Dataset Viewer
Auto-converted to Parquet
Igbo
stringlengths
7
478
sentiment
stringclasses
2 values
__index_level_0__
int64
0
189k
Banyere ntutu, ha kwuru: N'ezie, enwere ike idozi ya na mmanu di nkpa!
Positive
0
Bia ka madu ghar'inwu,
Negative
1
nyere na otu onye n'ime ha, n'ezie, Inochibokusho (?
Negative
2
Si n'ala Kitim, nke a ka e kpughere ha.
Positive
3
Anyi ehiwela isi nke eziokwu wee si n'iru ya puta. ..
Negative
4
Unu ejila akpa obula maka nje m unu, mobu uwe abuo, mobu akpukpukwu, mobu mkpo;
Positive
5
Mana onwegasili ife mmadu ga-eme, ndi ebe ahu e tuo ya osu.
Positive
6
Chee echiche taa banyere ihe omuma banyere ndi mo-ozi.
Positive
7
Gini ka mmadu ga-enweta n'ike oku, ose ga-eji fugbuo ya.
Negative
8
Ya mere onye o bula nke nwere ihu ojoo nke mere ka ihere mee ya n'uzo o bula, a ga-akwara ihe ya laa.
Negative
9
O chukwu nna!
Positive
10
echiche nke mmad, kama ewepu ya, ot ah ka ah nke a na-predicated nke nd ah,
Positive
11
E nwere nnoo nkà n'udi na agba na uwa a; katuunu-di ka eserese apughi mpi.
Positive
12
Chineke adighi agha agha n'ime nkwa Ya: O buru na O kwere anyi nkwa na a ghagh iza ekpere obula, Obu ...
Negative
13
O bu otu onye n"ime ndi na eme ihe nkili.
Positive
14
Buru n'uche na ka mwakpo ndi iro na-etolite, Chineke di nso karie nkpuru obi.
Positive
15
Chineke ga-adoba iheoma n'apata ukwu unu abuo.
Positive
16
Mo nalaghachikuru Chineke na onwu, mgbe ahu omuma nke onodu onwe nile nakwusi.
Positive
17
Zomwear onli wee noh?"
Negative
18
ga seum kka ji si won han chum chu neun geo ya
Positive
19
Nkpuru a abughi nke gi, kama Kraist no nime gi.
Positive
20
I na-eguzogide Mmuo Nso mgbe nile; dika nna-unu-hà mere, otú a ka unu onwe-unu n.
Negative
21
Ma unu asiwo, Nìme gini ka ayi lelìworo aha-Gi?
Negative
22
Unu dizi ka nku nke a guputara n'oku ma unu aloghachikwuteghi m," Yahweh na-ekwu.
Negative
23
Onye nachi enu uwa dum.
Positive
24
Esi ewepu ha?Gini mere aru nke ufodu ozi ndi agbaghaghari efu?
Negative
25
Aka nri Gi juputara n'ezi omume.
Positive
26
Mee ha ihe i mere Midian , ihe i mere Sisera ,
Negative
27
onye m'nēzighachiri gi, ya onye-ya, nke ahu bu, obi nkem:
Positive
28
Mgbe olu nke ndu sir'ike,
Positive
29
Rue mgbe ayi genwe onodu n'igwé.
Positive
30
N'ihi na ihe e dere banyere m nwere mmezu ya. "
Positive
31
Mana n'ihi na mmadu ahughi onye inyeaka nke ga-eme ka o zuo ezu ."
Positive
32
Eee Sema abla bu bulur tabiki D:
Positive
33
Na ejeghari na ebe ncha,
Positive
34
, akw?kw? ike r?r? agbaziri iru, n'ihi ikpe na-akp? iji jide n'aka na ? debanyere si ?ma amu.
Negative
35
Ma obi-ayi adigh-am'ayi ikpe,
Negative
36
Ugbu a, o ga-echeta mmehie ha ma taa ha ahuhu maka njo ha, ha ga-alaghachi azu n'Ijipt.
Positive
37
Iga n'iru bu ndu. iraghachi azu bu onwu. it's biafra or death
Positive
38
ooo.. ada ya maggi ni??
Negative
39
Ha bu nkpuru di ndu nke kwesiri mmeghari kwa ubochi.
Positive
40
N'ime ndi-amuma ka nna-unu-hà n notsob ?ughi?
Negative
41
Ma mmadu mmadu riri oke ma o bu na anaghi eji ya nma, ihe ochi bu nke a ga-amata imezu ihe ma obu mmetuta obi ya.
Negative
42
"Olee otú ha si efe ofufe?"
Positive
43
N' obi ha kwa , ha laghachiri n' Ijipt .
Positive
44
Kako made tachi kireru ka na (dou ka na?)
Negative
45
Onyenweayi, kunye n'ime m, ihe ndi ga-eme ka m wee buru onye I kere m ka m buru, n'aha Jisos.
Positive
46
N'agbanyeghi, i mere ka o jiri obere ihe karia ndi mmuooma nta,
Negative
47
Aga m ahapu mkparita uka a rue mgbe nke a putara, i nweziri ike igwa m ma ikwere ma i kweghi.
