Dataset Viewer
Auto-converted to Parquet
Swati
stringlengths
9
475
sentiment
stringclasses
2 values
__index_level_0__
int64
0
96k
Batsi: "Nkhosi, tinceku takho tingemadvodzana lalishumi namabili andvodza yinye, eveni laseKhenani.
Positive
0
phelele Nkulunkulu; nanso cha is Nkulunkulu He Almighty Hlakaniphile.
Positive
1
is khona biyela disbelievers buhlungu retribution?
Negative
2
Tinjinga netimphuya tifanana ngantfo yinye: Bobabili badalwa nguNkulunkulu.
Positive
3
Wamenta kutsi abe mncane kunetingilosi,
Negative
4
Ngemuva kwaloko wababuta watsi: "Nine anikabaluleki yini kwendlula tona?"
Positive
5
Lonkulunkulu loyawuphendvula ngemlilo, nguyena anguNkulunkulu sibili."
Positive
6
Ngako-ke ngitjeleni liphupho, ngitawube sengiyati-ke kutsi ningangichazela lona."
Positive
7
'Njengemshumayeli wekulunga,'Nowa wawumemetela ngekwetsembeka lomlayeto losecwayiso lebekaphatsiswe wona.
Positive
8
Beyiyini injongo yaNkulunkulu yasekucaleni ngemhlaba nangebantfu?
Negative
9
'Njengemshumayeli wekulunga,' Nowa wawumemetela ngekwetsembeka lomlayeto losecwayiso lebekaphatsiswe wona.
Positive
10
Ungabuti utsi: "Kwabangelwa yini kutsi tinsuku takadzeni tibe ncono kunaleti tetfu?"
Negative
11
accordance nga Nkulunkulu vulamehlo are disbelievers.
Positive
12
Ningesabi muntfu, ngobe kwehlulela kwaNkulunkulu.
Negative
13
Utsi-ke nangabe nine nimcolela nhlawumbe naseZulwini uyawucolelwa.
Positive
14
Bayawufikelwa kwesaba lokukhulu, ngobe Nkulunkulu ume nalabacotfo.
Negative
15
Loku kuvuka ekufeni kwekucala.
Positive
16
Lona bekaligibele abebitwa ngekutsi nguLotsembekile naLiciniso; umsulwa ekwehluleleni kwakhe nasekulweni kwakhe.
Positive
17
Nowa abeyindvodza lelungile.
Positive
18
bamshiyile Nkulunkulu sibili lophatsana ngemusa.
Positive
19
Nitsi: "Asidle, sinatse, ngobe kusasa sitakufa!"
Negative
20
Amemeta Loti atsi: "Aphi lamadvodza langenise lapha kakho kuyo lentsambama?
Negative
21
Nguye uMdali weliBhele, neweMtsentse,
Positive
22
Ngabangisana lomunye impahla yakhe na?
Negative
23
kuti): "Tatipungulirani madzi
Positive
24
Ngubani nje longaphenya kwehlulela kwakhe ahlolisise imfihlakalo yetindlela takhe?
Negative
25
Bakhala kuwe, wabasindzisa;
Positive
26
Laba labanye lababefile abazange bavuke ekufeni, kwadzimate kwaphela iminyaka leyinkhulungwane.
Positive
27
Ngako watsi: "Yebo, kona lamadvodza efikile lapha kami, kodvwa angikawati kutsi abephumaphi.
Negative
28
Nkulunkulu umbuyisela esimeni sakhe sekulunga.
Positive
29
Nobe kunjalo, labanye bangatsi: 'Jesu abenetimo letimbili.
Positive
30
Tiyakwemukela sijeziso lesikhulu."
Negative
31
Lesetsembiso salabo labakwesabako.
Positive
32
Kute namunye walababi loyawukuvisisa, kodvwa laba labahlakaniphile bayawukuvisisa kahle.
Positive
33
Lendvodzana yatsi kuyise: 'Babe, ngonile kuNkulunkulu nakuwe, angisafanele nekutsi ngibitwe ngekutsi ngiyindvodzana yakho.'
Negative
34
Hamba uye kubaphrofethi beyihlo nakubaphrofethi benyoko uyewubuta kubo."
Positive
35
lokwatiwa nguLosetikwako Konkhe?"
Positive
36
Ngiyawukunika bona njengemadvodzakati, noko, hhayi njengekutsi ngente nawe sivumelwane.
Positive
37
nami-ke sengiyawumelana nani ngekunivisa buhlungu ngalokuphindvwe kasikhombisa ngenca yetono tenu.
Positive
38
yamphendvula yatsi: 'Kodvwa, babe, mine yonkhe leminyaka bengihleti nawe ngikusebentela.
Positive
39
Bona, ngibekile phambi kwakho lamuhla impilo lokulunga, lokufa lobubi.
Positive
40
Ngako-ke ungabi nemahloni ngekufakaza ngeNkhosi yetfu.
Positive
41
Kuncusa kwemuntfu lolungile kunemandla kakhulu.
Positive
42
Watsi kubo: "Simakadze Nkulunkulu wenu akekho ngakini yini?
Negative
43
Kute bumnyama lobumnyama kuye,
Positive
44
Ngamkhumbuta kutsi besengiphila imphilo lehambisana netimiso teliBhayibheli.
Positive
45
Ngingumfokazi emhlabeni; ungangifihleli imiyalo yakho.
