Datasets:
audio
audioduration (s) 1.78
15.9
| text
stringlengths 24
63
|
---|---|
nsu san bΙgyae ho nti yΙ kunu na nakyi |
|
Ιso ana deΙ mΙkΙ anim awu nhoma atete Ιkwan |
|
wode nnua nsu bi menkΙ ansa ne mepΙ |
|
benkum no Ιsan adwene na kaa safoa he ani |
|
hΙ nni sΙ kamfoo a ne abΙ na Ιda |
|
nano ampa hwΙ ho a woada kanea he atifi |
|
yΙn ΙkΙtoo nti nyinaa mΙkΙ mebΙ yii naso |
|
osuani wo mΙyΙ ΙsΙfo sΙ ho ΙbΙΙ a mu |
|
dua atu ha ho kyerΙ mpae atifi nso saa |
|
wΙfa mpem ho akwantuo bi wia suae dae |
|
mansa mede aboa bi atu mfudeΙ na tia |
|
nam na nyini ti bi hwehwΙ papa bi |
|
mmΙfra Ιno mekΙ nnua ne dua aso nyinaa ase |
|
mansa piaa akwantuo akΙdidi biribi atadeΙ nkye nyame |
|
ma mframa wΙ ne Ιde sΙ biribi yΙmfa twae |
|
ha kura sΙ ne no afei asΙm no adi |
|
aba ankyΙ me ΙbΙkΙ naso anyane obi merekΙ |
|
bepΙ biara wΙ aba anaa dua aba no emu |
|
ho ΙhyΙ na a biribi gyae hwee Ιpanin |
|
ΙpΙ ha anaa na somaa kaa afuo bi asi |
|
abena wΙ no meho Ιtee aseΙ Ιfom he mu |
|
nadwene bi woyΙ ama sΙ araba adan yi nakyi |
|
na mmienu sua ara nso mmienu ara kaa no |
|
ma ananse ama ne bΙfe sΙ a twee to |
|
yaa ato wΙ ho si akΙ nnuane yi ho |
|
dware he atwitwa Ιpono bi atΙ okuafoΙ yi akyi |
|
ananse nkoto anim no siesie bea no ΙwΙ |
|
aba dii obiara ho asisi aso pΙ yi nakyi |
|
akΙ fufuo ΙkyerΙkyerΙni biara wonnim hΙ sΙ masiesie |
|
yaa twerΙΙ mu tΙΙ wΙn pono atete ho |
|
mennom anaa enti bΙtΙ aban dΙΙ nsa kΙ nyansa |
|
araba Ιsa nyame mede akuafoΙ waree adwene na |
|
ΙsΙre abΙ nano bi deΙ ati nadwene yΙ |
|
hwee Ιmaa akΙtwerΙ yi sΙ obiara dodΙ mo ho |
|
afia ΙrekΙ nafuo yi aku ΙboΙ yi aseΙ |
|
no bΙtoo a biribi ΙdΙ abΙ ahome hΙ |
|
dua biara de aba na araba adanko bi ho |
|
wΙn tu sΙ rempΙ nyinaa nso ti bi asisi |
|
pono bΙto deΙ nanso mΙhwehwΙ a kyee akwantuo |
|
nanso nkuro mu anaa ama sΙ wo afa kaa |
|
biribi Ιbae sΙ mΙyΙ yΙn anaa boΙ no retΙ |
|
ananse hwiee wani atu akuafoΙ to adeΙ yi |
|
benkum ampa wiaa ho nanso ΙbΙtumi ase yi akyi |
|
mansa mΙbΙ ara meho Ιgyae pΙ din bi ho |
|
kaa dΙn sΙ tΙnn nnadeΙ too mpa kΙ adΙ |
|
ama ΙsΙre aban bae ha akuafoΙ akΙ nsuo |
|
abena ΙrekΙ asuafoΙ yi nyaa aduane yi mu |
|
dua de nnwom kyΙΙ ara akura adwane tokuro |
|
amaneΙ na kaa araba he kaa akokΙ yi so |
|
nhoma bi atwitwa ehu no abΙ sekan he |
|
yΙ ho sΙ ara nenam fi adwene he wΙ |
|
sΙn asΙre amaneΙ bi nso tuatua waboa fΙfΙΙfΙ |
|
atadeΙ suae he a me rebΙ nyinaa mfuo |
|
da bi aku paanoo sΙ ntumi asuafoΙ krataa adi |
|
nafuo mpem ne nadwene yi nnoa nka wΙfa |
|
nkwan bi tenee anigyeΙ no ne wΙfa bi ho |
|
mpa ankyΙ twaa ho afei bae hwa na fam |
|
ho no ho ne sei sika pagyaa Ιkwan nso |
|
simon na ΙrekΙ afuo he sa fam he atifi |
|
hyΙ deΙn enti mΙgye nkosua si adar atete nani |
|
ba obi ΙtΙnn atadeΙ sΙ kaa woo obi fam |
|
biara hwiee sΙ nte ho sΙ atadeΙ no ayera |
|
te nua sika na yee ntΙΙ ama fΙre |
|
ano bi ne simon anaa mansa dua no akyi |
|
aba pΙ Ιbo bi asΙe Ιbo bi ΙwΙ |
|
obi seree kaa no sΙ kuruwa he nnoa akΙdidi |
|
ananse dΙ merekΙ yere wΙ fufuo yi emu |
|
fi adar anigyeΙ bi kura dodo na mpΙ |
|
obiara wia wΙ yi sΙ ne ΙtΙ nadwene nano |
|
ama tokuro nkwa biara woante tia sΙ hwΙΙ |
|
aba ΙtΙnn bi ho sisi kΙe nkwan na fam |
|
dΙ bi sΙ saa yii atΙ dwa he asi |
|
nsu biara ΙwΙ simon anaa ato nkanea bi fam |
|
dua nnoa me meho da aduane mu anigyeΙ saa |
|
sika yi manni bosome sΙ twee asuafoΙ adan fi |
|
Ιnantee ana anka asan bokiti atwa abaayewa wee yere |
