Dataset Viewer
Auto-converted to Parquet
Zulu
stringlengths
7
495
sentiment
stringclasses
2 values
__index_level_0__
int64
0
188k
niyokwaba eniyokwaba niyokwaba aniyukwaba eningeyukwaba ningeyukwaba
Negative
0
Kanti nokho niyakufa njengabantu nje,
Negative
1
Uma uzithola ukulesi simo, cabanga ngesibonelo sikaMose.
Negative
2
Amakholwa anjalo kuphela ayengangena ezulwini ngemva kokufa, okusho ukuthi ayesindiswa.
Positive
3
Kusobala ukuthi bayifundisa indodana yabo, uSamsoni, umthetho kaNkulunkulu, kuyacaca nokuthi imizamo yabo yaphumelela.
Positive
4
Singase sikuthole kusiqeda amandla ngisho nokushumayela izindaba ezinhle zoMbuso kaNkulunkulu, njengoba kuyimfuneko kumaKristu.
Positive
5
Noma ngubani ayefisa, wabulala; futhi noma ubani ayemthanda, wabhubhisa; futhi noma ubani ayemthanda, waphakamisa; futhi noma ubani ayemthanda, wehlise.
Positive
6
Abantu bakaNkulunkulu bayohlaselwa.
Negative
7
ngiyakubanika umvuzo wabo ngeqiniso,
Positive
8
ubenze bajabule endlini yami yomthandazo;
Positive
9
Ngaze ngahlangana nabafowethu entathakusa sebesendleleni ebuyayo."
Positive
10
Uyawusukuma amelane nendlu yalababi,
Positive
11
Mabaphendukele kimi abakwesabayo nabaziyo ubufakazi bakho.
Positive
12
O, babuhlungu kangakanani labo abangasizakali ngesimangaliso somusa kaNkulunkulu!
Negative
13
Yebo, izikhonzi zoMbuso kaNkulunkulu zizokwenza intando kaNkulunkulu, ziqaphela uMdali - hhayi noma imuphi umuntu - njengoMbusi ofanele.
Positive
14
Wathobisa inhliziyo yabo ngokuhlupheka; bawa kungekho osizayo.
Negative
15
Futhi bahlala esikhundleni sabo, ezindlini zabo, kuso sonke isifunda esibheke empumalanga yeGileyadi.
Positive
16
Abamesabayo ubapha ukudla; ukhumbula njalo isivumelwano sakhe.
Positive
17
owenzile izulu ngokuhlakanipha, ngokuba umusa wakhe umi phakade;
Positive
18
indlu kaJosefa ibe yilangabi,
Positive
19
Kodwa, ayizange ikungabaze ukuthi uMdali usiqonda ngazo zonke izindlela.
Positive
20
Ngokuba engisibeke phezu kwakho iminyaka yokona kwabo, ...
Positive
21
Yayisithi: "Lawa angabagcotshiweyo ababili abemi ngaseNkosini yomhlaba wonke."
Positive
22
UDeveli wagomela ngokuthi uma abantu bengalalela yena, izinto ziyobahambela kangcono.
Negative
23
Kanti nokho niyakufa njengabantu nje, niwe njengesinye sezikhulu.
Negative
24
Abantu bangase bathi kithi, "Kumelwe sikujabulele ukuphila.
Positive
25
Futhi ngesikhathi sabo, ngeke balishaye indiva izwi lakhe.
Positive
26
Lowo suku they ethusa.
Negative
27
Reseo Masakan Onde - Onde Isi Ubi Ungu
Positive
28
Saphenduka nabo ngakwesokunene futhi kwesobunxele,
Negative
29
Encwadinakhe, watlola: "Yeke asinqophele kilokho okuletha ukuthula nokusenza sakhane."
Positive
30
UNkulunkulu usicela ukuba siphathe abanye ngendlela elungile nengenzeleli ngokwemithetho yakhe.
Positive
31
Uyabona yini ukuthi kungani uNkulunkulu abhubhisa lelo zwe? - Abantu babebabi, becabanga 'okubi ngaso sonke isikhathi.'
Negative
32
Ngezibonakaliso ethu wena kanye nalabo abalandela nawe bayakuba Abanqobi .
Positive
33
Ungathanda yini ukwazi iqiniso ngezingelosi - ukuthi zingobani, zaba khona kanjani nokuthi zenzani?
Positive
34
Uthi: 'Endlini kaBaba kulezindawo ezinengi zokuhlala.
Positive
35
Uya kusifikela njengemvula yasebusika -
Positive
36
Izinhliziyo zethu zigcwala ukwazisa lapho sicabanga ngazo zonke lezi zikhonzi zikaNkulunkulu ezizidelayo.
Positive
