Dataset Viewer
Auto-converted to Parquet
audio
audioduration (s)
1.5
13.6
text
stringlengths
19
64
afia Ι”rekΙ” kurom akyerΙ› hwee adwane wo
anim no Ι”rebΙ›yi manyΙ› kwan yi mu ase
kanea he atΙ”n fufuo yi ba nasuafoΙ”
yΙ›n guu na nanso sΙ› benkum he nkΙ”
na yΙ›Ι› boΙ” anka wΙ”ato se na mu
abena wode pΙ” kyΙ› hΙ” adwane no
afei ama asa anaa sΙ› mΙ›kΙ” enti
de nadwene yΙ› ansa nti piaa ne ho
ba kasa nkanea na de mpaboa he so
ananse wo nsrahwΙ› yi reyΙ› mu na
biara yii hwene he so gyina nua
nani atΙ›m baako a bepue na kaa
aboa sΙ› waboa nsrahwΙ› he Ι”kye Ι”panin fΙ›fΙ›Ι›fΙ›
sΙ› retoto adwuma sei wiaa kyerΙ› nkwan
menkΙ” nnuane sΙ› ade no mΙ›gye pΙ› tan
ne Ι›yΙ› afe anka Ι”rebΙ›di adaka he emu
merekΙ” Ι›kΙ” sΙ› yee ho Ι”hwΙ›Ι› fam
yΙ› no nkΙ” mu mpa sei noaa mmoa
ato Ι”su nua gyina pono he so
me bΙ”Ι” me ahuri kyΙ›Ι› soro kaa
yesu he Ι”sΙ”re adanko wuraa asuafoΙ” bi pasapasa
merekΙ” akwadaa Ι”huu obiara da akΙ›seΙ› yi afei
frΙ›frΙ› ama so fam asi gyae nadwene aban
ankΙ” obi sΙ› buee kΙ” dΙ”nhwere bi emu
amaneΙ› na Ι”nyaa din kyerΙ›Ι› dane he a
wΙ” Ι›hyee aane sΙ› ho nnuane yi ada
nadwene toa nsia a mΙ›bΙ” yi Ι”kΙ”too
nasuafoΙ” mΙ›kΙ” adan no Ι”kΙ”Ι” fam bi mu
afi sΙ› redi nkwan ma nkwa awe
yaa atu nnwom no dΙ”Ι” nwoma na
nsΙ”hwΙ› no de nhyΙ› atadeΙ› bi mu ha
yaa foro awia kaa kaa mmaa hΙ”
no nsu na hwiee ade ho afei
nso Ι›siane Ι”tumi nti anka kumm Ι”hunu Ι”no
a Ι”ntumi fufuo bi nakyi twere mfudeΙ›
ne bΙ›tΙ”n renkΙ” anaa na bΙ”Ι” yee
obiara akokΙ” bΙ›dwo ne adwuma fΙ›fΙ› na Ι”kyena
nnwom no anka tenaa no yie sΙ› Ι”bobΙ”Ι”
nakyi mfudeΙ› woada yΙ›n wadwuma Ι”bΙ›tumi ba
sisi wo ne bΙ›dwo kaa nua na fam
na wΙ” pono nso awuwu nafuo yi emu
yaa biara ati sΙ› nano pae nadwene
ato twerΙ›Ι› mfe kuu obi tuu yΙ›n
mpae no fa fie ahyΙ› ho bi nkakrankakra
akokΙ” na ma Ι”soaa nafuo yi ho ha
Ι›siane hyiaa tiri ara bΙ›tΙ”n sensene dane
sunsum na Ι›hyee wΙ”n amaneΙ› abΙ” afuo
afei faa Ι›ban saa Ι”di aku krataa
wΙ”n bΙ›tene biara Ι”sΙ”re nnora kanea yi de
dwabΙ” Ι›yΙ› egya na a anyane wΙ”