|
wura obiara asa kwan na aboΙ ΙyΙΙ Ιno emu |
|
Ιpanin biara nyΙ simon ne abena yΙ bi ase |
|
Ιsiane toa mu ne wada sΙ biribi anya sesaa |
|
mma ana deΙ atΙn ananse kaa waboa atete dae |
|
piaa nea ne somaa nkanea anto Ιdan adi araba |
|
nanso apem asa wΙ a aduosia ho aba biara |
|
Ιno ntumi dii bi sΙ ho bΙfe ne wura |
|
nsrahwΙ kyerΙkyerΙΙ no yee no bΙdΙ wo paanoo |
|
saa ma awia tan Ιbo yi kurom gyee boΙ |
|
obiara Ιso asΙm he afei nyame yi wode yΙ |
|
nkuro sesaa bi saa a wada biara safoa |
|
dware ho anaa anaa Ιno bΙsΙe ma kΙ asΙe |
|
no amee kuruwa yi nanso akwantuo yi yΙnhyΙ faa |
|
akye na sΙ saa pΙ nam mekae hwa saa |
|
Ιdan yaa amee tii nsia na wuu me nadwene |
|
gye atadeΙ nua bi ne menkΙ ama akΙseΙ |
|
ehu fam na na hΙ bΙkyea na kΙΙ akΙtwerΙ |
|
sΙ kyee abΙ sa me no no rebΙ |
|
dΙnhwere mu na sΙ biribi bisa ne wΙrebΙ atΙ |
|
obi hwΙΙ aka he Ιsiane mu na fa gyina |
|
sΙ tiri tan nyinaa a merekΙ nwoma woo |
|
nam aseΙ na sΙ mankΙ ho Ιkye bea |
|
din obiara nkΙ me sΙ nnua ΙbΙΙ ne fam |
|
wΙn wΙde hohoro bi sΙ yΙn kΙe nakyi nafuo |
Twi Speech-Text Parallel Dataset - Part 4 of 5
π The Largest Speech Dataset for Twi Language
This dataset contains part 4 of the largest speech dataset for the Twi language, featuring 1 million speech-to-text pairs split across 5 parts (approximately 200,000 samples each). This represents a groundbreaking resource for Twi (Akan), a language spoken primarily in Ghana.
π Breaking the Low-Resource Language Barrier
This publication demonstrates that African languages don't have to remain low-resource. Through creative synthetic data generation techniques, we've produced the largest collection of AI training data for speech-to-text models in Twi, proving that innovative approaches can build the datasets African languages need.
π Complete Dataset Series (1M Total Samples)
Part | Repository | Samples | Status |
---|---|---|---|
Part 1 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part001 |
~200,000 | β Available |
Part 2 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part002 |
~200,000 | β Available |
Part 3 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part003 |
~200,000 | β Available |
Part 4 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part004 |
~200,000 | π₯ THIS PART |
Part 5 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part005 |
~200,000 | β Available |
Dataset Summary
- Language: Twi/Akan -
aka
- Total Dataset Size: 1,000,000 speech-text pairs
- This Part: {len(data):,} audio files (filtered, >1KB)
- Task: Speech Recognition, Text-to-Speech
- Format: WAV audio files with corresponding text transcriptions
- Generation Method: Synthetic data generation
- Modalities: Audio + Text
π― Supported Tasks
- Automatic Speech Recognition (ASR): Train models to convert Twi speech to text
- Text-to-Speech (TTS): Use parallel data for TTS model development
- Speech-to-Speech Translation: Cross-lingual speech applications
- Keyword Spotting: Identify specific Twi words in audio
- Phonetic Analysis: Study Twi pronunciation patterns
- Language Model Training: Large-scale Twi language understanding
π Dataset Structure
Data Fields
audio
: Audio file in WAV format (synthetically generated)text
: Corresponding text transcription in Twi
Data Splits
This part contains a single training split with {len(data):,} filtered audio-text pairs (small/corrupted files removed).
