Dataset Viewer
Auto-converted to Parquet
Tumbuka
stringlengths
10
483
sentiment
stringclasses
2 values
""Ndipo ndithu matembelero Anga akhala pa iwe kufikira tsiku lamalipiro."
Negative
Chifukwa wuli ukukhalapo wekha pano ndipo ŵanthu wose ŵakwimilira pamaso pako kwamba mulenji m'paka mise?"
Negative
(Ngalande) za moto wankhuni (zambiri zomwe Adali kuzikoleza ndikuotchera okhulupirira),
Negative
Paulosi wakayowoya kuti: "Tikukhumba kuŵa ŵakugomezgeka mu vinthu vyose."
Positive
Kweni namubabira mwana mu uchekuru wake."
Positive
Mbi thamu khe winu O'ke owinge piye
Negative
nisipoumba tusipoumba usipoumba msipoumba asipoumba wasipoumba usipoumba isipoumba lisipoumba yasipoumba kisipoumba visipoumba isipoumba zisipoumba usipoumba kusipoumba pasipoumba musipoumba
Positive
Fumu yane themba, asi wose aŵa mbateŵeti kale ŵa fumu yane?
Negative
matembererowo abwerere kwa iye;
Positive
Yaaah iwe wakamba ya alomwewe tikutukwanadi (chakuti chako) wamva?
Positive
Ndichitireni chifundo lero ndipo chifundo chanu chindikwaze kwa iwo omwe akufuna kufa kwanga mu dzina la Yesu.
Positive
Usange mucitenge ntheura mbwenu mitundu yose yimanyenge kuti imwe mwekha ndimwe Ciuta.'
Positive
Ndipouli, yumoza wa imwe ngwakusesa."
Negative
Yesu wakati: 'Nakuti, kwambura kuti mazuŵa agho ghadumulizgike, palije munthu uyo wangazakaponoskeka; kweni chifukwa cha ŵakusoleka, mazuŵa agho ghadumulizgikenge.'
Negative
Tilije chiharo mu mwana wa Yese.
Negative
Lemba ili likuti: "Chiuta wazamuŵa nawo pamoza.
Positive
"Kasi wamuwona munthu waluso pa mulimo wake?
Positive
Nadi pano, 'ŵanthu awo ŵakukhala mu charu ŵazamusambira urunji.'
Positive
Naŵasungilira, ndipo palije yumoza wa iwo waparanyika kweni mwana wa pharanyiko pera."
Positive
Ndipo tikadampanga Mngelo
Positive
Palije munthu pa charu chapasi wakuŵa nga ndiyo.
Negative
Yewo tawonga chomene!'
Positive
Sono usange ntchiheni mu maso ghinu, lekani niwelere."
Negative
Nkhakhumbanga kuŵaphalira vya cigomezgo ca Paradiso na ciwuka, kweni ŵakapulikanga yayi ciyowoyero cane.
Negative
Para nasambira vyeruzgo vinu vyaurunji.
Positive
Kasi ku nyumba ya awuso ghaliko malo ghakuti tikagoneko?"
Negative
Iyo na ŵanyake ŵakaŵandandika kuti ŵalasike, ndipouli, ŵakaŵakoma yayi.
Negative
"Muchoko chomene wazamuŵa chikwi, ndipo muchoko wazamuzgoka mtundu wankhongono.
Positive
Watipa Malemba ghake,
Positive
Pakuti Ngwankhongonozose, ipo wali na nkhongono zakumazgira masuzgo agha.
Positive
iyo ndiyo Mphoto ya anthu ochita
Positive
Penepapo wakati: "Nadi, ŵanalume aŵa ŵangwiza kwa ine, kweni nkhumanya yayi uko ŵangufuma.
Negative
Mulungu Wamva Kulira Kwawo, Ndtakhala Ine Apa Ndlapa Bac, Maumbon Mkat.
Positive
Likuti: "Mwana wane, uŵe wavinjeru na kukondweska mtima wane, mwakuti nimuzgore uyo wakuninena."