Negative
46
labalungile bayawububona buso bakhe.
Positive
47
Nani senibantfwana bakhe, yingci nje nanichubeka nenta lokuhle, futsi ningancotjwa kwesaba.
Positive
48
Imvu yakho iyawuphiwa sitsa sakho, kute naloyakukusindzisa.
Negative
49
Nalle Puh lelulaat..
Positive
50
Usathandaza katsatfu ngelilanga."
Negative
51
Kungani NgiMelana NeNkholo Lehleliwe
Negative
52
Watsi: "Babe, nangabe utsandza, yendlulise lendzebe kimi.
Negative
53
Ngako-ke memukeleni eNkhosini ngekutfokota konkhe; labanjalo-ke nibobatisa.
Positive
54
Nkulunkulu wabacosha ekhaya labo leliliPharadisi.
Positive
55
bayawutfomeka, banganyakati nakancane;
Positive
56
Wayiphendvula watsi: "Mine ngingumfelokati, indvodza yami ifile.
Negative
57
Sikholwa kutsi tsine nabo sisindziswa ngalokufananako ngemusa weNkhosi yetfu Jesu."
Positive
58
iyawubona situkulwane sayo,
Positive
59
Manje-ke nayi inkhosi yenu lenitikhetsele yona, lena lenaniyifuna.
Positive
60
babhudze kuphela,
Positive
61
ubabonile lababiya ngetinkhomo,
Negative
62
Anginandzaba nekutsi yinhle kangakanani.
Negative
63
Cha, yena ungilayile-ke lomuntfu."
Positive
64
icinise tonkhe tinqaba tayo letiphakeme,
Positive
65
Ngetsembele kuNkulunkulu, angesabi lutfo.
Positive
66
Umphumela waloko waba kutsi labangani labane besebangasakhoni kucitsa sikhatsi ndzawonye ngendlela labebangatsandza ngayo.
Negative
67
Ayamangala kutsi anisahambisani ngani nawo kulomsindvo wekutiphatsa kabi, ayanetfuka.
Positive
68
Waze watsi: "Kepha ngikhuluma loko, njengobe ngifundziswe nguBabe."
Positive
69
bacala emanga kuye ngetilwimi tabo,
Negative
70
Angitsi bodzadzewabo balapha emkhatsini wetfu?"
Negative
71
Emaliya Abeyasekera.
Positive
72
nayi subha laya hai naya Promise, naya Promise lay...
Positive
73
Emvakwaloko sewuyawukhotsa uyabuya emtsebulweni.
Positive
74
Ngibone intfo leyesabekako endlini yaka-Israyeli:
Negative
75
"Ngobe sati incenye, siprofeta incenye.
Positive
76
Busuku sebuvele bufikile, kantsi likhaya lami lisesekhashane kakhulu."
Negative
77
nekufa ngeke kutigambute tibongo takho;
Negative
78
uyibhubhisile indzawo yakhe yekuhlangana.
Negative
79
Konkhe leniyakucela ngekukhuleka nikholwa, niyakukwemukeliswa."
Positive
80
bumnyama sebungumngani wami.
Positive
81
Nibosuka lapho nicondze eHamathi lenkhulu,
Positive
82
Kana bakazusiwa mwa buloko bobali kubona bo?
Negative
83
Nyalo-ke sekufuneka nine nimcolele nibuye nimkhutsate, ningamyekeleli etinhlungwini adzimate aphele.
Positive
84
akukwendluli ngalutfo kukhunjulwa kwesilima,
Positive
85
Batsi bekutaba lihlazo kube bekute bantfwana baboFakazi esikolweni sabo.
Negative
86
Uyakwati kubavikela kunome yini lengenta kukholwa kwabo nelitsemba labo lekuphila phakadze libe sengotini.
Positive
87
kantsi ngisho netingilosi, letinkhulu kakhulu kunabo ngebuchawe nangemandla, atibahlambalati labo bantfu ngekubamangalela embikweNkhosi.
Positive
88
Yonkhe uyente ngekuhlakanipha;
Positive
89
Ngitsandza kusicitsa sikhatsi sami eSwatini ngaphandle ngoba lesizatfu.
Positive
90
Tabuta tatsi: "Nidlelani nebatselisi kanye netoni nibuye ninatse nato?"
Negative
91
wakha lolungile,
Positive
92
Bayawuphendvukela kuSimakadze, naye uyawukuva kuncusa kwabo, bese uyabaphilisa.
Positive
93
Ngingumlindzi wemnaketfu yini mine?"
Positive
94
Sikhumbula kufa kwakhe ngobe wayala balandzeli bakhe watsi: "Chubekani nikwenta, ningikhumbula."
Positive
95
Hlabani lihele leMkhosi,
Negative
96
Babulala baphrofethi bakho labebabayala kutsi babuyele kuwe; benta tinhlamba letesabeka kabi kakhulu.
Negative
97
C kulomnyakalishumi lotako.
Positive
98
"Ngaleso sikhatsi ngiyakubulala emahhashi akho,
Positive
99
End of preview. Expand in Data Studio

Swati Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Swati for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 96,002
  • Positive sentiment: 56515 (58.9%)
  • Negative sentiment: 39487 (41.1%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Swati
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/swati-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Swati
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{swati_sentiments_corpus,
  title={Swati Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/swati-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/swati-sentiments-corpus