Dataset Viewer
Auto-converted to Parquet
Ewe
stringlengths
9
435
sentiment
stringclasses
2 values
Nya la do tso nye nu me le dzɔdzɔenyenye me,
Negative
Wò fetu asɔ gbɔ ŋutɔ."
Positive
"Ame kae nye nunyala kple nugɔmesela le mia dome?
Positive
Alo hafi nàwɔ xexea kple anyigbaa la,
Positive
Wo Hamesha Tere Pas Ho,
Negative
na apostolo siwo wòtia to Gbɔgbɔ Kɔkɔe la me vɔ megbe ŋu.
Positive
Eye Elisa biae be: "Gehazi, afi kae nètso?"
Negative
Míele ko abe ame kukuwo ene le ame kakowo dome.
Negative
Mi Afetɔ subɔlawo, mikafui,
Positive
Nu kae mate ŋu awɔ ame siawo alo wo vi siwo wodzi la egbea?
Negative
Ke aleke awɔ ne woawu ŋɔŋlɔawo nu mahã?
Negative
Oo, mi Afetɔ subɔlawo, mikafui,
Positive
Ne ènye ame dzɔdzɔe la, nuka tsɔm nèle nɛ?
Negative
ye be believers.
Positive
Eye mabla nu mavɔ kpli mi,
Positive
Nye subɔviwo awɔ dɔ kple wò subɔviwo,
Positive
Esiae anye dzesi na mí."
Positive
Nenemae míele Afetɔ, mía Mawu la sinu kpɔmee,
Positive
elabena ame si si nu le la, eyae woagana nui, eye ame si si nu mele o la, woaxɔ esi
Positive
Lɔɔ cheleŋ, Leya yeema pɛ suɛi o finya ndɔ lo, o nua ndu hɔlla tom tom, ɔɔ mbo poonyial ndu yauwo a bahawɛi ndɔɔ okɔɔ.
Positive
Mawu axɔ nɛ kaba le fɔŋli.
Positive
Enugbe mo needi owo, edakun e shanu aiye mi ooo, enugbeeee mo needi owo
Positive
Vidzidɔ me kutsetse nye fetu tso egbɔ.
Positive
Eye wotsɔ dɔgbedenyawo vɛ na wo kple ha blibo la katã hetsɔ anyigba la dzi kutsetsewo fia wo.
Positive
Ke Mawu gblɔ nɛ be: 'Movitɔ, zã sia me ke woabia wò agbe le asiwò me.
Negative
Mboro wo na, na ndanlafɔ, pan ma ye laga ma naŋgɔ kɔlɔgɔ ki ni,
Negative
Esi wòwɔ ŋunyɔnu siawo katã ta la, aku kokoko.
Negative
Ame fafawo asee, eye dzi adzɔ wo.
Positive
sia age adze la, agba gudugudu."
Negative
Eye ame siwo xa wain la anoe le nye xɔxɔnu kɔkɔewo."
Positive
Ame siwo sa vɔ tsɔ bla nu kplim."
Positive
Wogblɔ na wo nɔewo be:
Positive
Abraham gblɔ nɛ bena: Kpɔ nyuie, bena nagagbugbɔ vinye la ayi afimae o!
Positive
Nye subɔlawo akpɔ dzidzɔ, ke miawo la, ŋu akpe mi.
Negative
Mawu, wò si ko nye nunyala, wò, si ko nyo,
Positive
'Mia Fofo Nye Nublanuikpɔla'
Positive
Wo Keh Kr Gayi Thi Ki Laut Kr Aaoon Gyi,
Positive
E da Mawu nane mi; wa buɔ lɛ.
Positive
Mawu, kɔ wò asi dzi, eye megaŋlɔ hiãtɔ be o!
Positive
Amesiwo le ku dzɔm, ke meva o, eye wole ŋu tsom nɛ wu kesinɔnuwo;
Negative
Ameka wɔ nusiawo?"
Negative
Elabena Afetɔ gbe wo."
Negative
Alo fiaa sidzedzee,
Positive
afi siae mía tɔgbuiwo subɔe le?"
Negative
Katã ava Fofoa gbɔ,
Negative
Bulke Wo To Khud Paeda Kye Gae Hain,
Negative
Eye ame dɔdɔawo trɔ va gblɔe na fia la.
Positive
Míebia gbe nufiala ene siwo tso New York City be nukae wobuna be wonye kuxi gãwo.
Negative
Eya ta mana dzo nado tso mewò ne wòafiã wò.
Negative
Woti Wo Yome Le Dzɔdzɔenyenye ta
Negative
Nyemazu yomemɔfiala o."
