Dataset Viewer
Wolof
stringlengths
10
455
sentiment
stringclasses
2 values
__index_level_0__
int64
0
321k
Bo gisee ma gën laa néew alal ak i doom. "
Negative
0
waaye leer, lu mu ëmb, fésal ko.
Positive
1
Ndax li Yàlla sàkk amoon na sikk?
Negative
2
Ce tare:) si pretul suna biiinnneeee!;;)
Negative
3
Ngir-yàlla tànnal beneen tur.',
Positive
4
Yeena ko seede bésub tey jii."
Positive
5
Su ko defee ñu dëkkewaat seen suufas bopp."
Positive
6
Les signes (aayaate) sont partout.
Positive
7
Xamlu ku xam ,day dolli xam.
Positive
8
Lan lañuy def ak xam-xam boobu ñu am?
Negative
9
Nóoyin def na lépp li ko Yàlla santoon.
Negative
10
Moom la Mbind mi wax ne:"Ku jub amul, du kenn sax.
Negative
11
Duñu naan biiñ ba tey jii ndax wormaal seen santaaney maam.
Negative
12
jubóo te jubu ñu ñoo ko waral.
Positive
13
By Stormen, en mooy weer,
Positive
14
Ndaxte kàttanu fas yaa ngi ci seeni gémmiñ ak ci seeni geen.
Positive
15
Lot ne ca xiiñidxaapaʼ bizuubacaʼ diidxaʼ ne bixooñecaʼ de Sodoma.
Negative
16
Yàlla daldi koy rey moom lu tollu ci téeméeri at.
Negative
17
mi mu jagleel say àndandoo."
Positive
18
Yexowa dafa sàkk góor ak jigéen ngir ñu jàppalante ci seen biir.
Positive
19
Dina ko dóor ay dóor yu metti, jox ko añub ñi gëmul Yàlla.
Negative
20
Dañuy dinañu fàtaliku yaw.
Positive
21
ak biddiiwub Refan, bi ñu daan bokkaaleel Yàlla,
Negative
22
ak yeen ñi ko ragal, mag ak ndaw."
Positive
23
Indeed book de wicked est Sijjeen.
Negative
24
Laajleen ko; magum jëmm la, te man na tontul boppam."
Positive
25
Ana lu waral nga namma tas dëkk bu Aji Sax ji séddoo?"
Negative
26
Yexowa dafa bëgg neexal ñi koy jaamu dëgg.
Positive
27
Kuy wax googu kàddu, ag leer fenkalu la."
Positive
28
Dafa fekk rekk ne ci làkku fràñse la gën a siiwe.
Negative
29
yéen ñi ko ragal, mag ak ndaw."
Positive
30
Waxal ne: "Yàlla, moom Kenn la (jenn Yàlla rekk la).
Negative
31
Nangeen ñów ci tàntu Yexowa.
Positive
32
Junniy junnee nga koy jaamu,
Positive
33
Fa la léen séen wërsëg di fekk subaak ngoon.
Positive
34
Awa tontu ko ne: "Man nanoo lekk ci doomi garabi tool bi kay.
Positive
35
Su doon genn-wàllu nguur gi sax, dees na la ko jox!"
Positive
36
bi ngeen daan jaamu
Negative
37
Jox leeni doom lu jafe la.
Positive
38
Xanaa xamuloo ne mën naa laaj sama Baay ay junniy malaaka ngir ñu muccal ma ? '
Negative
39
" En fait, je ne suis ni l'un ni l'autre, je suis juif. "
Positive
40
Juróom ñaari fan nag ngay négandiku, ba ma fekksi la fa, xamal la looy def."
Positive
41
Waaye su lalee pexem wor de, dina dee."
Negative
42
musal ko ci ku koy teg àtteb dee.
Positive
43
Waaye Lóot ak njabootam dañu doon yéexantu.
Positive
44
Ndaxte Seytaane wàcc na ci yéen, ànd ak mer mu tàng, ndaxte xam na ne, jot gi ko dese barewul."
Negative
45
Dañu leen di bañ waaye itam dañu leen di xawa ragal.
Negative
46
di yool, ba wis kuy réy-réylu.
Positive
47
te noor ak nawet lay doon.
Positive
48
Ci Sunu Boroom lanu joge Ca Moom lanuy dellu!
Positive
49
Sob, lépp lu ñuy aaye yaa koy def, luñu nëbb yaa koy luqati.
Negative
50
Loolu moo tax ngeen gis te dégg kéemaan yii. '
Positive
51
C'est vrai waay, pa bi dafa wara go.
Positive
52
Noonu lay deme ak ñiy weddi ak aji gëm yi.
Positive
53
Te sama dige Booroom dëgg la."