Ι›kΙ”m monkΙ” nkwan no Ι”panin afi efie
Ι”no boΙ” no twee asuafoΙ” hΙ” ansa
amaneΙ› bΙ›tene yee anka mehuu sΙ› mΙ›yΙ›
twitwaa efie no ho aboa he akyi
yaa wo bosome yi Ι›kΙ” bokiti yi
tΙ”nn nua yi nka nkanea he ani
abena bΙ”Ι” sunsum na sesaa yΙ›n kaeΙ›
tokuro Ι”bΙ›kΙ” tiri si safoa yi no
me siesie a nti akyiri nafuo bi firii
ho buee yΙ›n akΙ” nnora nkanea yi hwee
Ι”bobΙ”Ι” wo sΙ› mate ato afe bi ani
Ι”kyerΙ›kyerΙ›ni yi ne yiyi me Ι”kyena yi Ι”gyae
wΙ” dwabΙ” no saa kurom hΙ” Ι”kyena
mpaboa yi wie ase boΙ” enti mΙ›gye ho
nnuane he bΙ›fa ama atu tΙ”Ι” Ι›dan
Ι”yΙ›Ι› sΙ› redi mo Ι”kyerΙ›kyerΙ›ni ansa anaa nkΙ”
kwan asan adan na kyΙ› bosome yi
manyΙ› sΙ› mepΙ› mpae nso Ι›ban Ι”nyΙ›
anim saa ne akyi woyΙ› kΙ›se ha ankyΙ›
bubuu sΙ› nkΙ” so a yΙ› adi
tokuro no ntΙ” yesu bae mpa na tia
a Ι”tΙ”nn mpaboa piaa atu ebia simon
nua abΙ›kye sΙ› pono dii nnwom Ι”bobΙ”Ι” me
aban too ba no kyΙ› Ι”kraman bi atifi
twii akye bi pΙ› adanko bi nakyi
Ι”haw no Ι”dwene ne sΙ› didii dwa bi
bosome deΙ› dwabΙ” yΙ› na Ι”sa nam papa
adeΙ› gyee sΙ› nano Ι”nam nhoma kΙ”too hwa
ahyia asuafoΙ” sΙ› nsΙ”hwΙ› no nkΙ” nti hwehwΙ›
nanso saa nani nakyi gyegyee mmrΙ› nyinaa ara
wani no wonnim me sΙ› abΙ›di nkra na
wΙ”hyehyΙ› nua mpae anokwa piaa wΙ” mo nkra
saa nti firi ne aane kamfoo yΙ› obi
mango bΙ›fa agorΙ” kΙ”Ι” ntoma na atifi
Ι”bobΙ”Ι” benkum yi nakyi Ι›hΙ” ne bΙ›fe
nti kunu ayera hwene mu nso nti Ι”tΙ”nn
me abΙ›kye sei deΙ› bΙ›gyae sΙ› Ι”duruu
nti sΙ› sΙ› nakyi sanee duru yi pΙ›
aane sunsum Ι”huu abaa emu a sΙ› se
kwan anya abΙ› he twa nsaden fam
paanoo yiyi kanea he fa nkosua bi ho
sekan bi wΙ”rebΙ” Ι”haw yi sika atΙ”
Ι”kyerΙ›kyerΙ›ni redidi merekΙ” ho sisi a ho soro
nsu no ahyia nnadeΙ› ama asi ntoma
aban adidi biara ho Ι”di wo meho dodo
woada sΙ› ntΙ”Ι” nakyi akwadaa ansa nso bΙ”Ι”
ehu yi bΙ›twerΙ› adaka na agorΙ” mΙ›hwehwΙ›
ne tokuro retwa obiara da mepΙ› sekan
adwane aboa afuo fam afei ankyΙ› hwee ase
ansa nti nso emu Ι›wΙ” dΙ› ansa ankyΙ›
End of preview. Expand in Data Studio

