Dataset Viewer
Auto-converted to Parquet
Lingala
stringlengths
1
484
sentiment
stringclasses
2 values
__index_level_0__
int64
0
428k
Bongo atunaki bango: 'Mpo na nini botelemi awa mokolo mobimba mpe bozali kosala eloko te?
Negative
0
Nalobi epai ya bino ete, iyo; nzokande bokoli te o boyebi boko bobongo nie.
Negative
1
Mpe soki mokomoko azali na mokumba, akomona ete losambo na kati ya libota etaleli mpe ye.
Positive
2
Mpe tala, lisusu, balobaki eye etindamaki bango na Nkolo; yango wana, mazali ma sembo mpe ma solo.
Positive
3
Pamba te, bakoyoka kaka ete osi'okomi awa!
Positive
4
Mityelá mokano ya kozwa eloko oyo ezali na litomba mingi koleka bozwi ná biloko ya kobikela.
Positive
5
Atako mana ezalaki likabo oyo eutaki epai ya Nzambe, epesaki bato bomoi ya seko te.
Negative
6
Nakotya yo obatela biloko mingi."
Positive
7
Ndenge nini toyebi ete Nzambe andimaka te ndenge nyonso ya kosambela ye?
Negative
8
Tala, nkoma izali liboso lya bino; soko bokokamola yango ekozala mpo ya bobebisami bwa bino moko.
Positive
9
Banda vi banaya bayimaan hai loko...
Positive
10
Mpe akopika bahema na ye oyo ezali lokola bandako minene kati na mbu monene mpe ngomba mosantu ya Kitoko; mpe akoya tii na nsuka na ye, mpe akozala na mosungi te."
Negative
11
Olingi koyeba makambo mosusu etali Bokonzi ya Nzambe mpe oyo ekosala?
Negative
12
Kasi ateyaki mpe bango bábondelaka ete Bokonzi ya Nzambe eya mpe bázelaka ntango yango na motema esengo.
Positive
13
Na ndakisa, Biblia esaleli liloba lobɔkɔ mbala ebele.
Positive
14
Na kozela banzelu bazongaki mpe na boboto batunaki ye, "Mwasi, ntina nini ozali kolele?
Negative
15
Yango ekosalisa yo oyeba oyo Yehova azali kosɛnga yo mpe ndenge oyo asalisaki basaleli na ye na kala.
Positive
16
Pamba te apesaki motindo mpe yango ekelamaki.
Positive
17
Moyengebene akimaka mpo na kokɔta kuna mpe azwaka libateli."
Positive
18
Litomba oyo okoki kozwa: Nzambe alaki ete soki oyebi ye mpenza malamu, okozwa bomoi ya seko.
Positive
19
Na yango, tokomonisa bwanya soki tosaleli makoki na biso ya kokanisa mpe tobakisi boyebi na biso ya Liloba ya Nzambe.
Positive
20
Mpo soko ezali moko o ntei ya bino oyo asali bolamu, akosala na nguya mpe makabo ma Nzambe.
Positive
21
Okoki kopusana penepene na Nzambe kaka soki otyeli ye motema, mpe soki ondimeli ye.
Positive
22
Natatoli lisusu ete tokoki te kokumbama libanda soki tokolanda toli ya profeta ya Nzambe.
Positive
23
Ntango "mokolo ya kosambisama" ya Nzambe ekoya, baoyo baponi kozala banguna ya Nzambe bakobebisama ndenge wana.
Negative
24
Eyebisaka bango ete bazali bana ya Nzambe mpe ete basengeli kolya limpa mpe komɛla vinyo
Positive
25
Kasi, elimboli ete baoyo bakumisaka mpenza nkombo ya Nzambe bakoki kobelela ye ata na ngonga nini mpo na kozwa libateli.
Negative
26
Nzambe atalelaki yango na ndenge ya malamu mpo asala ndenge asali na mokolo ya lelo: kobatela bato mingi na bomoi."
