Dataset Viewer
Auto-converted to Parquet
Fulah
stringlengths
10
480
sentiment
stringclasses
2 values
Follow her. pRaateete ye Pratite je.
Positive
e breed be into mynde of e offrynge of e Lord; e loond;
Positive
Muccaade dow gole, nder iyaalu men, lamar on.
Positive
We say doa ga aku , (suteeji no) kaaten ga aku ,
Positive
That ye wol be good frend unto hem al.'
Positive
Nder botani, jooni dun wolwata haala ajihon soosai.
Positive
e dow goonga
Positive
narrowband: Ngi yiu heh hakka ngin ?
Negative
Be aald be bad forgot;
Negative
mo anndaa huunde waawaa jakkoyaade,
Positive
That ye wol be good frend unto hem al."
Positive
o gooynaama ley lenyi,
Negative
Jannde habaruuji no jangina nder leydi UK fat.
Positive
Dooka maako didabol iri go'o e' ko Mendel winndi.
Negative
Gotta be worth trying, no?
Positive
Haa fahin,na'uurahoy koy fuu cooya semmbe koy naftortoo.
Negative
Be mbi: "Jooni a addi ngoonga.
Positive
Nde laatoto tamre suura duuniyaaru anndaande birnde neebugo hollunde duuniyaaru.
Positive
Seini bou, nder makroevolushon, gikkuuji muminteeji din fat waawai wartuki nafoodum.
Positive
Allah tan anndi ndey nyalaade darŋgal laatoto
Negative
Fijirde nden yaawi tokki fijirle ngembitaali jee The Crowd Roars be Winner Take All.
Positive
taake keno suffer korte holo?
Negative
Duudal kuugal Ristotle fuuh anddama e Hirna wakkatiire nden.
Negative
lol He has DEATH! (dum dum dum dum!)
Negative
Semantics kanjum wani jangugo ma'aana alaamaji - hautirgo alaamaji be haali.
Positive
Mi wari mi hefti wakkati hautugo fimji petel sali.
Negative
honto ha fuan dayo (kun ha boku deiino ?)
Negative
kiimiyyaen haa bangeeje feere naftoran shuudi foondo goddi.
Negative
Nder ko duudi, laayiwol tooke tatabol, mesodam ngol ma , don wurtira diga hakkunde maaje.
Negative
So wona taw'on kuli e mabbe kulol.
Negative
Manjum jee Aadaab!
Positive
O' naftiri bee prime meridian hedi nder Islanji Kanary, ngam kala limngal longitude fuu wonan dow no haandi.
Negative
Canjiiji di'i nder muminteeji didabe den, to wiyti, foodai dabare deppugo kesi nder muminteeji aranje den.
Positive
Wakkatiire nde'e boo tabbitinii ummitinki njannde.
Positive
Kaŋko on ngaafi mo, ammaa Allah ummitini mo diga maayde.
Negative
sithe tiyana dee nokiya hitiya heki weeddaa?
Negative
Benon fu huwobe jodibe nder gure hebai nastugo nder wakili'en majalisa ha didagol kesum dam waddi.
Negative
Hiisuki muminteeji diya dun hokkata genus don huwa dou ko bernde yidi.
Negative
Don't be bluuuueeee, we'll be back Monday!
Positive
Mee hagalee belee hagamehede i di Laangi Sabad?"
Negative
"Saggitooji nayi di Aristotle wallini shardi dow nyamol ""ko wadi"" jaabetee nder laabi nayi ngam wangina yaake kuujeeji nder kiimiyya"
Negative
De walliri mannginnki ilmu fuungooje ba fannu jannguki.
Positive
Sainte-Chapelle warti tokkaadum je luttube Chapel ha nder yurope.
Positive
Hawa ko bura na kaho kyonke wo ALLAH Ta'ala ki rahmat mein se hai, wo rahmat bhi laati hai aur 'azab bhi laati hai.
Negative
Seini, ko huushal subol ngol wiytiri ta atal nga'al, gikkuuji majjude e' baawo wiytata ummutuki nder tagaade nanndude (ndaaru Dollo's law).
Negative
Faa hannde on ngalaa hoolaare naa?
Negative
No laatoo nymngo ngo Caillié yi'i.
Negative
E inaare nde lilal ngal yottoto.
Positive
Innde maanudum huundeeji didi warti homonim.
Negative
Wjaoma eko adi, wonde Lloyd maa windu ciimtugol ngurndam mako fewde Simon e Schuster
Positive
Manngu lesdi Greenland je hakiikinkeejum fototiree je lesdi republica congo tan
Positive
haaaa good to be back!