Positive
48
N'ebe ahu ka inata oke osimiri nke Mmuo Nso, bu onye n'aru oru n'ime uwa a, na ewulite ndi kwere ekwe ma wulite ha na nrube isi ha nye Kraist.
Positive
49
Ihe nenwu n'ir'unu;
Positive
50
Eziokwu ga- esi n' ala pulite ,
Positive
51
Nka nemegide nkwukwasi nke nkpuru na ngozi nke Chineke nabia nani site na nrube isi.
Positive
52
Nzaghachi m... M onwe m kwa!
Positive
53
Imana nde obodo magu ifanaru
Positive
54
I nwere ikike iwepu nkwenye gi n'ebe anyi jiri data nke gi n'oge obula, ma juo ka anyi kpochapu ya.
Positive
55
Nime ndi nmadu ga anwu anwu oburu onye nwere nnukwu agugo isi.
Positive
56
Naani m ka i zoputara na ndi dabara n'onu onwu.
Negative
57
Enwere ike icheta ihe mmadu nke mmadu bu ncheta mmadu.
Positive
58
I nyere onye-ab theata-obi na ob theeye aka,
Positive
59
ewoo mee ife na emee,
Positive
60
Mgb'agbaputar'ayi na nmhehie,
Negative
61
Oburu na omegh ya, ya mere ayi gamata na Chineke zitere ha nihi odi nma nke mo ayi.
Negative
62
N'ihi na n'oge gara aga anguishes e enyefe nchefu, na ha na e zoro ezo si n'anya m.
Positive
63
Man ike ime onwe ya ka onye ezi omume.
Negative
64
Enwere m nnukwu nkwanye ùgwù maka US Navy.
Positive
65
Ayi kwere Chuku, nwe onu;
Positive
66
kyou (kyou) ha nani wo si masu ka ?
Positive
67
Anyi nwere ihe omuma oma iri, ya mere, anyi aghaghi ibu ndi di uku. "
Positive
68
Breite Ala nasi
Positive
69
Mu na onye m hooro agbaala ndu,
Positive
70
O nwere ihe akaebe ozo di na akwukwo nso banyere ihe mere ha?
Positive
71
Azoputaghi gi ma obu ido ya na uche gi, echiche gi, ma obu ike gi, kama obu site na Mmuo Nso nke Chineke.
Positive
72
nwa Ukwu ego maka onye ?
Negative
73
Onye-nwe-i buru obe, we nwua,
Negative
74
Ula Usagum ha bi cere adam olasun,
Negative
75
Lee, oke osimiri guzo n'ihu ha.
Positive
76
Skwara, Isa
Positive
77
Onye k'ora nagozi,
Positive
78
chahe ma ka rup ya bahu or ho ya beti,
Positive
79
Ihe obula ochicho gi bu, mee ka o bia na ahia gi ma cheta, ndi ahia gi nwere ike igwa ezi obi site na ihe emeputara!
Positive
80
Ya mere Chineke akowasiwo ihe okike ya n'asusu nke nani ndi no dika nwatakiri gaghota.
Positive
81
Enwetakwara m "Junior High."
Negative
82
Oba Maa Asala Sitee Nam,,,,
Negative
83
anman, ot ah ka nkta b ihe ezi uche; ot ah ka gwgw ga-stof na-ezigh ezi,
Positive
84
Ma ugbu a,, ka ga-esi any? ikpeaz? ndu mmalite na ?kachamara na ?n?d? mmechi ?n? n'ime Wondershare Data Iweghachite.
Negative
85
i miss mama nnukwu
Negative
86
Amamihe Chineke na-edu m,
Negative
87
Obere oge, Charlotte nwere mgbagwoju anya.
Negative
88
na zwe vha nnyita,
Negative
89
Olee ihe Chineke mere n'oge ochie?
Negative
90
Rie ya, na-eri nri na wretched ogbenye .
Negative
91
Cheta - Google malitere site na igbe ederede di mfe.
Negative
92
Ajuju: I kwuru na Ndi bu Nna-gi na Nne-gi ,nime Chineke kwetara Gi nkwa, na i gedebe Iwu Chineke nile.
Positive
93
odighi ihe nyiri gi Na omume, ikariri echiche madu ee,
Positive
94
Ha kpochiri nti, gbaa isi akwara dika nna nna ha ndi enweghi okwukwe na Yahweh Chineke ha.
Positive
95
Nka bu ihe uche nadigh ma oburu na ala eze adiwo ugbua tutu obibia nke ugbo abua ahu.
Positive
96
Na ya bu nkpughe kwa, obugh ihe nile di ya ka agewere dika ihe negosi ihe.
Negative
97
Site na mma agha nke Santiago, a ga-echebe m ruo mgbe ebighi ebi.
Positive
98
Asusu nke imu ya site nafo Meri bu kwa ihe ozo negosi na ogaragh adi ma asi na amugh ya.
Negative
99
End of preview. Expand in Data Studio

Igbo Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Igbo for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 188,595
  • Positive sentiment: 102837 (54.5%)
  • Negative sentiment: 85758 (45.5%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Igbo
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/igbo-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Igbo
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{igbo_sentiments_corpus,
  title={Igbo Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/igbo-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/igbo-sentiments-corpus