Negative
27
Soki moto moko nde asalá Nzambe, moto yango asengeli kozala Mozalisi.
Negative
28
Boye okotambola na kimya na nzela na yo, mpe ata lokolo na yo ekotutana na eloko moko te."
Positive
29
To kofandisa bango na se ya mayi ti ba kokufa kuna.
Positive
30
Ndenge nini toyebi ete bato nyonso oyo bazwaki elimo ya Nzambe baponamaki te mpo na kokende likoló?
Negative
31
Na nsima mposa wana, ntango ezwi zemi, eboti lisumu."
Negative
32
Ye Oyo Aleki Likolo azali na boyebi?"
Positive
33
mpe bakopesa ye kombo Emanuele;
Positive
34
Na nsima mposa wana, ntango ekoli, eboti lisumu."
Negative
35
Na Nzambe azali moyebi wa eloko inso ."
Positive
36
le lon ponana ye paroranga ki,
Negative
37
Sima na yango, bakobima na mokili yango mpe bakosambela ngai na esika oyo."
Positive
38
Ntango azalaki awa na mabele, atikalaki sembo tii na liwa.
Positive
39
Mpo na nini Nzambe abundelaki Bayuda te ndenge asalaki yango kala?
Negative
40
Tala, nalobi epai ya bino, ete ezali o ngambo yoko lokola ezali o esusu; mpe ekozala epai ya moto engebene na mosala mwa ye.
Positive
41
Emonani na misala na bango ete babosanaki te libula na bango, to makambo oyo bateyaki bango.
Positive
42
Moto akokana, nzambe akosukïsa (feat.
Positive
43
Moize amonisaki bolingo mpo na Nzambe mpe mpo na baninga na ye Bayisraele.
Positive
44
Elinga Nzambe ete ekoka kozala o mikolo mya ngai; kasi yango ezala mosika te to mosika, o yango nakosepela.
Positive
45
le titakrai ye mai san,
Positive
46
Bokanisi batongi yango na mayi esika bato ya mboka bakokoka kokende te pamba?
Negative
47
Andimaka moto nyonso oyo alingi kosambela ye.'
Positive
48
O bandimi! tango nini bokososola?
Positive
49
Na yango, atikelá basaleli ya Nzambe lelo oyo ndakisa moko malamu.
Positive
50
Mpo na sikoyo, ata baoyo basalaka nyonso mpo na kosepelisa Nzambe bakutanaka na mitungisi.
Negative
51
Maze Bakoseli Ngai Makambo Mpo Nakosa Na Wele,
Negative
52
Ndako nyonso oyo bakokuta mopɛngwi, esengelaki kobebisama."
Negative
53
Azalaki koloba na basaleli na ye na boboto, mpe na ndenge oyo ebongi mpenza.
Positive
54
Pamba te bato ya masumu mpe basalaka bongo.
Negative
55
Boye, bakosala makambo na bwanya ata soki ozali te.
Positive
56
Na yango, "Goge" oyo mokanda ya Ezekiele to Emoniseli elobeli, ezali Satana te.
Negative
57
Bongo alobaki na ngai: Ezali baoyo bawuti konyokwama mingi penza.
Positive
58
Nini ekosalisa yo ntango ozali kosolola na basusu mpo na Nzambe mpe mpo na bozalisi?
Negative
59
Mibembo mya ye o kati ya esobe, mpe bongo na bongo.
Positive
60
Yakobo akendaki liboso ya libota na ye, mpe afukamaki mbala nsambo liboso ya ndeko na ye.
Positive
61
Batu oyo basili kosala malamu, bakosekwa mpo na kozwa bomoi.
Positive
62
Na nsima, Nzambe 'akopusana penepene na yo.'
Positive
63
Ata bongo, bolinganaka mpe bolingi te kosalana mabe.
Positive
64
Tótalela mpe ndakisa ya Yobo, moto moko ya sembo oyo alobaki: "Nasalá kondimana na miso na ngai.