Negative
Mutipe malo mukati mu ŵabali ŵa adada."
Positive
Iwo mbalongozgi ŵacibulumutira."
Positive
Ntendele uŵe kwa Nuhu mu iwumbe yosope.
Positive
"Mu msumba unyake mukaŵa mweruzgi uyo wakopanga Chiuta chara ndipo wakapwelerangako vya munthu chara.
Negative
Mphanyi chikaŵa chiwemi kuti munthu uyu waleke kubabika."
Negative
Ntheura ŵakaluta na kuwona uko wakakhalanga, ndipo zuŵa lira ŵakakhala nayo.
Positive
kuti ochimwa abwerere kwa inu.
Positive
Kweniso ni mukuru chomene kuluska vyose ivyo wali kulenga.
Positive
Phalazgani mazgu ghawemi gha Chiuta kwa munthu yumoza muhanyauno ndipo muti mupendekenge nga yumo mwa wakuzirwa pamaso pa Fumu Chiuta!
Positive
Timwaze mphangwa mwaphinga,
Positive
Para Ufumu wiza, charu chizamuŵa paradiso ndipo ŵanthu mabiliyoni ghanandi awo ŵali kufwa ŵazamuwuka.
Positive
Chifukwa chakuti ŵazura na vinthu vyakufuma kumafumiro gha dazi,
Positive
Uyo wakutemwa vinyo na mafuta wasambazgenge yayi."
Negative
Tichotsereni chilangochi, ndithu ife tikhulupirira."
Positive
Ni kuti aŵala ŵangakukulupilila ya Akhera twalinganyichisye ilagasyo yakupoteka nnope.
Positive
sangachite chinthu koma chomwe Quràn yalamula).
Positive
Wangwiza kuno kuti wamupusikani, kuti wamanye chilichose icho mukughanaghana, na kumanya chilichose icho mukuchita."
Positive
"Ndipo palibe pamene chikuwadzera chisonyezo chilichonse mwa zisonyezo za Mbuye wawo koma akuzitembenukira kumbali.
Negative
Ndipo vinthu vyose ivyo mukupempha mu lurombo, mupokerenge para muli na chipulikano."
Positive
Mtendere ukhala pa yemwe aatsate
Positive
Ndipo kuchokera kumwamba izo zikutsatira lembani nthaka yabwino, yachonde.
Positive
Imeneyo ndiyo mphoto Ya ochita
Positive
Ndipo ŵazamutumphuska mazgu ghawo kwimikana na misumba ya Yuda.
Positive
zipatso zako zimachokera kwa Ine."
Positive
Ndipo lekani vyaka vinandi vipharazge vinjeru.'
Positive
Solomoni wakati wachekura, 'ŵawoli ŵake ŵakapatuska mtima wake kulondezga ŵachiuta ŵanyake.
Positive
Pakuti mu mazuŵa gha visuzgo, iyo wati wandisunge mu nyumba yakhe.
Positive
Yesu wakati: "Chifukwa wuli mukuniyezga, ŵapusikizgi imwe?
Negative
Ngaŵa lisiku lya ipwetesi."
Positive
ndimomwe timalipirira Ochita
Positive
ya murobbiku,
Positive
(Kweniso wonani nkhani yakuti: "Ivyo Nkhasankha Apo Nkhaŵa Mwanici" mu magazini iyi.)
Negative
Baibolo likuti: 'Wonani, utu nthuvigaŵa tuchoko twa mendero ghake; ivyo tikupulika vya iyo ni vichoko waka!'
Negative
Jwalakwe ŵatite: "Timcamanyilila ni yitendo yawo. . . .
Positive
Ukamuphalire Farawo themba la Eguputo vyose ivyo nkhuyowoya nawe."
Positive
Ndithu Iye (Mbuye wawo) wachizungulira chinthu chilichonse mkudziwa Kwake.
Positive
(Akunena kuti): "Asakulowerereni lero
Positive
(Kumbuchilani) katema kaŵansalile ŵandu ŵakwe kuti: "Nkatwangaga, chisimu Allah jwangaanonyela ŵakutwanga."
