Dataset Viewer
Auto-converted to Parquet
audio
audioduration (s)
1.78
15.9
text
stringlengths
24
63
nsu san bΙ›gyae ho nti yΙ› kunu na nakyi
Ι”so ana deΙ› mΙ›kΙ” anim awu nhoma atete Ι›kwan
wode nnua nsu bi menkΙ” ansa ne mepΙ›
benkum no Ι”san adwene na kaa safoa he ani
hΙ” nni sΙ› kamfoo a ne abΙ› na Ι›da
nano ampa hwΙ› ho a woada kanea he atifi
yΙ›n Ι”kΙ”too nti nyinaa mΙ›kΙ” mebΙ” yii naso
osuani wo mΙ›yΙ› Ι”sΙ”fo sΙ› ho Ι”bΙ”Ι” a mu
dua atu ha ho kyerΙ› mpae atifi nso saa
wΙ”fa mpem ho akwantuo bi wia suae dae
mansa mede aboa bi atu mfudeΙ› na tia
nam na nyini ti bi hwehwΙ› papa bi
mmΙ”fra Ι”no mekΙ” nnua ne dua aso nyinaa ase
mansa piaa akwantuo akΙ”didi biribi atadeΙ› nkye nyame
ma mframa wΙ” ne Ι›de sΙ› biribi yΙ›mfa twae
ha kura sΙ› ne no afei asΙ›m no adi
aba ankyΙ› me Ι”bΙ›kΙ” naso anyane obi merekΙ”
bepΙ” biara wΙ” aba anaa dua aba no emu
ho Ι›hyΙ› na a biribi gyae hwee Ι”panin
Ι”pΙ› ha anaa na somaa kaa afuo bi asi
abena wΙ” no meho Ι”tee aseΙ› Ι›fom he mu
nadwene bi woyΙ› ama sΙ› araba adan yi nakyi
na mmienu sua ara nso mmienu ara kaa no
ma ananse ama ne bΙ›fe sΙ› a twee to
yaa ato wΙ” ho si akΙ” nnuane yi ho
dware he atwitwa Ι›pono bi atΙ” okuafoΙ” yi akyi
ananse nkoto anim no siesie bea no Ι›wΙ”
aba dii obiara ho asisi aso pΙ” yi nakyi
akΙ” fufuo Ι”kyerΙ›kyerΙ›ni biara wonnim hΙ” sΙ› masiesie
yaa twerΙ›Ι› mu tΙ”Ι” wΙ”n pono atete ho
mennom anaa enti bΙ›tΙ” aban dΙ”Ι” nsa kΙ” nyansa
araba Ι”sa nyame mede akuafoΙ” waree adwene na
Ι”sΙ”re abΙ› nano bi deΙ› ati nadwene yΙ›
hwee Ι”maa akΙ”twerΙ› yi sΙ› obiara dodΙ” mo ho
afia Ι”rekΙ” nafuo yi aku Ι›boΙ” yi aseΙ›
no bΙ›too a biribi Ι”dΙ” abΙ” ahome hΙ”
dua biara de aba na araba adanko bi ho
wΙ”n tu sΙ› rempΙ› nyinaa nso ti bi asisi
pono bΙ›to deΙ› nanso mΙ›hwehwΙ› a kyee akwantuo
nanso nkuro mu anaa ama sΙ› wo afa kaa
biribi Ι”bae sΙ› mΙ›yΙ› yΙ›n anaa boΙ” no retΙ”
ananse hwiee wani atu akuafoΙ” to adeΙ› yi
benkum ampa wiaa ho nanso Ι”bΙ›tumi ase yi akyi
mansa mΙ›bΙ” ara meho Ι”gyae pΙ› din bi ho
kaa dΙ›n sΙ› tΙ”nn nnadeΙ› too mpa kΙ” adΙ”
ama Ι”sΙ”re aban bae ha akuafoΙ” akΙ” nsuo
abena Ι”rekΙ” asuafoΙ” yi nyaa aduane yi mu
dua de nnwom kyΙ›Ι› ara akura adwane tokuro
amaneΙ› na kaa araba he kaa akokΙ” yi so
