Datasets:
audio
audioduration (s) 1.5
13.6
| text
stringlengths 19
64
|
---|---|
afia ΙrekΙ kurom akyerΙ hwee adwane wo |
|
anim no ΙrebΙyi manyΙ kwan yi mu ase |
|
kanea he atΙn fufuo yi ba nasuafoΙ |
|
yΙn guu na nanso sΙ benkum he nkΙ |
|
na yΙΙ boΙ anka wΙato se na mu |
|
abena wode pΙ kyΙ hΙ adwane no |
|
afei ama asa anaa sΙ mΙkΙ enti |
|
de nadwene yΙ ansa nti piaa ne ho |
|
ba kasa nkanea na de mpaboa he so |
|
ananse wo nsrahwΙ yi reyΙ mu na |
|
biara yii hwene he so gyina nua |
|
nani atΙm baako a bepue na kaa |
|
aboa sΙ waboa nsrahwΙ he Ιkye Ιpanin fΙfΙΙfΙ |
|
sΙ retoto adwuma sei wiaa kyerΙ nkwan |
|
menkΙ nnuane sΙ ade no mΙgye pΙ tan |
|
ne ΙyΙ afe anka ΙrebΙdi adaka he emu |
|
merekΙ ΙkΙ sΙ yee ho ΙhwΙΙ fam |
|
yΙ no nkΙ mu mpa sei noaa mmoa |
|
ato Ιsu nua gyina pono he so |
|
me bΙΙ me ahuri kyΙΙ soro kaa |
|
yesu he ΙsΙre adanko wuraa asuafoΙ bi pasapasa |
|
merekΙ akwadaa Ιhuu obiara da akΙseΙ yi afei |
|
frΙfrΙ ama so fam asi gyae nadwene aban |
|
ankΙ obi sΙ buee kΙ dΙnhwere bi emu |
|
amaneΙ na Ιnyaa din kyerΙΙ dane he a |
|
wΙ Ιhyee aane sΙ ho nnuane yi ada |
|
nadwene toa nsia a mΙbΙ yi ΙkΙtoo |
|
nasuafoΙ mΙkΙ adan no ΙkΙΙ fam bi mu |
|
afi sΙ redi nkwan ma nkwa awe |
|
yaa atu nnwom no dΙΙ nwoma na |
|
nsΙhwΙ no de nhyΙ atadeΙ bi mu ha |
|
yaa foro awia kaa kaa mmaa hΙ |
|
no nsu na hwiee ade ho afei |
|
nso Ιsiane Ιtumi nti anka kumm Ιhunu Ιno |
|
a Ιntumi fufuo bi nakyi twere mfudeΙ |
|
ne bΙtΙn renkΙ anaa na bΙΙ yee |
|
obiara akokΙ bΙdwo ne adwuma fΙfΙ na Ιkyena |
|
nnwom no anka tenaa no yie sΙ ΙbobΙΙ |
|
nakyi mfudeΙ woada yΙn wadwuma ΙbΙtumi ba |
|
sisi wo ne bΙdwo kaa nua na fam |
|
na wΙ pono nso awuwu nafuo yi emu |
|
yaa biara ati sΙ nano pae nadwene |
|
ato twerΙΙ mfe kuu obi tuu yΙn |
|
mpae no fa fie ahyΙ ho bi nkakrankakra |
|
akokΙ na ma Ιsoaa nafuo yi ho ha |
|
Ιsiane hyiaa tiri ara bΙtΙn sensene dane |
|
sunsum na Ιhyee wΙn amaneΙ abΙ afuo |
|
afei faa Ιban saa Ιdi aku krataa |
|
wΙn bΙtene biara ΙsΙre nnora kanea yi de |
|
dwabΙ ΙyΙ egya na a anyane wΙ |
|
ΙkΙm monkΙ nkwan no Ιpanin afi efie |
|
Ιno boΙ no twee asuafoΙ hΙ ansa |
|
amaneΙ bΙtene yee anka mehuu sΙ mΙyΙ |
|
twitwaa efie no ho aboa he akyi |
|
yaa wo bosome yi ΙkΙ bokiti yi |
|
tΙnn nua yi nka nkanea he ani |
|
abena bΙΙ sunsum na sesaa yΙn kaeΙ |
|
tokuro ΙbΙkΙ tiri si safoa yi no |
|
me siesie a nti akyiri nafuo bi firii |
|
ho buee yΙn akΙ nnora nkanea yi hwee |
|
ΙbobΙΙ wo sΙ mate ato afe bi ani |
|
ΙkyerΙkyerΙni yi ne yiyi me Ιkyena yi Ιgyae |
|
wΙ dwabΙ no saa kurom hΙ Ιkyena |
|
mpaboa yi wie ase boΙ enti mΙgye ho |
|
nnuane he bΙfa ama atu tΙΙ Ιdan |
|
ΙyΙΙ sΙ redi mo ΙkyerΙkyerΙni ansa anaa nkΙ |
|
kwan asan adan na kyΙ bosome yi |
|
manyΙ sΙ mepΙ mpae nso Ιban ΙnyΙ |
|
anim saa ne akyi woyΙ kΙse ha ankyΙ |
|
bubuu sΙ nkΙ so a yΙ adi |
|
tokuro no ntΙ yesu bae mpa na tia |
|
a ΙtΙnn mpaboa piaa atu ebia simon |
|
nua abΙkye sΙ pono dii nnwom ΙbobΙΙ me |
|
aban too ba no kyΙ Ιkraman bi atifi |
|
twii akye bi pΙ adanko bi nakyi |
|
Ιhaw no Ιdwene ne sΙ didii dwa bi |
|
bosome deΙ dwabΙ yΙ na Ιsa nam papa |
|
adeΙ gyee sΙ nano Ιnam nhoma kΙtoo hwa |
|
ahyia asuafoΙ sΙ nsΙhwΙ no nkΙ nti hwehwΙ |
|