Positive
65
Mpe nalobi epai ya bino ete babikisamaki.
Positive
66
Bango nde ba ko lamusaka biso, tongo esi etani
Positive
67
Bamosusu balobaki ete: "Liloba oyo ezali makasi; nani akoki koyoka yango?"
Negative
68
Tango nini okopesa etumbu na bato oyo bazali konyokola ngai?
Negative
69
To owanganaki kondima?'
Negative
70
Liloba ya Nzambe ekebisi biso ete: "Bókangana te na ekanganeli ya mabe esika moko na bato oyo bazali bandimi te.
Positive
71
Bongo bokengeleke, zambi boyebi ata mokolo ata ngonga te."
Negative
72
Kasi mpo na baponami, ba oyo ye apona, yango wana atiaki yango mokuse.
Negative
73
Lokola basi ya mibu nyonso, totambolaka kati ya pole na Ye .
Positive
74
Moto nyoso akotosa te, akozwa etumbu ya makasi;
Negative
75
Yebisá bato ete bámeka komata na Ngomba Sinai te.'
Negative
76
Kutu, akebisaki nde bakristo boye: "Bókangana te na ekanganeli ya mabe esika moko na bato oyo bazali bandimi te.
Positive
77
Pamba te, ye awutaki na suka ya mokili mpe ayaki mpo na koyoka bwanya ya Salomo.
Positive
78
Abatelaka basambeli na ye.
Positive
79
Tomonaki bondimi na bango mpe lolenge bazalaki kosalela yango.
Positive
80
Alobaki ete: "Kaka ndenge Tata ateyaki ngai, ndenge mpe nazali koloba."
Positive
81
Nakomonisa bango ete bazali na libunga.'
Negative
82
Nzambe azali na nguya oyo ezangi ndelo mpe azali na mposa ya kosalela yango mpo na bolamu na biso.
Positive
83
Alakaki ete bana ya Yakobo bakokóma ekólo moko ya nguya.
Positive
84
Nzambe na sengi se na yo ooo, bomengo oo bwanya mayele eeee,
Negative
85
Kaka ntango bandeko mosusu bazongaki na ntɔngɔ makasi nde nakutanaki na bango."
Positive
86
Kasi abatelaki kaka Nowa oyo azalaki koteya bosembo, mpe bato sambo mosusu elongo na ye.
Negative
87
Sikoyo, kanisá ete baanzelu bazali koyebisa yo: "Kondima lokuta ya Satana te."
Positive
88
Akomaki boye: "Nani akokoka na mokolo ya koya na ye, mpe nani akotɛlɛma ntango ye akomonana?
Negative
89
Mais bakosambua.
Positive
90
Ye ayebi makambo nyonso!
Positive
91
Kutu, 'asepelaka kolimbisa.' - Nz.
Positive
92
Zuwa na bango etindaki bango básala makambo oyo na nsima, epesaki bango mpasi mingi na motema.
Negative
93
mateya ya solo oyo ateyá yo?
Positive
94
Oyaki kososola ete bato nyonso bazali mosika na Nzambe.
Negative
95
Makomami emonisi mpe ete bamonisaki mpenza botosi oyo esengeli na likambo yango.
Positive
96
ya til des signes ou pas ?
Negative
97
Totunaki bango boye: "Mpo na nini bakristo basambelaka Yesu, ekulusu, Maria, mpe bikeko mosusu nzokande Mibeko Zomi epekisi yango?"
Negative
98
Asalaki mokili wuta na mayi mpe na nzela ya mayi.
Positive
99
End of preview. Expand in Data Studio

Lingala Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Lingala for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 427,979
  • Positive sentiment: 251923 (58.9%)
  • Negative sentiment: 176056 (41.1%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Lingala
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/lingala-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Lingala
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{lingala_sentiments_corpus,
  title={Lingala Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/lingala-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/lingala-sentiments-corpus