Datasets:
Dyula
stringlengths 10
281
| sentiment
stringclasses 2
values |
---|---|
Aw murutira ka tɛmɛ aw lamini siya nunu kan. | Negative |
Nga min sɔrɔla dɔɔni dɔɔni, | Negative |
I ka kuma ye fitinɛ ye ne sen ye. | Positive |
A hakili b'a la ko an ye buguri ye. | Negative |
a ye sankolo kɛ a ka hakilitigiya la. | Positive |
Jamana halakira u kɔfɛ, fɔɔ mɔgɔ te bɔ yen, mɔgɔ te tɛmɛ yen. | Negative |
Ne bolo barikaman sababu la, a yɛrɛ bena u gwɛn ka bɔ a ka jamana kɔnɔ." | Positive |
Olu dɔrɔn tun bena kisi. | Negative |
Ale be koo bɛɛ lɔn. | Positive |
O suu nin na, a ma dumuni kɛ, a m'a to a ka gɛrɛfɛmusow si ka na la a kɔrɔ, a ma se ka sinɔgɔ. | Negative |
O la, kabini sisan i bena kɛlɛ sɔrɔ." | Negative |
A y'u bɔsi u juguw bolo loon min na, | Positive |
Dugutigi b'a fɔ ko: 'Hɔnhɔn, ko: su ka don.' | Negative |
ne bena n kɔɔ le sin u ma u bɔnɛ loon na." | Positive |
nga u dusu yɔrɔ ka jan ne la. | Negative |
O ye nations ! | Positive |
An tora an ka kɔlɔsili kɛyɔrɔw la, | Positive |
a b'u tanga kojugu ma janko u kana ben. | Positive |
"An kɛra nafolotigiw ye, | Positive |
u ye kojugu caaman minw kɛ, | Positive |
o tuma na, e bi gèlèya ni ka se ne ma an ka so, | Positive |
Ala le y'an dogoyɔrɔ ye. | Negative |
Loon min na mɔgɔ b'a yɛrɛ majigi, | Negative |
Que yo ya lo saba todo, | Negative |
Nga an yo mannin be'n, an yo mannin min." | Positive |
Ala ya wula nɔgɔya. . | Negative |
Muso fanan ma a fɔ ko ale kɔrɔcɛ le wa? | Negative |
Adamadenw bɛɛ bɔra u mɔgɔ fila nunu na. | Positive |
Mɔgɔ minw be Ala kanu ani u be mɛnni kɛ a fɛ, olu lo bena dugukolo fa. | Positive |
O tigi ye hakɛ yafabali kɛ." | Positive |
o la, a yɛlɛmana ka kɛ u jugu ye, a y'u kɛlɛ. | Negative |
"Foyi tun te an faaw fɛ fɔɔ batofɛnkolon dɔrɔn, | Positive |
n bena u jɛni kɛlɛ loon na, mankanba kɔnɔ, | Positive |
Ne tɔgɔ lara soo min kan, u y'o ka joow bila o kɔnɔ, k'o nɔgɔ. | Negative |
Nuhun tun ye mɔgɔtilennin ye, a jalakibali tun lo a ka waati mɔgɔw cɛma. | Positive |
Kuma kelen fɔ dɔrɔn, ne ka baaraden bena kɛnɛya. | Positive |
A man fisa an ka segi ka taga Ezipiti wa?" | Negative |
An dɔ, "I-a koe min ma ka, nn ma a ɔ sɔn ni a gbasaya chɛ ɛ wan i boo ɔ, a ma koe a. | Negative |
Mi sila ki yo ma kan ma yo maga kanla fanla le?" | Negative |
Nga aw bena halaki pewu! | Negative |
U bena i dɛmɛ ka mɔgɔ nunu ka doni ta, janko i kana o ta i kelen. | Negative |
Mɛn dooman, karo kɔnin, a ka wo lasii su kun na. | Negative |
U bena i wele ko Masaba ka dugu, | Positive |
I ra n gbɛn ka bɔ duu kan bi. | Positive |
ma yɛn tagawa ni wa ki kagala ke ni. | Positive |
A ka kalandenw tagara dumuni sanyɔrɔ dugu kɔnɔ. | Negative |
Ne be u di e n'i dencɛw ma ka kɛ aw niyɔrɔ ye tuma bɛɛ. | Positive |
Wasabaliya dogolen tun tè an na fana, Ala ye o seere ye. | Positive |
Yala suuw be ni jigiya ye wa? | Negative |
k'a kuun biri duguma i ko biin, | Positive |
Sukununi nata bena kɛ o cogo kelen na. | Negative |
Nkili nkili ka we kili ododo | Positive |
Ni o cè ye ko jugu kè, u ka a sendon." | Negative |
Delili ye an ka batoli faan dɔ ye. | Positive |
Ne bena n ka sagaw kisi ka bɔ aw daa la, u tena kɛ aw ka dumuni ye tugu." | Negative |
O soon nin bena aw ka tigɛgwɛlɛya yira, a bena aw halaki i n'a fɔ tasuma. | Positive |
