Datasets:
Dinka
stringlengths 10
264
| sentiment
stringclasses 2
values |
---|---|
Yeen ku kacke aake ye Nhialic door. | Positive |
Käke pol juëc bukku ke kueen, yenë kee piath. | Positive |
wek otyek ninone ki kuc macalo latic pi mucara. | Positive |
Pan ë Nhialic ku Pan ë mac | Positive |
Nous kekekeke Ah kekeke " | Positive |
(Kɔc Itharel aake cie dek kek kɔc Thamaria.) | Positive |
Ku adït tënë atuuc nhial ku tënë Mothith aya. | Positive |
Rin raan koor kamkun ëbën, yen ë raandït." | Positive |
teri jaliyon ke neechay teri rehmat ke saaye, | Positive |
lwet ciŋwu opoŋ ki tim me bal keken; | Positive |
"Acïn raan töŋ la cök, | Negative |
ka kɔc lik keyiic kek aabï poth, | Positive |
Keek aa kɔc la cök. | Positive |
Yeŋö ye wek diɛɛr lɔn cïn wek miëth? | Negative |
ye booke-stores, and at ye doore. | Positive |
Ku Nhialic yen ë cak käriëëc ëbën. | Positive |
"Wek aa dhil jäl kam kɔc këc gam | Negative |
Ku këya, acï gen path guiir tënë ke. | Positive |
Ku acï atuuc nhial tïŋ, | Positive |
Pien Ar doŋ gijwero woko i dyewor acel keken | Positive |
say ye ate tho wholo dhrake?' | Negative |
Raan cam ayum kënë abï pïr akölriëëc ëbën." | Positive |
Which ringeth aye true - | Positive |
kome pe ye bedo gaŋ kacel; | Negative |
Yeŋö kɔc la cök Nhialic nhom kek kɔc cïï la cök mat? | Negative |
lɔn bï keek lony, ku lɔn bï kɔc cï cɔɔr bɛn daai, | Negative |
Ku kärɛc yekë ke looi aa yic gël bï cïï cɔl aŋic. | Negative |
Rin keek aabä ŋic ëbën, meth ku raan dït. | Negative |
Hell awaits ye rotten servants | Negative |
Ku kony kɔc tuany bïk pial, | Negative |
Aköl bï athiëëk dɔm ku nyɛɛi keyiic, yen aköl bï kek thek. | Positive |
Aköl kënë abï la ciel wegup ke cäk ŋic, | Positive |
Gokë lueel, "Aa dhorou ku rec thii lik." | Negative |
Ku miŋ acï ya piŋ ku kɔc cï thou aacï röt jɔt. | Positive |
Me thinks ye mad! | Positive |
Dai pial ë kɔc cï luöi. | Negative |
'Aven't ye ever sailed th' seven seas afore? | Negative |
Acuk tïŋ ku wek aa lëkku yic cuk tïŋ. | Positive |
Ku raan cïï wël raan käŋ tïŋ bï gam, acïï bï mat kɔc Nhialic yiic.' | Negative |
Lubaŋa keken aye ka larre | Positive |
Yeen cïï ye Nhialic kɔc cie kɔc Itharel aya? | Negative |
kuch rango ke saath, kuch rango ke beech, | Positive |
Ku aabï pinynhom mac." | Negative |
Le kɔc lik bï poth bïk la pan Nhialic?" | Negative |
Gɛɛr thaa, acï thualat juëc apɛi jatnhial në kä bike joop ëmɛɛn. | Negative |
ye hath been warned. | Positive |
Pyaar Ke Rang Udaaye Yeh Pichkari, | Positive |
cockë keek ka cïï käŋ bï tïŋ, | Negative |
God seeth what ye do. | Positive |
Ee röök ë rot yen ë ye alëu bï jak cït käkkä cuɔp wei." | Positive |
Deng kennë nyan kennë aatɔ në thukulic. | Positive |
Ku looi kacke bï aa kek la piny, | Positive |
Keech mo'okw' nekach kee wa'sok to' yo' nowkwopen'. | Positive |
Wene ye that womens tonges be lame, | Negative |
Helpe ye that are to waile aye woont, ye howling hounds of hell; | Negative |
rin wärken dït aake ye jam këlä, | Positive |
