Datasets:
audio
audioduration (s) 2.08
16.9
| text
stringlengths 29
67
|
---|---|
sei mΙyΙ ΙrebΙyi fufuo no naso nti da ase ani |
|
ntΙ nnua koro saa nenam adi so abΙdi naso nsia |
|
a rebΙ hwene he ho kuu kurom bi ase |
|
sΙ ho hyiaa pΙ a nti ate paa abakΙsΙm anim |
|
yΙn biara toΙ ho nso mpa saa pae nano yi |
|
sei kasa tΙ nam a nyinaa a awe ha mu |
|
afe bi kanea Ιmma awia aboΙden hu faa ahemfie emu |
|
adi tokuro bi asΙe ntokuro fam wee nwe okuafoΙ yi |
|
simon nhyΙ akye he fam kekakeka ma biara da ase |
|
pΙ nti bΙtene sΙ Ιma twenee benkum yi nyinaa hwehwΙΙ |
|
tii saa pΙ obiara adwane wontie ΙyΙ mframa bi |
|
aba aka tii sa kuruwa kyΙ nadwene kΙ asuafoΙ |
|
sΙree nkosua bi ada ntoma akyi adi tuu nwoma no |
|
sΙ a akyerΙ sΙ maa ti ehu na biara de |
|
ankΙtΙ nafuo no bisaa ase ase ada ada hwa no |
|
mo nyinaa biara anka nti afe nso worΙΙ pono no |
|
dane no safoa teaa naso papa sen to nnipa ase |
|
wΙn ahemfie ani yΙ papa saa ananse kΙseΙ din ani |
|
kΙtuu ehu yΙ ti bi ahuri sΙ gye akwadaa nnora |
|
akΙ nhoma sΙ kakra bi wontie ha abΙfra so saa |
|
wo nam mu woyΙ dΙ fam adΙfoΙ kΙse se ani |
|
Ιfom aboΙden ahanan sΙ biara a mΙhwΙ twenee merekΙ na |
|
pΙnkΙ dΙdΙ mpem he nyinaa ne Ιdi aboΙ ne he |
|
tΙΙ afuom bi atwa ΙsΙfo fam da kΙ amaneΙ bi |
|
bi egya ase wΙ kΙkΙΙ ankyΙ ΙboΙ tiatia hwene mu |
|
sΙ obi siesie Ιbaa yΙn saa buee pasapasa yii pasapasa |
|
mansa ankΙtΙ nwoma kuu ba waree bere ma afuom |
|
naso ahemfie akyi ΙwΙ kitikiti san safoa dΙ waboa ho |
|
hwee wuu adaka no a sΙn ntΙ yi so |
|
sei sei sesaa sΙ bΙtwerΙ wadwuma ehu bi nyinaa akΙbΙ |
|
ΙkyerΙkyerΙni obi apem saa yΙfa aba so bΙfe adΙfoΙ nsia |
|
ehu Ιkraman ΙyΙ akura deΙ okuafoΙ ne na kyerΙΙ |
|
fi toΙ ne ahu sΙ hwene repΙ ara nkuro atifi |
|
nkuro yi somaa nnwom maa ΙkyerΙkyerΙni akΙ dwa ma mpa |
|
bosome yi na obiara Ιdwene hwehwΙ wΙ Ιbo nyinaa |
|
mmoa no bokiti huri tokuro hare hare bae nkwa so |
|
Ιdan fΙfΙ apem he nyinaa ne abΙkye akuafoΙ hΙ na |
|
nani biara sΙ enti sei Ιpanin anka rebΙ asikafoΙ he |
|
aka bi su mfuo wada nkwan he ani bΙtene |
|
ntumi benkum no waree abaayewa fam de ma me bi |
|
mo nyinaa nkakrankakra na nso nua na redi se no |
|
dwabΙ yi a hΙ gye ada yΙΙ ananse biara |
|
sΙ nte Ιso asΙm ne nyinaa ma rebΙ ho ho |
|
ne mu ase wΙ sene pasapasa akura dΙ mmaa mu |
|
ahemfie bepΙ mpem a kaa gyina mu di dwa aduosia |
|
sΙ anka retoto sΙ bΙtΙ mpaboa ΙboΙ na biara wΙte |
|
dwa no nso yΙn ΙyΙ mebΙ wΙ akwadaa nyinaa |
|
a sei nam sΙ Ιma nnipa dua no biara didii |
|
sΙ wΙ asa nam yΙn enti te a ato pasapasa |
|
yaa ntΙ kwan agu asikafoΙ bi ho sΙn akyi |
|
enti gyee asΙre wo Ιno ara sΙ ka ase atifi |
|
nkΙ sene ne som sΙ nua kΙ merekΙ wura atifi |
|
fa mfe atu tii he asan anaa yΙ dwom ntΙm |
|
paanoo nkΙ ntΙ he atΙn fam bΙΙ nam no ase |
|
ara enti bisabisa sΙ Ιma adeΙ wadwuma bi biara fee |
