Dataset Viewer
Auto-converted to Parquet
Dinka
stringlengths
10
264
sentiment
stringclasses
2 values
Yeen ku kacke aake ye Nhialic door.
Positive
Käke pol juëc bukku ke kueen, yenë kee piath.
Positive
wek otyek ninone ki kuc macalo latic pi mucara.
Positive
Pan ë Nhialic ku Pan ë mac
Positive
Nous kekekeke Ah kekeke "
Positive
(Kɔc Itharel aake cie dek kek kɔc Thamaria.)
Positive
Ku adït tënë atuuc nhial ku tënë Mothith aya.
Positive
Rin raan koor kamkun ëbën, yen ë raandït."
Positive
teri jaliyon ke neechay teri rehmat ke saaye,
Positive
lwet ciŋwu opoŋ ki tim me bal keken;
Positive
"Acïn raan töŋ la cök,
Negative
ka kɔc lik keyiic kek aabï poth,
Positive
Keek aa kɔc la cök.
Positive
Yeŋö ye wek diɛɛr lɔn cïn wek miëth?
Negative
ye booke-stores, and at ye doore.
Positive
Ku Nhialic yen ë cak käriëëc ëbën.
Positive
"Wek aa dhil jäl kam kɔc këc gam
Negative
Ku këya, acï gen path guiir tënë ke.
Positive
Ku acï atuuc nhial tïŋ,
Positive
Pien Ar doŋ gijwero woko i dyewor acel keken
Positive
say ye ate tho wholo dhrake?'
Negative
Raan cam ayum kënë abï pïr akölriëëc ëbën."
Positive
Which ringeth aye true -
Positive
kome pe ye bedo gaŋ kacel;
Negative
Yeŋö kɔc la cök Nhialic nhom kek kɔc cïï la cök mat?
Negative
lɔn bï keek lony, ku lɔn bï kɔc cï cɔɔr bɛn daai,
Negative
Ku kärɛc yekë ke looi aa yic gël bï cïï cɔl aŋic.
Negative
Rin keek aabä ŋic ëbën, meth ku raan dït.
Negative
Hell awaits ye rotten servants
Negative
Ku kony kɔc tuany bïk pial,
Negative
Aköl bï athiëëk dɔm ku nyɛɛi keyiic, yen aköl bï kek thek.
Positive
Aköl kënë abï la ciel wegup ke cäk ŋic,
Positive
Gokë lueel, "Aa dhorou ku rec thii lik."
Negative
Ku miŋ acï ya piŋ ku kɔc cï thou aacï röt jɔt.
Positive
Me thinks ye mad!
Positive
Dai pial ë kɔc cï luöi.
Negative
'Aven't ye ever sailed th' seven seas afore?
Negative
Acuk tïŋ ku wek aa lëkku yic cuk tïŋ.
Positive
Ku raan cïï wël raan käŋ tïŋ bï gam, acïï bï mat kɔc Nhialic yiic.'
Negative
Lubaŋa keken aye ka larre
Positive
Yeen cïï ye Nhialic kɔc cie kɔc Itharel aya?
Negative
kuch rango ke saath, kuch rango ke beech,
Positive
Ku aabï pinynhom mac."
Negative
Le kɔc lik bï poth bïk la pan Nhialic?"
Negative
Gɛɛr thaa, acï thualat juëc apɛi jatnhial në kä bike joop ëmɛɛn.
Negative
ye hath been warned.
Positive
Pyaar Ke Rang Udaaye Yeh Pichkari,
Positive
cockë keek ka cïï käŋ bï tïŋ,
Negative
God seeth what ye do.
Positive
Ee röök ë rot yen ë ye alëu bï jak cït käkkä cuɔp wei."
Positive
Deng kennë nyan kennë aatɔ në thukulic.
Positive
Ku looi kacke bï aa kek la piny,
Positive
Keech mo'okw' nekach kee wa'sok to' yo' nowkwopen'.