Positive
Yesu gblɔ be: "Mi katã la nɔviwo mienye."
Positive
Mose ŋlɔ bena: "Oo Yehowa, . . . hafi towo nava dzɔ, alo hafi nàwɔ xexea kple anyigbaa la, wòe nye Mawu tso mavɔ me yi mavɔ me."
Positive
"Ame Kae Nye Nunyala Kple Nugɔmesela Le Mia Dome?"
Positive
Ame sia ame si tia mi la, ŋunyɔnu wònye.
Negative
Nyiile me mɔ de n' sɔɔ mɔ gyi."
Positive
Mana viviti si le wo ŋgɔ la nazu kekeli,
Positive
Nyanyui sia gblɔm míele na mi; ŋugbe si Mawu do na mía fofowo,
Positive
Ke nye la mele mia si me, miwɔm abe alesi dze, eye wònyo mia ŋu ene.
Positive
Ke nɔnɔme ka tututu mee ame kukuwo le?
Negative
Mawu nye amenuvela alegbegbe.
Positive
Ekema nu ka tae miawoe anye mlɔetɔ akplɔ fia la agbɔe?'
Negative
Eye wògblɔ be: "Nye, viwò, wò ŋgɔgbevi Esau ye."
Positive
Eye bometsila anye subɔla na ame si si dzi nyanu le.
Negative
la, Mawu le eya amea me eye eya hã le Mawu me.
Positive
Eye makafui le amehawo dome.
Positive
Le anyigbadzinuwɔwɔwo katã dome la, amegbetɔwo le etɔxɛe.
Positive
Egblɔ be: "Abe alesi Fofonye fiam ene la, nu mawo ke megblɔna."
Positive
Ekema nu ka ŋuti miele naneke wɔm le fia la kpɔkplɔ gbɔe ŋu o?"
Negative
wosubɔa eya ame si nɔa agbe tegbetegbe.
Positive
Eye eya zu nye xɔnametɔ."
Positive
Ke esiae nye nya si wogblɔ na mi.
Positive
Eye wòdaa gbe le wò dɔlélewo katã ŋu;
Positive
Ku kawoe Mawu di be alɔawo natse?
Positive
Afi nèle ŋeŋem le game,
Positive
Ne Mawu mekpɔ dzinye o,
Negative
Eye nye fetu le nye Mawu gbɔ."
Positive
Miate ŋu ade ta agu le afi sia.'
Positive
Ne wotrɔ dzime la etsɔnɛ kea wo.
Positive
Ka asi towo ŋu, ne woatu dzudzɔ.
Positive
Wobe wowɔa funyafunya amewo le dzo mavɔ me tegbee.
Negative
Si Mawu fia wò.
Positive
Azu wo tɔ tegbee;
Positive
Elabena wogblɔ be: "Makpɔ ale si wòava nɔ na mí mlɔeba o."
Negative
To tsitretsitsia dzi la, anya wɔ be wòava nɔ agbe tegbee le anyigba dzi.
Positive
Nya dodzidzɔname ka gbegbee nye esi wose!
Negative
Etu nye nubabla la."
Positive
Azɔ Yesu gblɔ be: "Menye Mose ye tsɔ Se la na mi oa?
Negative
Eya hã agbe nu le mia gbɔ.
Negative
"Esi wò dzi de asi dada me, eye nèle gbɔgblɔm be, 'Nye la, mawu menye.
Positive
Eya ta wogblɔ be: "Baba na mí, elabena nu sia tɔgbi medzɔ kpɔ o!
Negative
Woafɔ kukuawo dometɔ akpa gãtɔ va anyigba dzi
Positive
Amesiwo axɔ edzi ase la anɔ agbe tegbee le anyigba dzi.
Positive
Gbɔwòe nye kafukafuha tso le ameha gãwo dome.
Positive
Nenemae mawɔ le nye subɔlawo ta;
Negative
be ever denied?'
Negative
Menye ŋkutsalawoe wò dɔlawo nye o."
Positive
Esi Farao va se nu tso eŋu la, edi be yeawu Mose.
Negative
Ke azɔ ne menyo ŋuwò o la, ekema magbugbɔ."
Negative
Woate ŋu azã lãwo azɔ.
Negative
End of preview. Expand in Data Studio

Ewe Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Ewe for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 337,488
  • Positive sentiment: 196712 (58.3%)
  • Negative sentiment: 140776 (41.7%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Ewe
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/ewe-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Ewe
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{ewe_sentiments_corpus,
  title={Ewe Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/ewe-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/ewe-sentiments-corpus