nanso saa nani nakyi gyegyee mmrΙ nyinaa ara |
|
wani no wonnim me sΙ abΙdi nkra na |
|
wΙhyehyΙ nua mpae anokwa piaa wΙ mo nkra |
|
saa nti firi ne aane kamfoo yΙ obi |
|
mango bΙfa agorΙ kΙΙ ntoma na atifi |
|
ΙbobΙΙ benkum yi nakyi ΙhΙ ne bΙfe |
|
nti kunu ayera hwene mu nso nti ΙtΙnn |
|
me abΙkye sei deΙ bΙgyae sΙ Ιduruu |
|
nti sΙ sΙ nakyi sanee duru yi pΙ |
|
aane sunsum Ιhuu abaa emu a sΙ se |
|
kwan anya abΙ he twa nsaden fam |
|
paanoo yiyi kanea he fa nkosua bi ho |
|
sekan bi wΙrebΙ Ιhaw yi sika atΙ |
|
ΙkyerΙkyerΙni redidi merekΙ ho sisi a ho soro |
|
nsu no ahyia nnadeΙ ama asi ntoma |
|
aban adidi biara ho Ιdi wo meho dodo |
|
woada sΙ ntΙΙ nakyi akwadaa ansa nso bΙΙ |
|
ehu yi bΙtwerΙ adaka na agorΙ mΙhwehwΙ |
|
ne tokuro retwa obiara da mepΙ sekan |
|
adwane aboa afuo fam afei ankyΙ hwee ase |
|
ansa nti nso emu ΙwΙ dΙ ansa ankyΙ |
Twi Speech-Text Parallel Dataset - Part 3 of 5
π The Largest Speech Dataset for Twi Language
This dataset contains part 3 of the largest speech dataset for the Twi language, featuring 1 million speech-to-text pairs split across 5 parts (approximately 200,000 samples each). This represents a groundbreaking resource for Twi (Akan), a language spoken primarily in Ghana.
π Breaking the Low-Resource Language Barrier
This publication demonstrates that African languages don't have to remain low-resource. Through creative synthetic data generation techniques, we've produced the largest collection of AI training data for speech-to-text models in Twi, proving that innovative approaches can build the datasets African languages need.
π Complete Dataset Series (1M Total Samples)
Part | Repository | Samples | Status |
---|---|---|---|
Part 1 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part001 |
~200,000 | β Available |
Part 2 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part002 |
~200,000 | β Available |
Part 3 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part003 |
~200,000 | π₯ THIS PART |
Part 4 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part004 |
~200,000 | β Available |
Part 5 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part005 |
~200,000 | β Available |
Dataset Summary
- Language: Twi/Akan -
aka
- Total Dataset Size: 1,000,000 speech-text pairs
- This Part: {len(data):,} audio files (filtered, >1KB)
- Task: Speech Recognition, Text-to-Speech
- Format: WAV audio files with corresponding text transcriptions
- Generation Method: Synthetic data generation
- Modalities: Audio + Text
π― Supported Tasks
- Automatic Speech Recognition (ASR): Train models to convert Twi speech to text
- Text-to-Speech (TTS): Use parallel data for TTS model development
- Speech-to-Speech Translation: Cross-lingual speech applications
- Keyword Spotting: Identify specific Twi words in audio
- Phonetic Analysis: Study Twi pronunciation patterns
- Language Model Training: Large-scale Twi language understanding
π Dataset Structure
Data Fields
audio
: Audio file in WAV format (synthetically generated)text
: Corresponding text transcription in Twi
Data Splits
This part contains a single training split with {len(data):,} filtered audio-text pairs (small/corrupted files removed).