Loading the Complete Dataset
from datasets import load_dataset, concatenate_datasets
# Load all parts of the dataset
parts = []
for i in range(1, 6):
part_name = f"michsethowusu/twi-speech-text-parallel-synthetic-1m-part{i:03d}"
part = load_dataset(part_name, split="train")
parts.append(part)
# Combine all parts into one dataset
complete_dataset = concatenate_datasets(parts)
print(f"Complete dataset size: {{len(complete_dataset):,}} samples")
Loading Just This Part
from datasets import load_dataset
# Load only this part
dataset = load_dataset("michsethowusu/twi-speech-text-parallel-synthetic-1m-part004", split="train")
print(f"Part 4 dataset size: {{len(dataset):,}} samples")
π οΈ Dataset Creation
Methodology
This dataset was created using synthetic data generation techniques, specifically designed to overcome the challenge of limited speech resources for African languages. The approach demonstrates how AI can be used to bootstrap language resources for underrepresented languages.
Data Processing Pipeline
- Text Generation: Synthetic Twi sentences generated
- Speech Synthesis: Text-to-speech conversion using advanced models
- Quality Filtering: Files smaller than 1KB removed to ensure quality
- Alignment Verification: Audio-text alignment validated
- Format Standardization: Consistent WAV format and text encoding
Technical Details
- Audio Format: WAV files, various sample rates
- Text Encoding: UTF-8
- Language Code:
aka
(ISO 639-3) - Filtering: Minimum file size 1KB to remove corrupted/empty files
π Impact and Applications
Breaking Language Barriers
This dataset represents a paradigm shift in how we approach low-resource African languages:
- Scalability: Proves synthetic generation can create large datasets
- Accessibility: Makes Twi ASR/TTS development feasible
- Innovation: Demonstrates creative solutions for language preservation
- Reproducibility: Methodology can be applied to other African languages
Use Cases
- Educational Technology: Twi language learning applications
- Accessibility: Voice interfaces for Twi speakers
- Cultural Preservation: Digital archiving of Twi speech patterns
- Research: Phonetic and linguistic studies of Twi
- Commercial Applications: Voice assistants for Ghanaian markets
β οΈ Considerations for Using the Data
Social Impact
Positive Impact:
- Advances language technology for underrepresented communities
- Supports digital inclusion for Twi speakers
- Contributes to cultural and linguistic preservation
- Enables development of Twi-language AI applications
Limitations and Biases
- Synthetic Nature: Generated data may not capture all nuances of natural speech
- Dialect Coverage: May not represent all regional Twi dialects equally
- Speaker Diversity: Limited to synthesis model characteristics
- Domain Coverage: Vocabulary limited to training data scope
- Audio Quality: Varies across synthetic generation process
Ethical Considerations
- Data created with respect for Twi language and culture
- Intended to support, not replace, natural language preservation efforts
- Users should complement with natural speech data when possible
π Technical Specifications
Audio Specifications
- Format: WAV
- Channels: Mono
- Sample Rate: 16kHz
- Bit Depth: 16-bit
- Duration: Variable per sample
Quality Assurance
- Minimum file size: 1KB (corrupted files filtered)
- Text-audio alignment verified
- UTF-8 encoding validation
- Duplicate removal across parts
π License and Usage
Licensing Information
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
You are free to:
- Share: Copy and redistribute the material
- Adapt: Remix, transform, and build upon the material
- Commercial use: Use for commercial purposes
Under the following terms:
- Attribution: Give appropriate credit and indicate if changes were made
π Acknowledgments
- Original Audio Production: The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
- Audio Processing: MMS-300M-1130 Forced Aligner
- Synthetic Generation: Advanced text-to-speech synthesis pipeline
- Community: Twi language speakers and researchers who inspire this work
π Citation
If you use this dataset in your research, please cite:
@dataset{{twi_speech_parallel_1m_2025,
title={{Twi Speech-Text Parallel Dataset: The Largest Speech Dataset for Twi Language}},
author={{Owusu, Michael Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{1 Million synthetic speech-text pairs across 5 parts}},
url={{https://huggingface.co/datasets/michsethowusu/twi-speech-text-parallel-synthetic-1m-part004}}
}}
For the complete dataset series:
@dataset{{twi_speech_complete_series_2025,
title={{Complete Twi Speech-Text Parallel Dataset Series (1M samples)}},
author={{Owusu, Mich-Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{Parts 004-005, 200k samples each}},
url={{https://huggingface.co/michsethowusu}}
}}
π Contact and Support
- Repository Issues: Open an issue in this dataset repository
- General Questions: Contact through Hugging Face profile
- Collaboration: Open to partnerships for African language AI development
π Related Resources
π Star this dataset if it helps your research! π Share to support African language AI development! """
- Downloads last month
- 62