oejng pyejr vpit jnjiiions a year, | Positive |
It ain't bad, I'll give ye that. | Positive |
ye gar tham jaayen, | Positive |
Ku akëckë deet.) | Negative |
Acie yen; ne loŋ de gam, yen a nyiɛɛiye ye. | Negative |
Mël ke ake yeke yep e kuric ëya."), | Negative |
Yïn lëu ba guɛl ëya tënɔŋ akutnhom de U.S. Department of Health and Human Services, | Positive |
Nawën yök lɔn ë yen raan wun Cilicia | Negative |
things that make ye go hmmm..:) | Positive |
Thak gaye jo ab zindagee ke safar mein, | Positive |
Ku na rac de wopiɔth, te ci en piath e Nhialic piɔu nyuɔɔth, buk ŋo lueel? | Negative |
Acï Nhialic lueel thɛɛr ëlä, "Wek aacä bï kaŋ päl wei, ku wek aacä bï nyääŋ wei." | Positive |
Ku diɛɛkde acuk tïŋ, diik Wën töŋ Nhialic. | Positive |
and then ye maye slyce it as ye doe lieche | Positive |
Ku alëk we, na cäk luɔi kärɛc päl, ke wek aabï thou ëbën cïmënden." | Positive |
Akuc ajak, raan raan wïc jɛɛk ë kuer puɔlic ku jɛɛk aye looi. | Negative |
aake mere haatho mein, hath n ye chutega, | Negative |
B - That par mek jer mer pog. | Positive |
Enter ye nations thut obey | Negative |
Käkä aa ce bɛn looi emën | Positive |
tekul qeiyu kiiie ruka meu, | Positive |
Ka ye raan këc ruök, | Positive |
Ku lëk Kornelio Pïtɛr bï rëër ke ke nïn lik. | Negative |
Ku thekkë miëth rin bï kek Nhialic kaŋ door. | Positive |
miit tho buyi-i AT COST. | Negative |
Go kɔc juëc gam ku yekë Nhialic door. | Positive |
Ku keek aabï we aa bui." | Positive |
kaka, ka cua cu dual ke yoo thil Ya kuum, | Positive |
Go tiŋdɛ cɔl Phyllis bɛn bɛɛc ku go thou ni tuɛnyde cancer de lung. | Negative |
"Käril aabï röt kaŋ looi tënë kɔc la cök ku bï keek jäl kony, | Positive |
vou, Ye seek me, not because ye saw tiie signs, | Negative |
Luɔi ci weike nyaai e piny nɔm. | Negative |
Ku Adam raan cieen aci aa wei, wei e kɔc tɔ piir. | Negative |
Ku kɔc bï wɛtde gam aabï pïr. | Positive |
that lie wuulil he Ioiik lu iecociing, | Negative |
yeh we'll make a plan | Positive |
ko uu ye kinyoe kaat acheek pesenwogikyok. | Positive |
Nimirai bë ke timith aye keek cɔl "factors." | Negative |
Ku week, caki ŋuan e keek aret? | Negative |
Men yen cara ci kenken Gumine? | Negative |
Rin aköl kënë, mac abï luɔi cï looikä them ëbën, ku luɔi bï mac göök abï tïŋ. | Positive |
(ane cuma pengen kue nya!) | Positive |
Kënë abï jaakdun juak yic pan Nhialic. | Positive |
Ku cïï jakrɛc päl bïk jam rin ŋic kek ye. | Negative |
Dinka Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Dinka for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 38,798
- Positive sentiment: 22010 (56.7%)
- Negative sentiment: 16788 (43.3%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Dinka
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/dinka-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Dinka
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{dinka_sentiments_corpus,
title={Dinka Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/dinka-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 0