37
Ngoba isandla sakho sasinzima phezu kwami imini nobusuku."
Positive
38
Lathi, "Ibhuku leli liyakuntshintsha ukuphila!
Positive
39
Say, 'Ingabe nawe disbelieve kuYe owadala umhlaba ngezinsuku ezimbili?
Negative
40
Ngakho ukube uJehova ubenguNkulunkulu ofihlekile nongaziwa, besingeke sisondele kuye.
Negative
41
UJesu wasebenzisa umntwana omncane ukuze akwenze kucace kubaphostoli bakhe ukuthi kufanele bathobeke futhi babe nesizotha.
Positive
42
O Allah, yilwa abangakholwa abaye banikezwa Book, Wena unguNkulunkulu ka Ngeqiniso. '"
Positive
43
Yishoni kolungileyo ukuthi kuyakuba kuhle kuye,
Positive
44
Wayethembise ukwenza inzalo kaJakobe ibe yisizwe esinamandla.
Positive
45
Cishe ayeyozibuza ukuthi uNkulunkulu wokhokho bawo wayeyokwazi yini ukubakhulula.
Negative
46
Ngakho-ke, ukukhumbuza by the Koran yilowo nalowo omesabayo usongo (My).
Negative
47
Uthi: "Kwakungathi angazi lutho.
Negative
48
(ukuthula kube kuye), befuna neziyalo zeKur'an.
Positive
49
Uyovusa abantu abaningi kuhlanganise nabantu abangalungile abafa bengazi lutho ngoNkulunkulu weqiniso.
Positive
50
Abafundi bathi: "Ezilikhomba, neenhlambi ezincani ezimbalwa."
Negative
51
Njengoba abanjalo Sizokwenza nivuse abafileyo, ukuze ukhumbule .
Positive
52
Ukulunga kwakho kunjengezintaba ezinkulukazi,
Positive
53
"Ngabe ucabanga ukuthi le Master ingamanyathelo ambalwa ukuphakama kunathi?"
Negative
54
UNkulunkulu wayefuna babe nomshado ojabulisayo futhi bagcwalise umhlaba ngezingane zabo.
Positive
55
Kodwa ngaleso sikhathi, ngizobe ngingaseyena uAnton."
Negative
56
Yena (Prophet Muhammad) kuphela warner kini, ngaphambi isijeziso esibi . '
Negative
57
Shall ngiyala wena a kwezentengiselwano uyakukusindisa ungangeni isijeziso esibuhlungu ?
Negative
58
Inotho lenzuzo kusendlini yakhe, lokulunga kwakhe kumi laphakade."
Positive
59
Akavumanga nokho ukulalela izwi lakhe, kepha ngokuba wayenamandla kunaye, wamphoqa, walala naye.
Negative
60
yokwesaba lezinceku zami eziphakemeyo.
Negative
61
Futhi-ke ubesecishe abe yizinkulungwane ezimbili zeminyaka; futhi uyoba njalo kuze kubuye iNkosi.
Positive
62
Kuyakuba khona umgwaqo wensali yabantu bakhe,
Negative
63
Yilowo nalowo owesaba Allah siyakuhlwithwa ukhululeke izono zakhe futhi banikezwa amaholo elinamandla .
Positive
64
wabe wasondela, futhi waba close,
Positive
65
Kuyo kukhona izimpawu ezicacile; esiteshini lapho u-Abrahama wema.
Positive
66
Ababi bayakubuyela endaweni yabafileyo, bonke abezizwe abakhohlwa uNkulunkulu.
Negative
67
UNkulunkulu wami uyakubalahla, ngokuba abamlalelanga, babe ngabazulazulayo phakathi kwabezizwe.
Negative
68
Lokho kwabenza bathi: "Sibofakazi bazo zoke izinto azenzako."
Positive
69
Bazofinyelela ngokushesha kumenzi wephutha.
Positive
70
Futhi bayoba elizweni lakibo ngaphandle kokwesaba.
Positive
71
olungileyo ugijimela kuwo, alondeke.
Positive
72
Yisikhathi sokuqala akwenzile lokho, utshela McKennedy kamuva ngalobo busuku.
Positive
73
Bunjalo recompense zabangakholwa. "
Positive
74
ositheza ubuso bakhe kuyo indlu kaJakobe,
Negative
75
Futhi uNkulunkulu wathi, Lokhu kuwuphawu lwesivumelwano engise...
Positive
76
Bunjalo isibonelo isizwe ngubani aphikisana izibonakaliso Zethu.
Positive
77
amamkhululukira amene wamfuna,
Positive
78
Kodwa lamuhla kuyavunyelwa ukukhuluma ngezibusiso ezikholiswa ngabantu bakaNkulunkulu khathesi.
Positive