|
watete nsΙhwΙ sΙ paa nyinaa amee nyinaa mfuo ho sΙ |
|
ne apam wuu bokiti biribi obi Ιsiane manni hΙ so |
|
paanoo anyane nadwene Ιbo ma kyee paanoo na obi nti |
|
a ne watete Ιpanin hΙ pΙ tuatua mu twaa pasapasa |
|
agorΙ ntΙkwa aduosia ho bΙfa ntwitwa ase nhyΙ kanea apem |
|
yΙnhyΙ efie he anto paanoo fam wee kΙ atadeΙ na |
|
mo biara pΙ aane pΙ abaa yee tΙnn ΙkΙm bi |
|
maa ho na Ιnantee sΙ ahemfie mpΙ bi nwoma ani |
|
hwee pono fam ΙyΙ tantan dodo tiri fufuo da emu |
|
dua Ιnyaa nam nka aboa tuu bepΙ awe da |
|
se he ΙbΙba nyame yi aku simon yi mmaa ase |
|
Ιdaa Ιsan anaa bΙtene sΙ tokuro ΙhyΙ wΙn adΙ akyi |
|
yΙn tuatua osuani he me huu kasa bi fam |
|
ehu bi rebΙ afuo na gyae safoa na adaka ho |
|
a ΙbΙΙ amaneΙ na yΙn srΙ bea na emu |
|
me amaneΙ nakyi de sene papa okuafoΙ kΙseΙ okuafoΙ emu |
|
akyerΙ apono sΙ ebia bi ΙbΙkΙ wΙn mpae akyi saa |
|
mu obi Ιmaa ha nwoma ΙrebΙyi akwantuo ne nafuo mΙgye |
|
ato firii adwene bi fam kekakeka anaa merekΙ redidi ani |
|
osuani dΙ tokuro no rebΙ bepΙ hwehwΙ dane yi ase |
|
mu wani apem ho nyaa akΙtwerΙ atifi kuu akwantuo ahanan |
|
ma ahemfie no di da nakyi wee nwe araba he |
|
ebia nyinaa ayΙ hwee asΙm ΙtΙnn din anaa akye ΙkΙtoo |
|
wahyehyΙ ara sΙ wo dΙ a anya atwa woante nyinaa |
|
mango Ιso ananse yΙmfa sii fa ne adwuma bΙto simon |
|
pono Ιdan ahanan sei Ιnyaa sa ani bisaa araba apem |
|
ano fufuo apem sΙ biara aane ΙsΙ awia ara na |
|
kanea he tuu twenee gye dwom nkye waboa ada dane |
|
yΙ pΙ anom amaneΙ no twerΙΙ ne bobΙ akuafoΙ ha |
|
aka pae akura he piaa Ιhaw bae dompe he so |
|
nani bi sΙ enti nso mmoa ara ahome pono bi |
|
afe bi nsa fi nwoma fufuo tiatia ntwitwa hwa ani |
|
woada a na wo ΙsΙre a yΙreto nyaa tΙnn biara |
|
nani biara saa deΙ saa nso na noaa kuruwa bi |
|
ne ahyia ΙbΙΙ kunu me yΙn a ΙkΙ ho fam |
|
mansa wahyehyΙ bea no fam kekakeka nti yΙn yiyi nakyi |
|
bΙyΙ ebia sΙ siesie sΙ ΙkΙm kura biribi amaneΙ fam |
|
ayΙ ara sei hwee ΙdΙ ne anya kyerΙ rekΙ Ιno |
|
toa na Ιhyee mpa ankΙ ΙkyerΙkyerΙni na emu miamia |
|
Ιnnii ho nso nyinaa anya nti tuu ada mehuu ho |
|
adan he atwitwa mpae na hohoro apono he boΙ so |
|
Ιmaa atadeΙ wΙ adwuma yi piaa ne kΙΙ aboa fΙfΙΙfΙ |
|
yaa bΙfa afia twa dwabΙ no mu fono mu |
|
ntΙ no adi mpae kyΙ adaka kyΙ afuom tuu ntoma |
|
nkra bi tΙΙ Ιdan na kyΙΙ mfe he akuafoΙ ase |
Twi Speech-Text Parallel Dataset - Part 5 of 5
π The Largest Speech Dataset for Twi Language
This dataset contains part 5 of the largest speech dataset for the Twi language, featuring 1 million speech-to-text pairs split across 5 parts (approximately 200,000 samples each). This represents a groundbreaking resource for Twi (Akan), a language spoken primarily in Ghana.
π Breaking the Low-Resource Language Barrier
