Lingala
stringlengths 1
484
| sentiment
stringclasses 2
values | __index_level_0__
int64 0
428k
|
---|---|---|
Bongo atunaki bango: 'Mpo na nini botelemi awa mokolo mobimba mpe bozali kosala eloko te? | Negative | 0 |
Nalobi epai ya bino ete, iyo; nzokande bokoli te o boyebi boko bobongo nie. | Negative | 1 |
Mpe soki mokomoko azali na mokumba, akomona ete losambo na kati ya libota etaleli mpe ye. | Positive | 2 |
Mpe tala, lisusu, balobaki eye etindamaki bango na Nkolo; yango wana, mazali ma sembo mpe ma solo. | Positive | 3 |
Pamba te, bakoyoka kaka ete osi'okomi awa! | Positive | 4 |
Mityelá mokano ya kozwa eloko oyo ezali na litomba mingi koleka bozwi ná biloko ya kobikela. | Positive | 5 |
Atako mana ezalaki likabo oyo eutaki epai ya Nzambe, epesaki bato bomoi ya seko te. | Negative | 6 |
Nakotya yo obatela biloko mingi." | Positive | 7 |
Ndenge nini toyebi ete Nzambe andimaka te ndenge nyonso ya kosambela ye? | Negative | 8 |
Tala, nkoma izali liboso lya bino; soko bokokamola yango ekozala mpo ya bobebisami bwa bino moko. | Positive | 9 |
Banda vi banaya bayimaan hai loko... | Positive | 10 |
Mpe akopika bahema na ye oyo ezali lokola bandako minene kati na mbu monene mpe ngomba mosantu ya Kitoko; mpe akoya tii na nsuka na ye, mpe akozala na mosungi te." | Negative | 11 |
Olingi koyeba makambo mosusu etali Bokonzi ya Nzambe mpe oyo ekosala? | Negative | 12 |
Kasi ateyaki mpe bango bábondelaka ete Bokonzi ya Nzambe eya mpe bázelaka ntango yango na motema esengo. | Positive | 13 |
Na ndakisa, Biblia esaleli liloba lobɔkɔ mbala ebele. | Positive | 14 |
Na kozela banzelu bazongaki mpe na boboto batunaki ye, "Mwasi, ntina nini ozali kolele? | Negative | 15 |
Yango ekosalisa yo oyeba oyo Yehova azali kosɛnga yo mpe ndenge oyo asalisaki basaleli na ye na kala. | Positive | 16 |
Pamba te apesaki motindo mpe yango ekelamaki. | Positive | 17 |
Moyengebene akimaka mpo na kokɔta kuna mpe azwaka libateli." | Positive | 18 |
Litomba oyo okoki kozwa: Nzambe alaki ete soki oyebi ye mpenza malamu, okozwa bomoi ya seko. | Positive | 19 |
Na yango, tokomonisa bwanya soki tosaleli makoki na biso ya kokanisa mpe tobakisi boyebi na biso ya Liloba ya Nzambe. | Positive | 20 |
Mpo soko ezali moko o ntei ya bino oyo asali bolamu, akosala na nguya mpe makabo ma Nzambe. | Positive | 21 |
Okoki kopusana penepene na Nzambe kaka soki otyeli ye motema, mpe soki ondimeli ye. | Positive | 22 |
Natatoli lisusu ete tokoki te kokumbama libanda soki tokolanda toli ya profeta ya Nzambe. | Positive | 23 |
Ntango "mokolo ya kosambisama" ya Nzambe ekoya, baoyo baponi kozala banguna ya Nzambe bakobebisama ndenge wana. | Negative | 24 |
Eyebisaka bango ete bazali bana ya Nzambe mpe ete basengeli kolya limpa mpe komɛla vinyo | Positive | 25 |
Kasi, elimboli ete baoyo bakumisaka mpenza nkombo ya Nzambe bakoki kobelela ye ata na ngonga nini mpo na kozwa libateli. | Negative | 26 |
Nzambe atalelaki yango na ndenge ya malamu mpo asala ndenge asali na mokolo ya lelo: kobatela bato mingi na bomoi." | Negative | 27 |
Soki moto moko nde asalá Nzambe, moto yango asengeli kozala Mozalisi. | Negative | 28 |
Boye okotambola na kimya na nzela na yo, mpe ata lokolo na yo ekotutana na eloko moko te." | Positive | 29 |
