Dataset Viewer
Auto-converted to Parquet
Pedi
stringlengths
9
498
sentiment
stringclasses
2 values
__index_level_0__
int64
0
423k
Bjale ke ka lebaka lang o bolela le nna ka mokgwa wo?"
Negative
0
Ke bokgopo bja lena bjo bo le hloletšego ditlaišego tše, bjo bo le tsetsemeditšego pelo.
Negative
1
Medimo e tla timelela sa ruri, gomme gwa godišwa Morena fela tšatši leo.
Positive
2
Be ye God fearing, O servants of God!
Negative
3
Morero wa Modimo ka lefase le ka batho go tloga mathomong e be e le ofe?
Negative
4
Empa ge ba betha bahlanka, ba tagwa, kotlo ya bona e tla ba ye kgolo.
Negative
5
Ka morago ga moo bahlanka ba Farao ba re go yena: "Monna yo e tla ba molaba go rena go fihlela neng?
Negative
6
Eupša go na le ba bangwe ba lena bao ba sa dumelego."
Negative
7
Nathane a re: Gona Morena o go lebalela sebe sa gago; o ka se ke wa hwa.
Positive
8
Modimo O nale phomolo feela ho badumedi.
Negative
9
Ka gobane o lahlile batho ba gago, e lego ba ntlo ya Jakobo.
Negative
10
wa bona ka moo bakgopo ba otlwago ka gona,
Positive
11
Letšatši leo le ile la fetola Mukhabudi.
Positive
12
goba yona toka ya gago nageng ya ba ba lebetšwego?
Negative
13
Morwagwe a re go yena: 'Tate, ke fošeditše Modimo le wena.
Negative
14
Ke moka morongwa yo a tšwago legodimong a iponagatša go yena gomme a mo matlafatša.
Positive
15
Retologelang go Morena a sa le file sebaka; mo rapeleng a sa le kgauswi.
Positive
16
Ke ka baka la eng le sa ka la boifa go mmolela gampe, yena Moshe mohlanka wa ka?
Positive
17
O ikapešitše ka leru, gore thapelo e se ke ya fihla go wena.
Negative
18
Yena a mphetola a re: "Tšeo ke diphefo tše nne tša legodimo di a tloga ge di seno rongwa ke Morena wa lefase lohle."
Positive
19
Mangwalo a Makgethwa a boletše e sa le pele gore Modimo o tla lokafatša baditšhaba ka tumelo.
Positive
20
Na o utolletšwe dikgoro tša lehu, Goba na o ka bona dikgoro tša moriti wa lehu?
Negative
21
Re tla ya nago go batho ba geno."
Positive
22
Daga se yãã wee go wara lay.
Positive
23
Botša rena bahlanka ba gago toro yeo, rena re tla e hlatholla."
Positive
24
Botša rena, bahlanka ba gago, toro ya gago, gomme re tla go hlathollela yona."
Positive
25
Ona motse o lokelwa ke kotlo,
Negative
26
ke go thušitše ka letšatši la go go phološa."
Positive
27
Ke moka a re: "Ba ke batlotšwa ba babedi bao ba emego kgauswi le Morena wa lefase ka moka."
Positive
28
Ge a re'alo Jehofa a re go yena: "Ke mang a neilego motho molomo goba yo a dirago gore go be le dimumu goba difoa goba ba go bona gabotse goba difofu?
Negative
29
Lena setšhaba sa ka, baetapele ba lena ba a le timetša, ba le rarakanyetša ditsela.
Positive
30
Lega go le bjalo, gwa tsoga le ngangišano e šoro go bona mabapi le gore ke ofe yo a bego a bonala e le yo mogolo go bona ka moka.
Positive
31
Na rejeeni kwa Mola wenu...
Positive
32
Ka gona mpotšeng toro le tlhathollo ya yona."
Positive
33
Miyona Ka Bara To Sagwada
Negative
34
Bjale le gapeletša batho ba gabolena gore ba ithekiše, gore le bona re tle re ba rekolle!"
Negative
35
O tsena khutšong; yo mongwe le yo mongwe yo a sepelago ka go loka o khutša lebitleng.
Negative
36
Kafirnya jago jago ya
Positive
37
Mehleng yeo setšhabeng sa geno go tlo phološwa bao ba hwetšwago ba ngwadilwe pukung.
Negative
38
Re ka se tsebe dilo ka moka tšeo barongwa ba di dirago lehono.
Negative
39
Batho le barongwa bao Modimo a ba hlodilego ba be ba ka kgona go kwa Modimo ka mo go phethagetšego.
Positive
40
Ke moka kganyogo ge e gotše e tswala sebe."
Negative
41
Di be di sebelana, "Bošego ke bjoo.
Positive
42
Eupša ba tla thothomela ka letšhogo, gobane Modimo o ema le baloki.
Positive
43
Le gona o tseba bao ba tšhabelago go yena.
Positive
44
Ga go na le modimo wo mongwe wo o ka phološago ka mokgwa wo."
Negative
45
Bona ba re: "Ee, re dihlatse."
Positive
46
Wena o tla bona ge ba kgopo ba fedišwa.
Positive
47
Go pepeneneng gore wa go rereša ke Modimo, le ge batho bohle e le ba maaka.
Positive
48
Yaba ke re: "Modimo wa ka, ako nkgopole ka baka la hona, mme o mpaballe ka baka la boholo ba mohau wa hao."
Positive
49
A ba a re: "Ao ke mantšu a Modimo, mme ke nnete."
Positive
50
Kena Morapedi
Positive
51
Ke moo ba bangata ba tla kgopjwa, mme ba tla ekana, ba tla hloyana.