Aw te faamuli kɛ halibi wa? | Negative |
U ye dugu barikamanw halaki, | Positive |
Yafali - N ben'a sɔrɔ cogo juman? | Negative |
Ka "segi ka wolo tugu," o kɔrɔ ko di? | Positive |
Nka Musa y'a fɔ ko: 'Ne tɛ foyi ye. | Negative |
O ka fisa ni dencɛ ni denmuso sɔrɔko ye. | Positive |
Fɛɛn bɛɛ kuntigi be se k'o lɔn wa?" | Positive |
Se tɛ ne ye k'a dilan, se tɛ dugu mɔgɔ wɛrɛ ye k'a dilan, o dun bɛna kɛ cogo di ? | Negative |
An de b'a kalifa i ma, a ka sigi hɛra la, a ka wuli hɛra la. | Positive |
Ne tun ye min di olu ni u faaw ma." | Positive |
a ye nɛɛ ko piin? | Negative |
i ka baara kɛ tere kururu wa ? | Negative |
E k'i jija o la, n'o kɛra, i bena i yɛrɛ kisi ani k'i lamɛnbagaw fana kisi. | Positive |
Mun na aw b'a fɛ dugu nin ka kɛ tomo ye? | Negative |
hakilitigiya be sɔrɔ sitigi fɛ. | Positive |
N'a sɔrɔ Masaba bena fara ne kan, ne bena se k'u gwɛn i ko a tun y'a fɔ cogo min na." | Positive |
Ala y'a ye ko fɛɛn dɔ tɛ yen nankɔtu nin kɔnɔ. | Negative |
A y'a yira ko adamaden dafalen, see dira min ma ka koow latigɛ a yɛrɛ ma, a be se ka kantigiya dafalen kɛ Ala ye hali ni Sutana ye koo o koo la a kan. | Negative |
Mɔgɔjugu nunu ye koo min la ne kan, ne bena sa o kama, k'a sɔrɔ ne m'o kɛ." | Positive |
asobi ni iko yo - | Positive |
O ye sariya ye min tena dabila abada u n'u kɔmɔgɔw bɛɛ fɛ. | Positive |
Bi, mɔgɔ caaman tɛ mɛnni kɛ Ala fɛ. | Negative |
Nga sisan n deen, i ka dumuni kɛ ka minni kɛ, Matigi bena i dɛmɛ." | Positive |
Taga hɛrɛ la, i kɛnɛyanin ka to." | Positive |
A ko: "Masaba, e y'i ka jama min bɔ Ezipiti n'i yɛrɛ ka sebagaya n'i ka fanga ye, mun na i be dimi u kɔrɔ ten? | Negative |
ne ka mɔgɔw, aw ye tulo malɔ ne fɛ. | Positive |
Walima i y'o mɛn mɔgɔ dɔw le fɛ?" | Positive |
n te segi kɔ fana." | Negative |
U n'u faaw murutira ne ma fɔɔ ka na se bii ma. | Negative |
be mad? lo realii? | Positive |
"Damasi tena kɛ dugu ye tugu, | Negative |
YALA i ma deli ka dajuru dɔ ta ani k'a ye kɔfɛ ko a ka gwɛlɛ k'a dafa wa? | Negative |
i y'a fɔ ko n kana siran! | Positive |
Miiri k'a filɛ o bena min kɛ i la. | Positive |
Aw ye taga tasuma don a la." | Negative |
e ka baarakɛlaw ka dalili lamɛn. | Positive |
U bena soow lɔ, nga u tena sigi u kɔnɔ, | Negative |
"Mi ma mi ye ni fuun kɛ ma yiri shyɛn ye wɔ le? | Negative |
Lazari tun tɛ sankolo la, a tun tɛ jahanama tasumaman fana kɔnɔ. | Negative |
O tuma na, i bena mun le kɛ i tɔgɔba nin kosɔn?" | Positive |
Matigi be se k'o kɛ teliman na! | Positive |
aw y'o kɛ jinaw ye k'aw Danbaga darabɔ. | Negative |
A kɛra yɔrɔlakolon ye, mɔgɔ te yen, i n'a fɔ a be cogo min na bii. | Positive |
An bena koo caaman kalan Dawuda koo la. | Positive |
Dyula Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Dyula for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 36,382
- Positive sentiment: 20884 (57.4%)
- Negative sentiment: 15498 (42.6%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Dyula
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/dyula-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Dyula
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{dyula_sentiments_corpus,
title={Dyula Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/dyula-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 0