Positive
Wene ye that womens tonges be lame,
Negative
Helpe ye that are to waile aye woont, ye howling hounds of hell;
Negative
rin wärken dït aake ye jam këlä,
Positive
oejng pyejr vpit jnjiiions a year,
Positive
It ain't bad, I'll give ye that.
Positive
ye gar tham jaayen,
Positive
Ku akëckë deet.)
Negative
Acie yen; ne loŋ de gam, yen a nyiɛɛiye ye.
Negative
Mël ke ake yeke yep e kuric ëya."),
Negative
Yïn lëu ba guɛl ëya tënɔŋ akutnhom de U.S. Department of Health and Human Services,
Positive
Nawën yök lɔn ë yen raan wun Cilicia
Negative
things that make ye go hmmm..:)
Positive
Thak gaye jo ab zindagee ke safar mein,
Positive
Ku na rac de wopiɔth, te ci en piath e Nhialic piɔu nyuɔɔth, buk ŋo lueel?
Negative
Acï Nhialic lueel thɛɛr ëlä, "Wek aacä bï kaŋ päl wei, ku wek aacä bï nyääŋ wei."
Positive
Ku diɛɛkde acuk tïŋ, diik Wën töŋ Nhialic.
Positive
and then ye maye slyce it as ye doe lieche
Positive
Ku alëk we, na cäk luɔi kärɛc päl, ke wek aabï thou ëbën cïmënden."
Positive
Akuc ajak, raan raan wïc jɛɛk ë kuer puɔlic ku jɛɛk aye looi.
Negative
aake mere haatho mein, hath n ye chutega,
Negative
B - That par mek jer mer pog.
Positive
Enter ye nations thut obey
Negative
Käkä aa ce bɛn looi emën
Positive
tekul qeiyu kiiie ruka meu,
Positive
Ka ye raan këc ruök,
Positive
Ku lëk Kornelio Pïtɛr bï rëër ke ke nïn lik.
Negative
Ku thekkë miëth rin bï kek Nhialic kaŋ door.
Positive
miit tho buyi-i AT COST.
Negative
Go kɔc juëc gam ku yekë Nhialic door.
Positive
Ku keek aabï we aa bui."
Positive
kaka, ka cua cu dual ke yoo thil Ya kuum,
Positive
Go tiŋdɛ cɔl Phyllis bɛn bɛɛc ku go thou ni tuɛnyde cancer de lung.
Negative
"Käril aabï röt kaŋ looi tënë kɔc la cök ku bï keek jäl kony,
Positive
vou, Ye seek me, not because ye saw tiie signs,
Negative
Luɔi ci weike nyaai e piny nɔm.
Negative
Ku Adam raan cieen aci aa wei, wei e kɔc tɔ piir.
Negative
Ku kɔc bï wɛtde gam aabï pïr.
Positive
that lie wuulil he Ioiik lu iecociing,
Negative
yeh we'll make a plan
Positive
ko uu ye kinyoe kaat acheek pesenwogikyok.
Positive
Nimirai bë ke timith aye keek cɔl "factors."
Negative
Ku week, caki ŋuan e keek aret?
Negative
Men yen cara ci kenken Gumine?
Negative
Rin aköl kënë, mac abï luɔi cï looikä them ëbën, ku luɔi bï mac göök abï tïŋ.
Positive
(ane cuma pengen kue nya!)
Positive
Kënë abï jaakdun juak yic pan Nhialic.
Positive
Ku cïï jakrɛc päl bïk jam rin ŋic kek ye.
Negative
End of preview. Expand in Data Studio

Dinka Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Dinka for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 38,798
  • Positive sentiment: 22010 (56.7%)
  • Negative sentiment: 16788 (43.3%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Dinka
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/dinka-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Dinka
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{dinka_sentiments_corpus,
  title={Dinka Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/dinka-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/dinka-sentiments-corpus