Loading the Complete Dataset
from datasets import load_dataset, concatenate_datasets
# Load all parts of the dataset
parts = []
for i in range(1, 6):
part_name = f"michsethowusu/twi-speech-text-parallel-synthetic-1m-part{i:03d}"
part = load_dataset(part_name, split="train")
parts.append(part)
# Combine all parts into one dataset
complete_dataset = concatenate_datasets(parts)
print(f"Complete dataset size: {{len(complete_dataset):,}} samples")
Loading Just This Part
from datasets import load_dataset
# Load only this part
dataset = load_dataset("michsethowusu/twi-speech-text-parallel-synthetic-1m-part003", split="train")
print(f"Part 3 dataset size: {{len(dataset):,}} samples")
π οΈ Dataset Creation
Methodology
This dataset was created using synthetic data generation techniques, specifically designed to overcome the challenge of limited speech resources for African languages. The approach demonstrates how AI can be used to bootstrap language resources for underrepresented languages.
Data Processing Pipeline
- Text Generation: Synthetic Twi sentences generated
- Speech Synthesis: Text-to-speech conversion using advanced models
- Quality Filtering: Files smaller than 1KB removed to ensure quality
- Alignment Verification: Audio-text alignment validated
- Format Standardization: Consistent WAV format and text encoding
Technical Details
- Audio Format: WAV files, various sample rates
- Text Encoding: UTF-8
- Language Code:
aka
(ISO 639-3) - Filtering: Minimum file size 1KB to remove corrupted/empty files
π Impact and Applications
Breaking Language Barriers
This dataset represents a paradigm shift in how we approach low-resource African languages:
- Scalability: Proves synthetic generation can create large datasets
- Accessibility: Makes Twi ASR/TTS development feasible
- Innovation: Demonstrates creative solutions for language preservation
- Reproducibility: Methodology can be applied to other African languages
Use Cases
- Educational Technology: Twi language learning applications
- Accessibility: Voice interfaces for Twi speakers
- Cultural Preservation: Digital archiving of Twi speech patterns
- Research: Phonetic and linguistic studies of Twi
- Commercial Applications: Voice assistants for Ghanaian markets
β οΈ Considerations for Using the Data
Social Impact
Positive Impact:
- Advances language technology for underrepresented communities
- Supports digital inclusion for Twi speakers
- Contributes to cultural and linguistic preservation
- Enables development of Twi-language AI applications
Limitations and Biases
- Synthetic Nature: Generated data may not capture all nuances of natural speech
- Dialect Coverage: May not represent all regional Twi dialects equally
- Speaker Diversity: Limited to synthesis model characteristics
- Domain Coverage: Vocabulary limited to training data scope
- Audio Quality: Varies across synthetic generation process
Ethical Considerations
- Data created with respect for Twi language and culture
- Intended to support, not replace, natural language preservation efforts
- Users should complement with natural speech data when possible
π Technical Specifications
Audio Specifications
- Format: WAV
- Channels: Mono
- Sample Rate: 16kHz
- Bit Depth: 16-bit
- Duration: Variable per sample
Quality Assurance
- Minimum file size: 1KB (corrupted files filtered)
- Text-audio alignment verified
- UTF-8 encoding validation
- Duplicate removal across parts
π License and Usage
Licensing Information
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
You are free to:
- Share: Copy and redistribute the material
- Adapt: Remix, transform, and build upon the material
- Commercial use: Use for commercial purposes
Under the following terms:
- Attribution: Give appropriate credit and indicate if changes were made
π Acknowledgments
- Original Audio Production: The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
- Audio Processing: MMS-300M-1130 Forced Aligner
- Synthetic Generation: Advanced text-to-speech synthesis pipeline
- Community: Twi language speakers and researchers who inspire this work
π Citation
If you use this dataset in your research, please cite:
@dataset{{twi_speech_parallel_1m_2025,
title={{Twi Speech-Text Parallel Dataset: The Largest Speech Dataset for Twi Language}},
author={{Owusu, Michael Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{1 Million synthetic speech-text pairs across 5 parts}},
url={{https://huggingface.co/datasets/michsethowusu/twi-speech-text-parallel-synthetic-1m-part003}}
}}
For the complete dataset series:
@dataset{{twi_speech_complete_series_2025,
title={{Complete Twi Speech-Text Parallel Dataset Series (1M samples)}},
author={{Owusu, Mich-Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{Parts 003-005, 200k samples each}},
url={{https://huggingface.co/michsethowusu}}
}}
π Contact and Support
- Repository Issues: Open an issue in this dataset repository
- General Questions: Contact through Hugging Face profile
- Collaboration: Open to partnerships for African language AI development
π Related Resources
π Star this dataset if it helps your research! π Share to support African language AI development! """
- Downloads last month
- 21