79
Ngingakutshela ukuthi ososayensi bazohlangana ngoLwesihlanu nangoMgqibelo babelane ngolwazi lwesayensi, kodwa angikwazi ukukutshela ukuthi kuphi.
Negative
80
Thwalani umphongolo wesivumelwano kanye nani.
Positive
81
Isono sokuhlambalaza uNkulunkulu asikwazi ukuxolelwa kulokhu kuphila noma kokulandelayo.
Negative
82
Ngilethe kuwe the best yaleli zwe futhi elilandelayo.
Positive
83
Ngaphandle kwalokho, imibhalo yayizothi wayezoba ngokohlelo luka-Aaron.
Negative
84
Wayefuna ukuba sesimweni ngenhla (isihlalo sami sobukhosi), ngaphezu kwezinkanyezi zikaNkulunkulu.
Positive
85
USolomoni, nakuba le ntombi ingamvumanga, waphefumulelwa ukuba abhale indaba yayo.
Negative
86
Ngempela, uma willed Allah, Wayekwazi away emehlweni abo kanye nokuzwa.
Negative
87
Ngokuqinisekile, wena kodwa sizwe esingalaleli . '
Negative
88
Mufonele manje futhi kuzoba usuku lwakho lokugcina."
Positive
89
Yilwani wonke endleleni Allah abulale nalabo disbelieve e Allah "- Ibn Ishaq:.
Negative
90
Ngokusobala bengingeke ukweluleka uya ekhaya nabo ngalobo busuku kodwa uthathe inombolo yabo.
Positive
91
UNkulunkulu angadala noma yini ayifunayo, noma iyiphi indlela ayifunayo.
Positive
92
wathi mabafundiswe abantwana bakwaJuda eyoMnsalo; bheka, silotshiwe eNcwadini Yoqotho.
Negative
93
UNkulunkulu wamnika uSolomoni ukuhlakanipha nengqondo ebanzi kakhulu, nenhliziyo enkulu ngangesihlabathi esisogwini lolwandle.
Positive
94
Uthando kuNkulunkulu lulinganiswa lothando kulabo esibaziyo (Unkulunkulu uthi, "olwesibili lunjengalo").
Positive
95
Angakwenza ngikubulale away uma Yena kuthanda futhi baletha kokuba indalo entsha;
Positive
96
Alungisela uJosefa isipho, ezofika emini, ngokuba ayezwile ukuthi ayakudla khona.
Positive
97
Onke amazwi omlomo wami asekulungeni;
Positive
98
Futhi kufanele kufakwe kanjani ifilimu, ikakhulukazi ezweni elisha? '
Negative
99
End of preview. Expand in Data Studio

Zulu Sentiment Corpus

Dataset Description

This dataset contains sentiment-labeled text data in Zulu for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.

Dataset Statistics

  • Total samples: 187,435
  • Positive sentiment: 102512 (54.7%)
  • Negative sentiment: 84923 (45.3%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Zulu
  • sentiment: Sentiment label (Positive or Negative only)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The sentiment labels were generated using:

  • Model: distilbert-base-uncased-finetuned-sst-2-english
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content
  • Filtering: Only Positive and Negative sentiments retained for binary classification

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/zulu-sentiments-corpus")

# Access the data
print(dataset['train'][0])

# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))

Use Cases

This dataset is ideal for:

  • Binary sentiment classification tasks
  • Training sentiment analysis models for Zulu
  • Cross-lingual sentiment analysis research
  • African language NLP model development

Citation

If you use this dataset in your research, please cite:

@dataset{zulu_sentiments_corpus,
  title={Zulu Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/zulu-sentiments-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied

Downloads last month
0

Collection including michsethowusu/zulu-sentiments-corpus