To kofandisa bango na se ya mayi ti ba kokufa kuna. | Positive | 30 |
Ndenge nini toyebi ete bato nyonso oyo bazwaki elimo ya Nzambe baponamaki te mpo na kokende likoló? | Negative | 31 |
Na nsima mposa wana, ntango ezwi zemi, eboti lisumu." | Negative | 32 |
Ye Oyo Aleki Likolo azali na boyebi?" | Positive | 33 |
mpe bakopesa ye kombo Emanuele; | Positive | 34 |
Na nsima mposa wana, ntango ekoli, eboti lisumu." | Negative | 35 |
Na Nzambe azali moyebi wa eloko inso ." | Positive | 36 |
le lon ponana ye paroranga ki, | Negative | 37 |
Sima na yango, bakobima na mokili yango mpe bakosambela ngai na esika oyo." | Positive | 38 |
Ntango azalaki awa na mabele, atikalaki sembo tii na liwa. | Positive | 39 |
Mpo na nini Nzambe abundelaki Bayuda te ndenge asalaki yango kala? | Negative | 40 |
Tala, nalobi epai ya bino, ete ezali o ngambo yoko lokola ezali o esusu; mpe ekozala epai ya moto engebene na mosala mwa ye. | Positive | 41 |
Emonani na misala na bango ete babosanaki te libula na bango, to makambo oyo bateyaki bango. | Positive | 42 |
Moto akokana, nzambe akosukïsa (feat. | Positive | 43 |
Moize amonisaki bolingo mpo na Nzambe mpe mpo na baninga na ye Bayisraele. | Positive | 44 |
Elinga Nzambe ete ekoka kozala o mikolo mya ngai; kasi yango ezala mosika te to mosika, o yango nakosepela. | Positive | 45 |
le titakrai ye mai san, | Positive | 46 |
Bokanisi batongi yango na mayi esika bato ya mboka bakokoka kokende te pamba? | Negative | 47 |
Andimaka moto nyonso oyo alingi kosambela ye.' | Positive | 48 |
O bandimi! tango nini bokososola? | Positive | 49 |
Na yango, atikelá basaleli ya Nzambe lelo oyo ndakisa moko malamu. | Positive | 50 |
Mpo na sikoyo, ata baoyo basalaka nyonso mpo na kosepelisa Nzambe bakutanaka na mitungisi. | Negative | 51 |
Maze Bakoseli Ngai Makambo Mpo Nakosa Na Wele, | Negative | 52 |
Ndako nyonso oyo bakokuta mopɛngwi, esengelaki kobebisama." | Negative | 53 |
Azalaki koloba na basaleli na ye na boboto, mpe na ndenge oyo ebongi mpenza. | Positive | 54 |
Pamba te bato ya masumu mpe basalaka bongo. | Negative | 55 |
Boye, bakosala makambo na bwanya ata soki ozali te. | Positive | 56 |
Na yango, "Goge" oyo mokanda ya Ezekiele to Emoniseli elobeli, ezali Satana te. | Negative | 57 |
Bongo alobaki na ngai: Ezali baoyo bawuti konyokwama mingi penza. | Positive | 58 |
Nini ekosalisa yo ntango ozali kosolola na basusu mpo na Nzambe mpe mpo na bozalisi? | Negative | 59 |
Mibembo mya ye o kati ya esobe, mpe bongo na bongo. | Positive | 60 |
Yakobo akendaki liboso ya libota na ye, mpe afukamaki mbala nsambo liboso ya ndeko na ye. | Positive | 61 |
Batu oyo basili kosala malamu, bakosekwa mpo na kozwa bomoi. | Positive | 62 |
Na nsima, Nzambe 'akopusana penepene na yo.' | Positive | 63 |
Ata bongo, bolinganaka mpe bolingi te kosalana mabe. | Positive | 64 |
Tótalela mpe ndakisa ya Yobo, moto moko ya sembo oyo alobaki: "Nasalá kondimana na miso na ngai. | Positive | 65 |
Mpe nalobi epai ya bino ete babikisamaki. | Positive | 66 |
Bango nde ba ko lamusaka biso, tongo esi etani | Positive | 67 |
Bamosusu balobaki ete: "Liloba oyo ezali makasi; nani akoki koyoka yango?" | Negative | 68 |