Positive
54
Dafa mas a firnde barke ci li jëm ci jur doom yu bare. "
Positive
55
Kon sawara wi moo gën a yaatu safara si.
Positive
56
yam ci tawfeex ci sag ak sañ-sañ.
Positive
57
Képp ku nekk ci asamaan dafay topp bu baax Yexowa Yàlla.
Positive
58
ba kera mu yégal njub, ba daan.
Positive
59
Seetal fi ñuy defe suñu ndaje yi ak ni ñuy jaamoo Yàlla.
Positive
60
Ngir nu nattu léen kan ci ñoom a gën a rafet jëf.
Positive
61
Bu dee guddi àjjuma ñu wàccee ko juróom ñaari yoon.
Negative
62
Lóot nag soññ leen, ba ñu dal këram, mu ganale leen.
Negative
63
Tey jii, Yexowa dina ma dimbali ba ma rey la. '
Positive
64
Nóoyin ak doomam yi déggal nañu Yexowa te komaase nañu tabax gaal googu mel ni kees.
Positive
65
AS - Dinañu ko dëgg bu neexee Yàlla.
Positive
66
Ginnaaw loolu, mu tànn ci seen biir xale yu góor yi gën a rafet te gën a am xel.
Positive
67
Dañu sàcc lu Yàlla moom.
Negative
68
Lu tax ñu war a gërëm Yexowa ndax njot gi mu maye?
Positive
69
Yaw ak sa njaboot ak say xarit dingeen am dund bu neex ba fàww.
Positive
70
Yàlla tànnoon na waa Israyil ngir ñu nekk ay seedeem.
Positive
71
Bu ma lekkoon tey ci yàppu saraxas póotum bàkkaar bi, ndax dina neex Aji Sax ji?"
Negative
72
waaye day dàq ñiy def lu bon."
Positive
73
Lu ko moy dinañu daanu ci seen kanami noon."
Negative
74
Ndax du ci saw tur lanu daa defe ay kéemaan yu bare?"
Negative
75
Yalla rekk-ay Yalla te li Mu yellool Moom rekk-a ko yellool.
Positive
76
ak kéemaanam yi ñeel doom aadama yi.
Positive
77
Mu ne ko: "Moom de, ma nga ca kër Makir doomu Amiyel, ca dëkk ba ñuy wax Lodebar."
Negative
78
Sama boroom yal na nga nu nagul,yaw ay aji dégg jiy aji xam.
Positive
79
mbind mi dafa ne:"ana ku xam xalaatu boroom bi?ku ko doon digal?"
Negative
80
te xam mbaax, gi ci kàddug Yàlla, ak kéemaani jamono jiy ñëw,
Positive
81
Fa nga jaare Yàlla la gaa ña jiitu di wër ba tay
Negative
82
bégleen te bànneexu, ndax seen yool dina réy ci laaxira. ndaxte noonu lañu daan fitnaale yonent yi fi jiitu.
Positive
83
jëmmi-jamono j-: taŋ b-. dinañu gise jeneen jëmmi-jamono.
Positive
84
Waaye, duggewuñ ko woon lu dul wéyal nootaange bi.
Negative
85
bah ca te prend comme ca direct?
Negative
86
Soo ko defee, dinga ko aar ci biir buy daw.
Positive
87
Bu gumba dee wommant moroomam nag, kon dinañu daanu ñoom ñaar ci kàmb.
Negative
88
Waaye soo ko deful, na la bir ne dinga dee, yaak sa waa kër yépp."
Negative
89
Lan lañu mën a jàng ci li dal jabaru Lóot ?
Negative
90
Ci turu Yàlla Yërëmaakoon bi, Jaglewaakoon bi.
Positive
91
Bu ko neexoon mu def ko jàmm, baaxe ko réew mépp; bu ko neexoon yit mu soppi ko safaan ba, def ko fitna.
Negative
92
Balaam moom, mënul gis malaaka mi.
Negative
93
Musa:"yo apek yu nek ngono..."
Positive
94
Esekiya ne ko: "Mboolem lu nekk sama biir kër, gis nañu ko.
Positive
95
Mbaa du dangaa lekk ca garab, ga ma la aaye, waay?"
Negative
96
Xamuleen ko nag; man maa ko xam.
Negative
97
luy doon muju ki weddi te dëng?"
Negative
98
Bés bi Yàlla di alag ñu bon ñi dina bett ñépp.
Negative
99

Wolof Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Wolof for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 320,609
  • Positive sentiment: 179014 (55.8%)
  • Negative sentiment: 141595 (44.2%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Wolof
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/wolof-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Wolof
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{wolof_sentiments_corpus,
  title={Wolof Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/wolof-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/wolof-sentiments-corpus