This publication demonstrates that African languages don't have to remain low-resource. Through creative synthetic data generation techniques, we've produced the largest collection of AI training data for speech-to-text models in Twi, proving that innovative approaches can build the datasets African languages need.
π Complete Dataset Series (1M Total Samples)
Part | Repository | Samples | Status |
---|---|---|---|
Part 1 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part001 |
~200,000 | β Available |
Part 2 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part002 |
~200,000 | β Available |
Part 3 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part003 |
~200,000 | β Available |
Part 4 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part004 |
~200,000 | β Available |
Part 5 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part005 |
~200,000 | π₯ THIS PART |
Dataset Summary
- Language: Twi/Akan -
aka
- Total Dataset Size: 1,000,000 speech-text pairs
- This Part: {len(data):,} audio files (filtered, >1KB)
- Task: Speech Recognition, Text-to-Speech
- Format: WAV audio files with corresponding text transcriptions
- Generation Method: Synthetic data generation
- Modalities: Audio + Text
π― Supported Tasks
- Automatic Speech Recognition (ASR): Train models to convert Twi speech to text
- Text-to-Speech (TTS): Use parallel data for TTS model development
- Speech-to-Speech Translation: Cross-lingual speech applications
- Keyword Spotting: Identify specific Twi words in audio
- Phonetic Analysis: Study Twi pronunciation patterns
- Language Model Training: Large-scale Twi language understanding
π Dataset Structure
Data Fields
audio
: Audio file in WAV format (synthetically generated)text
: Corresponding text transcription in Twi
Data Splits
This part contains a single training split with {len(data):,} filtered audio-text pairs (small/corrupted files removed).
Loading the Complete Dataset
from datasets import load_dataset, concatenate_datasets
# Load all parts of the dataset
parts = []
for i in range(1, 6):
part_name = f"michsethowusu/twi-speech-text-parallel-synthetic-1m-part{i:03d}"
part = load_dataset(part_name, split="train")
parts.append(part)
# Combine all parts into one dataset
complete_dataset = concatenate_datasets(parts)
print(f"Complete dataset size: {{len(complete_dataset):,}} samples")
Loading Just This Part
from datasets import load_dataset
# Load only this part
dataset = load_dataset("michsethowusu/twi-speech-text-parallel-synthetic-1m-part005", split="train")
print(f"Part 5 dataset size: {{len(dataset):,}} samples")
π οΈ Dataset Creation
Methodology
This dataset was created using synthetic data generation techniques, specifically designed to overcome the challenge of limited speech resources for African languages. The approach demonstrates how AI can be used to bootstrap language resources for underrepresented languages.