Tango nini okopesa etumbu na bato oyo bazali konyokola ngai? | Negative | 69 |
To owanganaki kondima?' | Negative | 70 |
Liloba ya Nzambe ekebisi biso ete: "Bókangana te na ekanganeli ya mabe esika moko na bato oyo bazali bandimi te. | Positive | 71 |
Bongo bokengeleke, zambi boyebi ata mokolo ata ngonga te." | Negative | 72 |
Kasi mpo na baponami, ba oyo ye apona, yango wana atiaki yango mokuse. | Negative | 73 |
Lokola basi ya mibu nyonso, totambolaka kati ya pole na Ye . | Positive | 74 |
Moto nyoso akotosa te, akozwa etumbu ya makasi; | Negative | 75 |
Yebisá bato ete bámeka komata na Ngomba Sinai te.' | Negative | 76 |
Kutu, akebisaki nde bakristo boye: "Bókangana te na ekanganeli ya mabe esika moko na bato oyo bazali bandimi te. | Positive | 77 |
Pamba te, ye awutaki na suka ya mokili mpe ayaki mpo na koyoka bwanya ya Salomo. | Positive | 78 |
Abatelaka basambeli na ye. | Positive | 79 |
Tomonaki bondimi na bango mpe lolenge bazalaki kosalela yango. | Positive | 80 |
Alobaki ete: "Kaka ndenge Tata ateyaki ngai, ndenge mpe nazali koloba." | Positive | 81 |
Nakomonisa bango ete bazali na libunga.' | Negative | 82 |
Nzambe azali na nguya oyo ezangi ndelo mpe azali na mposa ya kosalela yango mpo na bolamu na biso. | Positive | 83 |
Alakaki ete bana ya Yakobo bakokóma ekólo moko ya nguya. | Positive | 84 |
Nzambe na sengi se na yo ooo, bomengo oo bwanya mayele eeee, | Negative | 85 |
Kaka ntango bandeko mosusu bazongaki na ntɔngɔ makasi nde nakutanaki na bango." | Positive | 86 |
Kasi abatelaki kaka Nowa oyo azalaki koteya bosembo, mpe bato sambo mosusu elongo na ye. | Negative | 87 |
Sikoyo, kanisá ete baanzelu bazali koyebisa yo: "Kondima lokuta ya Satana te." | Positive | 88 |
Akomaki boye: "Nani akokoka na mokolo ya koya na ye, mpe nani akotɛlɛma ntango ye akomonana? | Negative | 89 |
Mais bakosambua. | Positive | 90 |
Ye ayebi makambo nyonso! | Positive | 91 |
Kutu, 'asepelaka kolimbisa.' - Nz. | Positive | 92 |
Zuwa na bango etindaki bango básala makambo oyo na nsima, epesaki bango mpasi mingi na motema. | Negative | 93 |
mateya ya solo oyo ateyá yo? | Positive | 94 |
Oyaki kososola ete bato nyonso bazali mosika na Nzambe. | Negative | 95 |
Makomami emonisi mpe ete bamonisaki mpenza botosi oyo esengeli na likambo yango. | Positive | 96 |
ya til des signes ou pas ? | Negative | 97 |
Totunaki bango boye: "Mpo na nini bakristo basambelaka Yesu, ekulusu, Maria, mpe bikeko mosusu nzokande Mibeko Zomi epekisi yango?" | Negative | 98 |
Asalaki mokili wuta na mayi mpe na nzela ya mayi. | Positive | 99 |
Lingala Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Lingala for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 427,979
- Positive sentiment: 251923 (58.9%)
- Negative sentiment: 176056 (41.1%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Lingala
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/lingala-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Lingala
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{lingala_sentiments_corpus,
title={Lingala Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/lingala-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 0