nhoma bi atwitwa ehu no abΙ” sekan he
yΙ› ho sΙ› ara nenam fi adwene he wΙ”
sΙ›n asΙ”re amaneΙ› bi nso tuatua waboa fΙ›fΙ›Ι›fΙ›
atadeΙ› suae he a me rebΙ” nyinaa mfuo
da bi aku paanoo sΙ› ntumi asuafoΙ” krataa adi
nafuo mpem ne nadwene yi nnoa nka wΙ”fa
nkwan bi tenee anigyeΙ› no ne wΙ”fa bi ho
mpa ankyΙ› twaa ho afei bae hwa na fam
ho no ho ne sei sika pagyaa Ι›kwan nso
simon na Ι”rekΙ” afuo he sa fam he atifi
hyΙ› deΙ›n enti mΙ›gye nkosua si adar atete nani
ba obi Ι”tΙ”nn atadeΙ› sΙ› kaa woo obi fam
biara hwiee sΙ› nte ho sΙ› atadeΙ› no ayera
te nua sika na yee ntΙ”Ι” ama fΙ›re
ano bi ne simon anaa mansa dua no akyi
aba pΙ› Ι”bo bi asΙ›e Ι”bo bi Ι›wΙ”
obi seree kaa no sΙ› kuruwa he nnoa akΙ”didi
ananse dΙ” merekΙ” yere wΙ” fufuo yi emu
fi adar anigyeΙ› bi kura dodo na mpΙ›
obiara wia wΙ” yi sΙ› ne Ι›tΙ” nadwene nano
ama tokuro nkwa biara woante tia sΙ› hwΙ›Ι›
aba Ι”tΙ”nn bi ho sisi kΙ”e nkwan na fam
dΙ” bi sΙ› saa yii atΙ” dwa he asi
nsu biara Ι›wΙ” simon anaa ato nkanea bi fam
dua nnoa me meho da aduane mu anigyeΙ› saa
sika yi manni bosome sΙ› twee asuafoΙ” adan fi
Ι”nantee ana anka asan bokiti atwa abaayewa wee yere
wura obiara asa kwan na aboΙ” Ι”yΙ›Ι› Ι”no emu
Ι”panin biara nyΙ› simon ne abena yΙ› bi ase
Ι›siane toa mu ne wada sΙ› biribi anya sesaa
mma ana deΙ› atΙ”n ananse kaa waboa atete dae
piaa nea ne somaa nkanea anto Ι›dan adi araba
nanso apem asa wΙ” a aduosia ho aba biara
Ι”no ntumi dii bi sΙ› ho bΙ›fe ne wura
nsrahwΙ› kyerΙ›kyerΙ›Ι› no yee no bΙ›dΙ” wo paanoo
saa ma awia tan Ι”bo yi kurom gyee boΙ”
obiara Ι”so asΙ›m he afei nyame yi wode yΙ›
nkuro sesaa bi saa a wada biara safoa
dware ho anaa anaa Ι”no bΙ›sΙ›e ma kΙ” asΙ›e
no amee kuruwa yi nanso akwantuo yi yΙ›nhyΙ› faa
akye na sΙ› saa pΙ› nam mekae hwa saa
Ι›dan yaa amee tii nsia na wuu me nadwene
gye atadeΙ› nua bi ne menkΙ” ama akΙ›seΙ›
ehu fam na na hΙ” bΙ›kyea na kΙ”Ι” akΙ”twerΙ›
sΙ› kyee abΙ” sa me no no rebΙ”
dΙ”nhwere mu na sΙ› biribi bisa ne wΙ”rebΙ” atΙ”
obi hwΙ›Ι› aka he Ι›siane mu na fa gyina
sΙ› tiri tan nyinaa a merekΙ” nwoma woo
nam aseΙ› na sΙ› mankΙ” ho Ι”kye bea
din obiara nkΙ” me sΙ› nnua Ι”bΙ”Ι” ne fam
wΙ”n wΙ”de hohoro bi sΙ› yΙ›n kΙ”e nakyi nafuo
End of preview. Expand in Data Studio