Data Processing Pipeline
- Text Generation: Synthetic Twi sentences generated
- Speech Synthesis: Text-to-speech conversion using advanced models
- Quality Filtering: Files smaller than 1KB removed to ensure quality
- Alignment Verification: Audio-text alignment validated
- Format Standardization: Consistent WAV format and text encoding
Technical Details
- Audio Format: WAV files, various sample rates
- Text Encoding: UTF-8
- Language Code:
aka
(ISO 639-3) - Filtering: Minimum file size 1KB to remove corrupted/empty files
π Impact and Applications
Breaking Language Barriers
This dataset represents a paradigm shift in how we approach low-resource African languages:
- Scalability: Proves synthetic generation can create large datasets
- Accessibility: Makes Twi ASR/TTS development feasible
- Innovation: Demonstrates creative solutions for language preservation
- Reproducibility: Methodology can be applied to other African languages
Use Cases
- Educational Technology: Twi language learning applications
- Accessibility: Voice interfaces for Twi speakers
- Cultural Preservation: Digital archiving of Twi speech patterns
- Research: Phonetic and linguistic studies of Twi
- Commercial Applications: Voice assistants for Ghanaian markets
β οΈ Considerations for Using the Data
Social Impact
Positive Impact:
- Advances language technology for underrepresented communities
- Supports digital inclusion for Twi speakers
- Contributes to cultural and linguistic preservation
- Enables development of Twi-language AI applications
Limitations and Biases
- Synthetic Nature: Generated data may not capture all nuances of natural speech
- Dialect Coverage: May not represent all regional Twi dialects equally
- Speaker Diversity: Limited to synthesis model characteristics
- Domain Coverage: Vocabulary limited to training data scope
- Audio Quality: Varies across synthetic generation process
Ethical Considerations
- Data created with respect for Twi language and culture
- Intended to support, not replace, natural language preservation efforts
- Users should complement with natural speech data when possible
π Technical Specifications
Audio Specifications
- Format: WAV
- Channels: Mono
- Sample Rate: 16kHz
- Bit Depth: 16-bit
- Duration: Variable per sample
Quality Assurance
- Minimum file size: 1KB (corrupted files filtered)
- Text-audio alignment verified
- UTF-8 encoding validation
- Duplicate removal across parts
π License and Usage
Licensing Information
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
You are free to:
- Share: Copy and redistribute the material
- Adapt: Remix, transform, and build upon the material
- Commercial use: Use for commercial purposes
Under the following terms:
- Attribution: Give appropriate credit and indicate if changes were made
π Acknowledgments
- Original Audio Production: The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
- Audio Processing: MMS-300M-1130 Forced Aligner
- Synthetic Generation: Advanced text-to-speech synthesis pipeline
- Community: Twi language speakers and researchers who inspire this work
π Citation
If you use this dataset in your research, please cite:
@dataset{{twi_speech_parallel_1m_2025,
title={{Twi Speech-Text Parallel Dataset: The Largest Speech Dataset for Twi Language}},
author={{Owusu, Michael Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{1 Million synthetic speech-text pairs across 5 parts}},
url={{https://huggingface.co/datasets/michsethowusu/twi-speech-text-parallel-synthetic-1m-part005}}
}}
For the complete dataset series:
@dataset{{twi_speech_complete_series_2025,
title={{Complete Twi Speech-Text Parallel Dataset Series (1M samples)}},
author={{Owusu, Mich-Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{Parts 005-005, 200k samples each}},
url={{https://huggingface.co/michsethowusu}}
}}
π Contact and Support
- Repository Issues: Open an issue in this dataset repository
- General Questions: Contact through Hugging Face profile
- Collaboration: Open to partnerships for African language AI development
π Related Resources
π Star this dataset if it helps your research! π Share to support African language AI development! """
- Downloads last month
- 36