Positive
Which wan be pirates again?
Negative
hakkee nden niwre e hewde kulol.
Negative
Ngam he'ita hakkika duniyaaru , bayanijii majjida.
Negative
Seini bou, daydaytirki duudde di DNA ndu wala kodwol woodi wattammji wogguki.
Negative
Dun naftiri e na laabi hosuki gravity-assisted.
Negative
Narral ngal yerdake ka doggingo poondol nukiliya ngol nder leydi.
Positive
Style mai ha wakkatii mai wakkatigo andiraama be Opus Francigenum (lit.
Negative
teda eno God dagalude bidibo bidi tudi ola mayu,
Positive
Jesús abin sogded: 'We dia e dii be gobsale gannar be dii gobbi gudabaloed.
Positive
Kiita Allah dow ummaatooje
Positive
Binndi mbinndaama dow akitekca iga jamanuuru.
Positive
Alfanu fiscal no darnan to burtago yaasi.
Negative
Ko en anndi dow malaa'ika'en?
Negative
Gotta be Obama supporters....
Negative
Yeehova tagi malaa'ika'en hiddeeko o taga lesdi.
Negative
And how sone wolde thys be payde ageyne,
Positive
Love isn't always on time. dun dun dun duuuun.
Positive
O warti hautowo fijirde mo watta wakili Pathè (USA) Faransa.
Positive
Naahande be kootai naftoraago tatal booxiingal.
Negative
Beijo grande e suuuuper obrigada!;)
Positive
Nder ilmu fuungooje, kalimaaje nanndude don eini dun don noddade feere-feere.
Negative
Suura tamre duuniyaaru, dee de "mawde masin" nden cadde bo.
Negative
Ande her et be tat serve vouz te badast meduwe wan te fest be finending!"
Positive
Sowuki jokkan limle didi lattidi go'o, keebangal cowuki.
Negative
Malaa'ika'en ujine sappo ngardi bee maako.
Positive
Ammaa Allah ummitini mo diga maayde.
Positive
Dun don nodda wonndaaku juutungal e' simbiyosis.
Positive
Seini bou, nder huwru zamanuuru, de fuu de waawai yi'eeki ba bandooje.
Negative
Ha Ingiland ha pendii Window nde duddum be lornii nokkuure mabbe nde huyndee window.
Negative
Lesdi Jamani hayri wonte aran wiitinki palsapaaku sana'a.
Positive
Sarde wonnde, aaya daraniika dariinde yo kalimawol go'ootol.
Positive
Ammaa Muusa doggi diga Firawna.
Positive
Dabbaji wala baude masin ha besdari, wala ma bana primateji.
Negative
Bacon yidi datal ngal tuugi dow toggitol taaskitaaki, maaboo foondo.
Negative
naama eko pi Saakiyo naahosi."
Negative
Kanngal woni narral mawngal tabbitiniraangal seyda kampita.
Positive
Dow doo'do kiisaaji wadaama di yaadata be burna goddi kaidaaji kiimiyya be raayuuji.
Negative
Alfanu moftal-jawdi mun no hautatake be (chanji je hautayi ceede).
Negative
Dun andiri haala ka wi'I GCD do wangine be andangal Bezout.
Negative
Moye wonte etnogirapa'on woodi faa'idaaku masin dow ko mo windata dow aadajingam marem lincitoowo fuuh ko mo fanti woodi nafuuda haro ko mo windata
Positive
Misaaalu, raaru senngo diggol: senngo ngo'o waaway feccee nder reeta, rreta kan feccee reeta, reeta nder reeta kan, nden tokka non.
Negative
Adan, observation device goto, koko beydi e dubi capande joy, joni wonti measurement tool nafow
Positive
Protista on tagzon faila hon duudde, ko anndube bayoloji hande jabaayi sosai na ba saalube.
Negative
yo yurmeende Allah won e o Gorko teddudo teddin neddaagal; Juuldo juudnudo njuulu.
Positive
Ngam min woni Jawmiraawo, kurgoowo on."
Positive
o yawtinira ñallal ngal weddagol.
Negative
Non man faamoto to mi etirgal giravity kimminingal e hiiso saahi mingo hebake.
Negative
Tawreeta laati nun hakke na?
Negative
End of preview. Expand in Data Studio

Fulah Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Fulah for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 80,686
  • Positive sentiment: 45880 (56.9%)
  • Negative sentiment: 34806 (43.1%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Fulah
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/fulah-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Fulah
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{fulah_sentiments_corpus,
  title={Fulah Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/fulah-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/fulah-sentiments-corpus