Twi Speech-Text Parallel Dataset - Part 4 of 5

πŸŽ‰ The Largest Speech Dataset for Twi Language

This dataset contains part 4 of the largest speech dataset for the Twi language, featuring 1 million speech-to-text pairs split across 5 parts (approximately 200,000 samples each). This represents a groundbreaking resource for Twi (Akan), a language spoken primarily in Ghana.

πŸš€ Breaking the Low-Resource Language Barrier

This publication demonstrates that African languages don't have to remain low-resource. Through creative synthetic data generation techniques, we've produced the largest collection of AI training data for speech-to-text models in Twi, proving that innovative approaches can build the datasets African languages need.

πŸ“Š Complete Dataset Series (1M Total Samples)

Part Repository Samples Status
Part 1 michsethowusu/twi-speech-text-parallel-synthetic-1m-part001 ~200,000 βœ… Available
Part 2 michsethowusu/twi-speech-text-parallel-synthetic-1m-part002 ~200,000 βœ… Available
Part 3 michsethowusu/twi-speech-text-parallel-synthetic-1m-part003 ~200,000 βœ… Available
Part 4 michsethowusu/twi-speech-text-parallel-synthetic-1m-part004 ~200,000 πŸ”₯ THIS PART
Part 5 michsethowusu/twi-speech-text-parallel-synthetic-1m-part005 ~200,000 βœ… Available

Dataset Summary

  • Language: Twi/Akan - aka
  • Total Dataset Size: 1,000,000 speech-text pairs
  • This Part: {len(data):,} audio files (filtered, >1KB)
  • Task: Speech Recognition, Text-to-Speech
  • Format: WAV audio files with corresponding text transcriptions
  • Generation Method: Synthetic data generation
  • Modalities: Audio + Text

🎯 Supported Tasks

  • Automatic Speech Recognition (ASR): Train models to convert Twi speech to text
  • Text-to-Speech (TTS): Use parallel data for TTS model development
  • Speech-to-Speech Translation: Cross-lingual speech applications
  • Keyword Spotting: Identify specific Twi words in audio
  • Phonetic Analysis: Study Twi pronunciation patterns
  • Language Model Training: Large-scale Twi language understanding

πŸ“ Dataset Structure

Data Fields

  • audio: Audio file in WAV format (synthetically generated)
  • text: Corresponding text transcription in Twi

Data Splits

This part contains a single training split with {len(data):,} filtered audio-text pairs (small/corrupted files removed).

Loading the Complete Dataset

from datasets import load_dataset, concatenate_datasets

# Load all parts of the dataset
parts = []
for i in range(1, 6):
    part_name = f"michsethowusu/twi-speech-text-parallel-synthetic-1m-part{i:03d}"
    part = load_dataset(part_name, split="train")
    parts.append(part)

# Combine all parts into one dataset
complete_dataset = concatenate_datasets(parts)
print(f"Complete dataset size: {{len(complete_dataset):,}} samples")

Loading Just This Part

from datasets import load_dataset

# Load only this part
dataset = load_dataset("michsethowusu/twi-speech-text-parallel-synthetic-1m-part004", split="train")
print(f"Part 4 dataset size: {{len(dataset):,}} samples")

πŸ› οΈ Dataset Creation

Methodology

This dataset was created using synthetic data generation techniques, specifically designed to overcome the challenge of limited speech resources for African languages. The approach demonstrates how AI can be used to bootstrap language resources for underrepresented languages.

