Wolof
stringlengths 10
455
| sentiment
stringclasses 2
values | __index_level_0__
int64 0
321k
|
---|---|---|
Bo gisee ma gën laa néew alal ak i doom. " | Negative | 0 |
waaye leer, lu mu ëmb, fésal ko. | Positive | 1 |
Ndax li Yàlla sàkk amoon na sikk? | Negative | 2 |
Ce tare:) si pretul suna biiinnneeee!;;) | Negative | 3 |
Ngir-yàlla tànnal beneen tur.', | Positive | 4 |
Yeena ko seede bésub tey jii." | Positive | 5 |
Su ko defee ñu dëkkewaat seen suufas bopp." | Positive | 6 |
Les signes (aayaate) sont partout. | Positive | 7 |
Xamlu ku xam ,day dolli xam. | Positive | 8 |
Lan lañuy def ak xam-xam boobu ñu am? | Negative | 9 |
Nóoyin def na lépp li ko Yàlla santoon. | Negative | 10 |
Moom la Mbind mi wax ne:"Ku jub amul, du kenn sax. | Negative | 11 |
Duñu naan biiñ ba tey jii ndax wormaal seen santaaney maam. | Negative | 12 |
jubóo te jubu ñu ñoo ko waral. | Positive | 13 |
By Stormen, en mooy weer, | Positive | 14 |
Ndaxte kàttanu fas yaa ngi ci seeni gémmiñ ak ci seeni geen. | Positive | 15 |
Lot ne ca xiiñidxaapaʼ bizuubacaʼ diidxaʼ ne bixooñecaʼ de Sodoma. | Negative | 16 |
Yàlla daldi koy rey moom lu tollu ci téeméeri at. | Negative | 17 |
mi mu jagleel say àndandoo." | Positive | 18 |
Yexowa dafa sàkk góor ak jigéen ngir ñu jàppalante ci seen biir. | Positive | 19 |
Dina ko dóor ay dóor yu metti, jox ko añub ñi gëmul Yàlla. | Negative | 20 |
Dañuy dinañu fàtaliku yaw. | Positive | 21 |
ak biddiiwub Refan, bi ñu daan bokkaaleel Yàlla, | Negative | 22 |
ak yeen ñi ko ragal, mag ak ndaw." | Positive | 23 |
Indeed book de wicked est Sijjeen. | Negative | 24 |
Laajleen ko; magum jëmm la, te man na tontul boppam." | Positive | 25 |
Ana lu waral nga namma tas dëkk bu Aji Sax ji séddoo?" | Negative | 26 |
Yexowa dafa bëgg neexal ñi koy jaamu dëgg. | Positive | 27 |
Kuy wax googu kàddu, ag leer fenkalu la." | Positive | 28 |
Dafa fekk rekk ne ci làkku fràñse la gën a siiwe. | Negative | 29 |
yéen ñi ko ragal, mag ak ndaw." | Positive | 30 |
Waxal ne: "Yàlla, moom Kenn la (jenn Yàlla rekk la). | Negative | 31 |
Nangeen ñów ci tàntu Yexowa. | Positive | 32 |
Junniy junnee nga koy jaamu, | Positive | 33 |
Fa la léen séen wërsëg di fekk subaak ngoon. | Positive | 34 |
Awa tontu ko ne: "Man nanoo lekk ci doomi garabi tool bi kay. | Positive | 35 |
Su doon genn-wàllu nguur gi sax, dees na la ko jox!" | Positive | 36 |
bi ngeen daan jaamu | Negative | 37 |
Jox leeni doom lu jafe la. | Positive | 38 |
Xanaa xamuloo ne mën naa laaj sama Baay ay junniy malaaka ngir ñu muccal ma ? ' | Negative | 39 |
" En fait, je ne suis ni l'un ni l'autre, je suis juif. " | Positive | 40 |
Juróom ñaari fan nag ngay négandiku, ba ma fekksi la fa, xamal la looy def." | Positive | 41 |
Waaye su lalee pexem wor de, dina dee." | Negative | 42 |
musal ko ci ku koy teg àtteb dee. | Positive | 43 |
Waaye Lóot ak njabootam dañu doon yéexantu. | Positive | 44 |
Ndaxte Seytaane wàcc na ci yéen, ànd ak mer mu tàng, ndaxte xam na ne, jot gi ko dese barewul." | Negative | 45 |
Dañu leen di bañ waaye itam dañu leen di xawa ragal. | Negative | 46 |
di yool, ba wis kuy réy-réylu. | Positive | 47 |
te noor ak nawet lay doon. | Positive | 48 |
Ci Sunu Boroom lanu joge Ca Moom lanuy dellu! | Positive | 49 |
Sob, lépp lu ñuy aaye yaa koy def, luñu nëbb yaa koy luqati. | Negative | 50 |
Loolu moo tax ngeen gis te dégg kéemaan yii. ' | Positive | 51 |
C'est vrai waay, pa bi dafa wara go. | Positive | 52 |
Noonu lay deme ak ñiy weddi ak aji gëm yi. | Positive | 53 |
Te sama dige Booroom dëgg la." | Positive | 54 |
Dafa mas a firnde barke ci li jëm ci jur doom yu bare. " | Positive | 55 |
Kon sawara wi moo gën a yaatu safara si. | Positive | 56 |