Twi Speech-Text Parallel Dataset - Part 3 of 5

πŸŽ‰ The Largest Speech Dataset for Twi Language

This dataset contains part 3 of the largest speech dataset for the Twi language, featuring 1 million speech-to-text pairs split across 5 parts (approximately 200,000 samples each). This represents a groundbreaking resource for Twi (Akan), a language spoken primarily in Ghana.

πŸš€ Breaking the Low-Resource Language Barrier

This publication demonstrates that African languages don't have to remain low-resource. Through creative synthetic data generation techniques, we've produced the largest collection of AI training data for speech-to-text models in Twi, proving that innovative approaches can build the datasets African languages need.

πŸ“Š Complete Dataset Series (1M Total Samples)

Part Repository Samples Status
Part 1 michsethowusu/twi-speech-text-parallel-synthetic-1m-part001 ~200,000 βœ… Available
Part 2 michsethowusu/twi-speech-text-parallel-synthetic-1m-part002 ~200,000 βœ… Available
Part 3 michsethowusu/twi-speech-text-parallel-synthetic-1m-part003 ~200,000 πŸ”₯ THIS PART
Part 4 michsethowusu/twi-speech-text-parallel-synthetic-1m-part004 ~200,000 βœ… Available
Part 5 michsethowusu/twi-speech-text-parallel-synthetic-1m-part005 ~200,000 βœ… Available

Dataset Summary

  • Language: Twi/Akan - aka
  • Total Dataset Size: 1,000,000 speech-text pairs
  • This Part: {len(data):,} audio files (filtered, >1KB)
  • Task: Speech Recognition, Text-to-Speech
  • Format: WAV audio files with corresponding text transcriptions
  • Generation Method: Synthetic data generation
  • Modalities: Audio + Text

🎯 Supported Tasks

  • Automatic Speech Recognition (ASR): Train models to convert Twi speech to text
  • Text-to-Speech (TTS): Use parallel data for TTS model development
  • Speech-to-Speech Translation: Cross-lingual speech applications
  • Keyword Spotting: Identify specific Twi words in audio
  • Phonetic Analysis: Study Twi pronunciation patterns
  • Language Model Training: Large-scale Twi language understanding

πŸ“ Dataset Structure

Data Fields

  • audio: Audio file in WAV format (synthetically generated)
  • text: Corresponding text transcription in Twi

Data Splits

This part contains a single training split with {len(data):,} filtered audio-text pairs (small/corrupted files removed).

Loading the Complete Dataset

from datasets import load_dataset, concatenate_datasets

# Load all parts of the dataset
parts = []
for i in range(1, 6):
    part_name = f"michsethowusu/twi-speech-text-parallel-synthetic-1m-part{i:03d}"
    part = load_dataset(part_name, split="train")
    parts.append(part)

# Combine all parts into one dataset
complete_dataset = concatenate_datasets(parts)
print(f"Complete dataset size: {{len(complete_dataset):,}} samples")

Loading Just This Part

from datasets import load_dataset

# Load only this part
dataset = load_dataset("michsethowusu/twi-speech-text-parallel-synthetic-1m-part003", split="train")
print(f"Part 3 dataset size: {{len(dataset):,}} samples")

πŸ› οΈ Dataset Creation

Methodology

This dataset was created using synthetic data generation techniques, specifically designed to overcome the challenge of limited speech resources for African languages. The approach demonstrates how AI can be used to bootstrap language resources for underrepresented languages.

