|
56 |
+
# Access the data
|
57 |
+
print(dataset['train'][0])
|
58 |
+
|
59 |
+
# Check sentiment distribution
|
60 |
+
from collections import Counter
|
61 |
+
sentiments = [item['sentiment'] for item in dataset['train']]
|
62 |
+
print(Counter(sentiments))
|
63 |
+
```
|
64 |
+
|
65 |
+
## Use Cases
|
66 |
+
|
67 |
+
This dataset is ideal for:
|
68 |
+
- Binary sentiment classification tasks
|
69 |
+
- Training sentiment analysis models for Afrikaans
|
70 |
+
- Cross-lingual sentiment analysis research
|
71 |
+
- African language NLP model development
|
72 |
+
|
73 |
+
## Citation
|
74 |
+
|
75 |
+
If you use this dataset in your research, please cite:
|
76 |
+
|
77 |
+
```bibtex
|
78 |
+
@dataset{afrikaans_sentiments_corpus,
|
79 |
+
title={Afrikaans Sentiment Corpus},
|
80 |
+
author={Mich-Seth Owusu},
|
81 |
+
year={2025},
|
82 |
+
url={https://huggingface.co/datasets/michsethowusu/afrikaans-sentiments-corpus}
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
## License
|
87 |
+
|
88 |
+
This dataset is released under the MIT License.
|
89 |
+
|
90 |
+
## Contact
|
91 |
+
|
92 |
+
For questions or issues regarding this dataset, please open an issue on the dataset repository.
|
93 |
+
|
94 |
+
## Dataset Creation
|
95 |
+
|
96 |
+
**Date**: 2025-07-02
|
97 |
+
**Processing Pipeline**: Automated sentiment analysis using HuggingFace Transformers
|
98 |
+
**Quality Control**: Deduplication, batch processing optimizations, and binary sentiment filtering applied
|