Data Processing Pipeline

  1. Text Generation: Synthetic Twi sentences generated
  2. Speech Synthesis: Text-to-speech conversion using advanced models
  3. Quality Filtering: Files smaller than 1KB removed to ensure quality
  4. Alignment Verification: Audio-text alignment validated
  5. Format Standardization: Consistent WAV format and text encoding

Technical Details

  • Audio Format: WAV files, various sample rates
  • Text Encoding: UTF-8
  • Language Code: aka (ISO 639-3)
  • Filtering: Minimum file size 1KB to remove corrupted/empty files

🌍 Impact and Applications

Breaking Language Barriers

This dataset represents a paradigm shift in how we approach low-resource African languages:

  • Scalability: Proves synthetic generation can create large datasets
  • Accessibility: Makes Twi ASR/TTS development feasible
  • Innovation: Demonstrates creative solutions for language preservation
  • Reproducibility: Methodology can be applied to other African languages

Use Cases

  • Educational Technology: Twi language learning applications
  • Accessibility: Voice interfaces for Twi speakers
  • Cultural Preservation: Digital archiving of Twi speech patterns
  • Research: Phonetic and linguistic studies of Twi
  • Commercial Applications: Voice assistants for Ghanaian markets

⚠️ Considerations for Using the Data

Social Impact

Positive Impact:

  • Advances language technology for underrepresented communities
  • Supports digital inclusion for Twi speakers
  • Contributes to cultural and linguistic preservation
  • Enables development of Twi-language AI applications

Limitations and Biases

  • Synthetic Nature: Generated data may not capture all nuances of natural speech
  • Dialect Coverage: May not represent all regional Twi dialects equally
  • Speaker Diversity: Limited to synthesis model characteristics
  • Domain Coverage: Vocabulary limited to training data scope
  • Audio Quality: Varies across synthetic generation process

Ethical Considerations

  • Data created with respect for Twi language and culture
  • Intended to support, not replace, natural language preservation efforts
  • Users should complement with natural speech data when possible

πŸ“š Technical Specifications

Audio Specifications

  • Format: WAV
  • Channels: Mono
  • Sample Rate: 16kHz
  • Bit Depth: 16-bit
  • Duration: Variable per sample

Quality Assurance

  • Minimum file size: 1KB (corrupted files filtered)
  • Text-audio alignment verified
  • UTF-8 encoding validation
  • Duplicate removal across parts

πŸ“„ License and Usage

Licensing Information

This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

You are free to:

  • Share: Copy and redistribute the material
  • Adapt: Remix, transform, and build upon the material
  • Commercial use: Use for commercial purposes

Under the following terms:

  • Attribution: Give appropriate credit and indicate if changes were made

πŸ™ Acknowledgments

  • Original Audio Production: The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
  • Audio Processing: MMS-300M-1130 Forced Aligner
  • Synthetic Generation: Advanced text-to-speech synthesis pipeline
  • Community: Twi language speakers and researchers who inspire this work

πŸ“– Citation

If you use this dataset in your research, please cite:

@dataset{{twi_speech_parallel_1m_2025,
  title={{Twi Speech-Text Parallel Dataset: The Largest Speech Dataset for Twi Language}},
  author={{Owusu, Michael Seth}},
  year={{2025}},
  publisher={{Hugging Face}},
  note={{1 Million synthetic speech-text pairs across 5 parts}},
  url={{https://huggingface.co/datasets/michsethowusu/twi-speech-text-parallel-synthetic-1m-part004}}
}}

For the complete dataset series:

@dataset{{twi_speech_complete_series_2025,
  title={{Complete Twi Speech-Text Parallel Dataset Series (1M samples)}},
  author={{Owusu, Mich-Seth}},
  year={{2025}},
  publisher={{Hugging Face}},
  note={{Parts 004-005, 200k samples each}},
  url={{https://huggingface.co/michsethowusu}}
}}

πŸ“ž Contact and Support

  • Repository Issues: Open an issue in this dataset repository
  • General Questions: Contact through Hugging Face profile
  • Collaboration: Open to partnerships for African language AI development

πŸ”— Related Resources


🌟 Star this dataset if it helps your research! πŸ”„ Share to support African language AI development! """

Downloads last month
62

Collection including michsethowusu/twi-speech-text-parallel-synthetic-1m-part004