Positive
"Ndithudi, (m'nkhani iyi) muli malingaliro (aakulu) kwa anthu olingalira zinthu.
Positive
Iya ni wura iyebiye,
Positive
Uwonenge vinthu vikuru kuluska ivi."
Positive
Palije chiuta munyake wakuyana na Chiuta wawo.'
Negative
Ya ghokogho nɛ Grand Village kɔndɛnɛ yaluwo nkala y'Anɔmbɛ, n'anagha mwa mwa, ndo yaluwo bo n'ezeni.
Positive
Basi ipotesi niyao aŵala ŵalitesile lupuso (pakunnambuchisya Isa ikaliyo, takapate) ilagasyo ya lisiku lyakupoteka kusyene.
Negative
Phalirani ŵanthu nkhani iyi,
Positive
Ndipo uchindikikenge panthazi pa ŵalendo ŵanyako wose."
Positive
Iyo wakati: "Ntheura, muŵenge maso chifukwa mukumanya chara zuŵa ilo Fumu yinu yikwizira. . . .
Negative
Ntheura usange nasanga uwemi pamaso pako, nilute nkhawone ŵabali ŵane.'
Positive
pi ciŋ Twon Oteka pa Yakobo,
Positive
Imwe namwe mwati mupemphe a president wapereke u ministerial position kwa munthu wakufuntha nga chisi? imwe zakuti doda ndakuzelezeka ili nthe mukumanya cha?
Negative
Asi wose ŵaŵiri ŵawenge mu buwu?"
Positive
Kasi tizamusanga njombe wuli para tikuwonga lusungu lukuru lwa Chiuta?
Positive
Mukuti tikakudyereni kuti ife ogwira mu bomafe?
Negative
Ninga wose wakamogopa, hamba siwehuwila vyono nayo yawa mwijizwa.
Negative
Yesu wakati: "Chifukwa wuli mukuniyezga, ŵapusikizgi imwe?"
Negative
Cokoro cikaŵa kuti capwelelera nchimi kweniso calongora cipulikano mwa Ciuta.
Positive
Tiye, idya zakudya zako mokondwa, numwe vinyo wako mosekera mtima; pakuti Mulungu wavomerezeratu zochita zako.
Positive
Lekani Themba Solomoni likalemba kuti: "Pa charu chapasi palije munthu murunji uyo nyengo zose wakuchita uwemi pera kwambura kunangapo."
Negative
Kweni ŵanthu ŵakaluwa yayi ivyo wakachitanga kumanyuma.
Positive
Malo agha ŵanthu ŵakuyuzgikirako na moto wamuyirayira yayi.
Negative
" (Kuyang'ana ku Al-Kaaba popemphera Swala ndicho) choonadi chomwe chachokera kwa Mbuye wako, choncho usakhale mmodzi mwa openekera.
Negative
Anchinkulungwa aŵala ŵaŵakanile mwa ŵandu ŵakwe ŵatite: "Chisimu uwwe tukum'bona kuti n'di nkupulika, soni uwwe tukun'ganichisya kuti mmwejo jumpepe mwa ŵaunami."
Negative
Ntheura Yesu wakachenjezga awo ŵakamususkanga, wakati: 'Chenjera, kuti ungweru uwo uli mwa imwe uleke kuŵa chisi.
Positive
pamitima yawo kuti Asazindikire
Positive
ndiye kuti wafanana ndi Ayuda, chifukwa choti iwowo adazindikira ndipo sadagwire ntchito.
Negative
Kasi Mukughanaghana Kuti Chiuta Wali Kumutayani?
Negative
End of preview. Expand in Data Studio

Tumbuka Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Tumbuka for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 190,542
  • Positive sentiment: 109522 (57.5%)
  • Negative sentiment: 81020 (42.5%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Tumbuka
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/tumbuka-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Tumbuka
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{tumbuka_sentiments_corpus,
  title={Tumbuka Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/tumbuka-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/tumbuka-sentiments-corpus