Negative
52
Di tla dula go yona go ya go ile; di tla dula moo go iša melokong le melokong.
Positive
53
Toko Roti Go
Positive
54
Toko roti Go
Positive
55
Yena o tlo roma Morongwa wa gagwe a go hlahla, gore mosadi wa morwa wa ka o mo tšee gona kua.
Positive
56
Letšatši lela la go šiiša la kotlo ye ba tlilogo re otla ka yona le fihlile, gomme ke mang yo kago e kgotlelela?"
Negative
57
Ge go na le moprofeta gare ga lena,
Negative
58
Botšang ba dipelo tše dinyenyane le re: "Ebang le sebete, le se ke la boifa!
Positive
59
Ge e le dikgoši tša rena, dikgošana tša rena, baperisita ba rena le borakgolokhukhu ba rena ga se ba latela molao wa gago goba go ela hloko ditaelo tša gago, ga se ba latela le dikgopotšo tša gago tšeo o bego o ba kgalema ka tšona.
Negative
60
Ge ba tsena lerung, ba boifa.
Negative
61
O se kgantšhe tša gosasa, gobane ga o tsebe tše di tlago nalo.
Negative
62
Ba tla šireletšwa go iša mehleng ya neng le neng; Eupša ge e le bana ba ba kgopo ba tla fedišwa.
Negative
63
E tla ba bageremi gare ga baditšhaba.
Positive
64
O ka ba kgauswi le Modimo ge feela o mmota e bile o dumela go yena.
Positive
65
Ba mmotšiša ba re: "Ge go le bjalo gona ke mang yo a ka phologago?"
Negative
66
Yena ke moprofeta, mme o tla go rapelela gore o se ke wa hwa.
Positive
67
Ke ofe moporofeta yo botataweno ba sa kago ba mo hlomarela?
Negative
68
Ba pelo tše tshesanyane le ba botše le re: Tiišang!
Positive
69
Mohla nako yeo e fihla batho ka moka ba setšhaba sa geno bao maina a bona a ngwadilwego ka pukung ya Modimo ba tla phološwa.
Positive
70
Lesa go mo tsepelela gore a khutše, Go fihlela a thaba go etša ge mothwalwa a dira bjalo letšatšing la gagwe.
Negative
71
sona se o se holofetšago ba ba go boifago.
Positive
72
ntlo ya Josefa e be lelakabe,
Positive
73
wa otlolla matsogo a gago wa mo rapela;
Positive
74
le Arone yo a bego a mo kgethile.
Positive
75
O ngwadile gore: "Mohlanka wa Morena ga se a swanela go lwa, eupša o swanetše go ba bonolo."
Negative
76
Ntate ke mang ya ka ka wena (Father who can be likened unto you)
Negative
77
O re ntšheditše go re bolaya ka lenyora, rena le bana ba rena le mehlape ya rena?"
Negative
78
Yo a neago modiidi a ka se ke a hloka, eupša yo a utago mahlo a gagwe o tla hwetša dithogako tše dintši.
Negative
79
Are, "Tloho o tlo bona, o ya bona."
Positive
80
Ba ka se hlabje ke dihlong nakong ya masetlapelo, Gomme mohlang wa tlala ba tla khora.
Positive
81
Tšatši le ke go bonago o tla hwa!"
Negative
82
Ee, bao ba tlago go bušwa ke Mmušo wa Modimo ba tla dira thato ya Modimo gomme ba dumela gore Mmopi ke yena a swanelegago go buša batho, e sego motho le ge e le ofe.
Positive
83
Lešaba la buša la kgobokana, moo ba bego ba bile ba sa kgone go ja dijo.
Negative
84
Batho ba gago ba gašane le dithaba gomme ga go na yo a ba kgoboketšago.
Negative
85
Ba otlwa ka kotlo ya mollo wo o sa timego, ya ba sešupo sa go bonwa ke batho.
Positive
86
Fela, tiiša maatla o dire senna ruri ge o hlokomela melao ka moka ye Moshe motseta wa ka a go laetšego yona.
Positive
87
Gomme lešaba la ba ba dumetšego e be e le ba pelo e tee le moya o tee.
Positive
88
ba ke ba theohele Nqalong ya Bafu,
Negative
89
Ya bolela le setšhaba sa yona ya re: "Bonang!
Positive
90
Batho ba bantši ba thekgile Sathane tabeng ya go gana gore Modimo e be Mmuši wa bona.
Negative
91
Bona ba mo fetola ba re: "Ba be ba swana nago - yo mongwe le yo mongwe wa bona o be a swana le morwa wa kgoši."
Positive
92
Ke go agetše ntlo ya bodulo bjo bo phagamego, e lego lefelo la gago leo le tsepamego, gore o dule go lona go iša mehleng ya neng le neng."
Positive
93
Na ga le bana ba karogo, yona peu ya maaka,
Negative
94
Moko wa lentšu la gago ke therešo, Kahlolo e nngwe le e nngwe ya gago ya go loka ke ya go iša mehleng ya neng le neng.
Positive
95
O tseba tsohle gape o gohle.
Positive
96
Wena o na le mantšu a bophelo bjo bo sa felego;
Positive
97
moloki yena o phološwa ke tsebo ya ponelopele.
Positive
98
Na nka se go phagamiše ge o ka fetoga wa dira botse?
Negative
99
End of preview. Expand in Data Studio

Pedi Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Pedi for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 422,975
  • Positive sentiment: 255703 (60.5%)
  • Negative sentiment: 167272 (39.5%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Pedi
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/pedi-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Pedi
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{pedi_sentiments_corpus,
  title={Pedi Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/pedi-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/pedi-sentiments-corpus