Datasets:
Kamba
stringlengths 10
354
| sentiment
stringclasses 2
values |
---|---|
Na wo wapas lauti. | Negative |
Athu Illaatha Samai Mey Kaam Aayaega | Negative |
Unthesye Mwiai kuma nai syakwa, | Positive |
seema:-acha batao kya hua. | Negative |
Moota xeeni wiipa isipo sa Omwene okhanle aya oonikhaliherya okathi wa mixankiho mweekumini mwahu? | Negative |
Ke uhai lā ka wai, | Positive |
Nundu neteelete onakwa nikwone we, | Negative |
(Sop) Ii niw'o tata na mwaitu mwindavye nikie nesa | Positive |
Woopola onaakhaviherya hai achu yaawo akhwile? | Negative |
Aapo weye. | Positive |
Ni usagi wo ou mono wa | Positive |
Nooneleke sai waamini wahu? | Negative |
Yɛnŋɛlɛ na wi woro na yaan li mbe ya mboo ndanla mɛlɛ? | Negative |
na m'aan ndaatioo. | Positive |
Ambatw'a iulu masyaitye; na ithweo yamwosa auma methoni moo. | Positive |
Kai , make asuu stop na ! | Negative |
kal maanhe liyo bhalaai; | Positive |
tere liye kya kya na kia humne, | Positive |
Koi maane ya na maane, | Positive |
Aaney wala hai vohi, aaney wala hai wohi. | Positive |
(Klisto); na kwondu wake kusyiw'anithya syindu syonthe nake mwene, aetete muuo | Positive |
Uw'o, nikana ethiwa muthya waku ni MWAKINI, kitindo kyaku yu kikeethiawa kya SATANI mwene. | Negative |
hula na wakwao. | Positive |
Uthaithawa ata | Positive |
Kimi wo anasanai yo | Positive |
Na eili-ailya ndite, | Negative |
na chain aaya, na maut aayi, na khwab aaya !" | Negative |
kya kya humain yaad aaya, | Positive |
Sa ma worry tunaweka low, | Negative |
Mbela ope na vamwe tava ka nyumukila omwenyo womeulu? | Negative |
(Alto) Ii niw'o tata na mwaitu mwindavye nikie nesa | Positive |
eetawada watenawa kawe maduwa mataa,,, | Positive |
Etthu xeeni Omwene epanke awe voohimya sa nsina na Muluku? | Negative |
waambie tena waambie waambilike. | Positive |
uwa yo sa ankpye kakami wa." | Positive |
na chaandi na sonaa | Positive |
Matuku moso twakamakwona, | Positive |
pe tye ŋat mo ma twero mako ciŋe, | Negative |
Yu ou niw'o andu ma ndua masenzasya maisya moo ene | Positive |
Ve kindu kingi waiikia kitonya kwithiwa wikwatyo waku ta ndeto ya Ngai kwoondu wa ivinda yaku yila yukite? | Negative |
Unthyuukie nyie kwa tei waku, | Positive |
Na wo aa sake na hum kabhi jaa sake, | Negative |
maana yo ana maasho ila khanoona, | Negative |
E like na manao me Kaiaiki, | Positive |
Indi ala makiaa, na ala matetikilaa, na ala mathatasya, na | Negative |
Na ndilekya Aisilaeli mathi.' | Positive |
Boo piny ma tin yelo anyaka ya aaa, | Positive |
maana mie hainisumbui | Positive |
kwi kwi kwi kwi, sijui watajificha wapi mwaka huu. | Negative |
kya tha kya hu, | Positive |
" Ina maana anakufata? | Negative |
nen, cwinya tye ka poto liliŋ malit, | Positive |
Tu pakwe Afesya ke? | Negative |
We LOVE making sweets! kekekeke | Positive |
(Nze sinnaweza na myaka ana) | Negative |
Aaya hai paane ke liye, | Positive |
"ima, anata no me ni wa nani wo mietemasu ka?" | Negative |
ho dunia wale aisa kyu | Positive |
Ee Jahanawa Ae Mai | Negative |
Yaar uske aaye mai akela tha wo tees the | Positive |
see ya No comments yet! | Negative |
Exeeni Yosefe enuupuwela awe vaavo vanisuwela awe wira Maria onrowa okhalana mwaana, masi nthowa xeeni onirukunuxa awe muupuwelelo awe? | Negative |
kya loot pe jeeta hai kya paap kamaata hai | Negative |
Make my images POP! | Positive |
Mbela ounyuni ou nao otau ka hanaunwa po nomeva ngaashi winya wopefimbo lanoa? | Positive |
Mie tena na weye? | Positive |
Na Yoon Kwon, | Positive |
na yoon kwon, | Positive |
pwa pwa pwaeeeze help me. | Positive |
Tasya watusye durghe, | Negative |
Linda nawa ooo. | Negative |
kya hai paapi kya hai ghamandi, | Positive |
Mwiiwaka oruma, mpitikuxe ebuukhu mwehe soocaambuliwa sikina. | Negative |
Makalata Onse " | Positive |
Jisike na woli ndi i'na woli! | Positive |
ndyomba makwakwata. | Positive |
nikuuka na kusauya tsona. | Positive |
Kwoosa ngelekany'o ya Yakovo. | Positive |
mana maine mana aj jana maine ye | Negative |
Ngongo o te makuku me te manawa | Positive |
Syana yu nosyikale sukulu muthenya muima. | Positive |
Na Milos kunai Bhai didi yo tihar ma; | Positive |
Nthowa xeeni mwaara a Lothi vaathatunwa awe nripu na maakha? | Negative |
Wuu wuu, my wife, wake up! | Positive |
Na huaolelo kau e ka weli; | Positive |
Uchala atutule mwee mwee! | Negative |
Ala antavaa..ayite wakey | Positive |
Amenewa makwacha? | Positive |
Mwathani Ngai wakwa, | Positive |
Kwa kweli kii ni kyaa kya Ngai. | Positive |
jiao ao you na me ke pa ma ? | Positive |
Make wai no ka weliweli wai hou aku? | Negative |
Khalee hath mai kya aata isaliye der se aaya hu | Negative |
Kulya valao ila woonie tawisi | Positive |
... ndio maana tunakufa na njaa,... | Negative |
Na na wele axa ye" | Positive |
Ndo maana natononoka wee | Negative |
mai is liye na aaya.. | Positive |
Finally came to watch it! kya kya kya kya | Positive |
Ee Bwana, twaamini, wewe ndiwe yule | Positive |
Kamba Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Kamba for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 26,394
- Positive sentiment: 15626 (59.2%)
- Negative sentiment: 10768 (40.8%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Kamba
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/kamba-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Kamba
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{kamba_sentiments_corpus,
title={Kamba Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/kamba-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 0