yam ci tawfeex ci sag ak sañ-sañ. | Positive | 57 |
Képp ku nekk ci asamaan dafay topp bu baax Yexowa Yàlla. | Positive | 58 |
ba kera mu yégal njub, ba daan. | Positive | 59 |
Seetal fi ñuy defe suñu ndaje yi ak ni ñuy jaamoo Yàlla. | Positive | 60 |
Ngir nu nattu léen kan ci ñoom a gën a rafet jëf. | Positive | 61 |
Bu dee guddi àjjuma ñu wàccee ko juróom ñaari yoon. | Negative | 62 |
Lóot nag soññ leen, ba ñu dal këram, mu ganale leen. | Negative | 63 |
Tey jii, Yexowa dina ma dimbali ba ma rey la. ' | Positive | 64 |
Nóoyin ak doomam yi déggal nañu Yexowa te komaase nañu tabax gaal googu mel ni kees. | Positive | 65 |
AS - Dinañu ko dëgg bu neexee Yàlla. | Positive | 66 |
Ginnaaw loolu, mu tànn ci seen biir xale yu góor yi gën a rafet te gën a am xel. | Positive | 67 |
Dañu sàcc lu Yàlla moom. | Negative | 68 |
Lu tax ñu war a gërëm Yexowa ndax njot gi mu maye? | Positive | 69 |
Yaw ak sa njaboot ak say xarit dingeen am dund bu neex ba fàww. | Positive | 70 |
Yàlla tànnoon na waa Israyil ngir ñu nekk ay seedeem. | Positive | 71 |
Bu ma lekkoon tey ci yàppu saraxas póotum bàkkaar bi, ndax dina neex Aji Sax ji?" | Negative | 72 |
waaye day dàq ñiy def lu bon." | Positive | 73 |
Lu ko moy dinañu daanu ci seen kanami noon." | Negative | 74 |
Ndax du ci saw tur lanu daa defe ay kéemaan yu bare?" | Negative | 75 |
Yalla rekk-ay Yalla te li Mu yellool Moom rekk-a ko yellool. | Positive | 76 |
ak kéemaanam yi ñeel doom aadama yi. | Positive | 77 |
Mu ne ko: "Moom de, ma nga ca kër Makir doomu Amiyel, ca dëkk ba ñuy wax Lodebar." | Negative | 78 |
Sama boroom yal na nga nu nagul,yaw ay aji dégg jiy aji xam. | Positive | 79 |
mbind mi dafa ne:"ana ku xam xalaatu boroom bi?ku ko doon digal?" | Negative | 80 |
te xam mbaax, gi ci kàddug Yàlla, ak kéemaani jamono jiy ñëw, | Positive | 81 |
Fa nga jaare Yàlla la gaa ña jiitu di wër ba tay | Negative | 82 |
bégleen te bànneexu, ndax seen yool dina réy ci laaxira. ndaxte noonu lañu daan fitnaale yonent yi fi jiitu. | Positive | 83 |
jëmmi-jamono j-: taŋ b-. dinañu gise jeneen jëmmi-jamono. | Positive | 84 |
Waaye, duggewuñ ko woon lu dul wéyal nootaange bi. | Negative | 85 |
bah ca te prend comme ca direct? | Negative | 86 |
Soo ko defee, dinga ko aar ci biir buy daw. | Positive | 87 |
Bu gumba dee wommant moroomam nag, kon dinañu daanu ñoom ñaar ci kàmb. | Negative | 88 |
Waaye soo ko deful, na la bir ne dinga dee, yaak sa waa kër yépp." | Negative | 89 |
Lan lañu mën a jàng ci li dal jabaru Lóot ? | Negative | 90 |
Ci turu Yàlla Yërëmaakoon bi, Jaglewaakoon bi. | Positive | 91 |
Bu ko neexoon mu def ko jàmm, baaxe ko réew mépp; bu ko neexoon yit mu soppi ko safaan ba, def ko fitna. | Negative | 92 |
Balaam moom, mënul gis malaaka mi. | Negative | 93 |
Musa:"yo apek yu nek ngono..." | Positive | 94 |
Esekiya ne ko: "Mboolem lu nekk sama biir kër, gis nañu ko. | Positive | 95 |
Mbaa du dangaa lekk ca garab, ga ma la aaye, waay?" | Negative | 96 |
Xamuleen ko nag; man maa ko xam. | Negative | 97 |
luy doon muju ki weddi te dëng?" | Negative | 98 |
Bés bi Yàlla di alag ñu bon ñi dina bett ñépp. | Negative | 99 |
Wolof Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Wolof for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 320,609
- Positive sentiment: 179014 (55.8%)
- Negative sentiment: 141595 (44.2%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Wolof
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/wolof-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Wolof
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{wolof_sentiments_corpus,
title={Wolof Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/wolof-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 0