Data Processing Pipeline

  1. Text Generation: Synthetic Twi sentences generated
  2. Speech Synthesis: Text-to-speech conversion using advanced models
  3. Quality Filtering: Files smaller than 1KB removed to ensure quality
  4. Alignment Verification: Audio-text alignment validated
  5. Format Standardization: Consistent WAV format and text encoding

Technical Details

  • Audio Format: WAV files, various sample rates
  • Text Encoding: UTF-8
  • Language Code: aka (ISO 639-3)
  • Filtering: Minimum file size 1KB to remove corrupted/empty files

🌍 Impact and Applications

Breaking Language Barriers

This dataset represents a paradigm shift in how we approach low-resource African languages:

  • Scalability: Proves synthetic generation can create large datasets
  • Accessibility: Makes Twi ASR/TTS development feasible
  • Innovation: Demonstrates creative solutions for language preservation
  • Reproducibility: Methodology can be applied to other African languages

Use Cases

  • Educational Technology: Twi language learning applications
  • Accessibility: Voice interfaces for Twi speakers
  • Cultural Preservation: Digital archiving of Twi speech patterns
  • Research: Phonetic and linguistic studies of Twi
  • Commercial Applications: Voice assistants for Ghanaian markets

⚠️ Considerations for Using the Data

Social Impact

Positive Impact:

  • Advances language technology for underrepresented communities
  • Supports digital inclusion for Twi speakers
  • Contributes to cultural and linguistic preservation
  • Enables development of Twi-language AI applications

Limitations and Biases

  • Synthetic Nature: Generated data may not capture all nuances of natural speech
  • Dialect Coverage: May not represent all regional Twi dialects equally
  • Speaker Diversity: Limited to synthesis model characteristics
  • Domain Coverage: Vocabulary limited to training data scope
  • Audio Quality: Varies across synthetic generation process

Ethical Considerations

  • Data created with respect for Twi language and culture
  • Intended to support, not replace, natural language preservation efforts
  • Users should complement with natural speech data when possible

πŸ“š Technical Specifications

Audio Specifications

  • Format: WAV
  • Channels: Mono
  • Sample Rate: 16kHz
  • Bit Depth: 16-bit
  • Duration: Variable per sample

Quality Assurance

  • Minimum file size: 1KB (corrupted files filtered)
  • Text-audio alignment verified
  • UTF-8 encoding validation
  • Duplicate removal across parts

πŸ“„ License and Usage

Licensing Information

This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

You are free to:

  • Share: Copy and redistribute the material
  • Adapt: Remix, transform, and build upon the material
  • Commercial use: Use for commercial purposes

Under the following terms:

  • Attribution: Give appropriate credit and indicate if changes were made

πŸ™ Acknowledgments

  • Original Audio Production: The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
  • Audio Processing: MMS-300M-1130 Forced Aligner
  • Synthetic Generation: Advanced text-to-speech synthesis pipeline
  • Community: Twi language speakers and researchers who inspire this work

πŸ“– Citation

If you use this dataset in your research, please cite:

@dataset{{twi_speech_parallel_1m_2025,
  title={{Twi Speech-Text Parallel Dataset: The Largest Speech Dataset for Twi Language}},
  author={{Owusu, Michael Seth}},
  year={{2025}},
  publisher={{Hugging Face}},
  note={{1 Million synthetic speech-text pairs across 5 parts}},
  url={{https://huggingface.co/datasets/michsethowusu/twi-speech-text-parallel-synthetic-1m-part003}}
}}

For the complete dataset series:

@dataset{{twi_speech_complete_series_2025,
  title={{Complete Twi Speech-Text Parallel Dataset Series (1M samples)}},
  author={{Owusu, Mich-Seth}},
  year={{2025}},
  publisher={{Hugging Face}},
  note={{Parts 003-005, 200k samples each}},
  url={{https://huggingface.co/michsethowusu}}
}}

πŸ“ž Contact and Support

  • Repository Issues: Open an issue in this dataset repository
  • General Questions: Contact through Hugging Face profile
  • Collaboration: Open to partnerships for African language AI development

πŸ”— Related Resources


🌟 Star this dataset if it helps your research! πŸ”„ Share to support African language AI development! """

Downloads last month
21

Collection including michsethowusu/twi-speech-text-parallel-synthetic-1m-part003