Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      JSON parse error: Column() changed from object to string in row 0
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables
                  df = pandas_read_json(f)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1025, in read
                  obj = self._get_object_parser(self.data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1051, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1187, in parse
                  self._parse()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1402, in _parse
                  self.obj = DataFrame(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/frame.py", line 778, in __init__
                  mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
                  return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
                  index = _extract_index(arrays)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 677, in _extract_index
                  raise ValueError("All arrays must be of the same length")
              ValueError: All arrays must be of the same length
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1855, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 687, in wrapped
                  for item in generator(*args, **kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 163, in _generate_tables
                  raise e
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 137, in _generate_tables
                  pa_table = paj.read_json(
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1898, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

id
int64
name
string
image_count
int64
instance_count
int64
1
backpack
14
14
2
ball
127
145
3
basket
12
12
4
beanie
3
3
5
bicycle
256
256
6
binder
17
17
7
book
41
41
8
bottle
3,007
3,007
9
bowl
52
52
10
briefcase
10
10
11
calf
14
17
12
can
6
6
13
car_(automobile)
8,206
15,150
14
cat
61
61
15
cellular_telephone
29
29
16
cigarette
53
53
17
clipboard
14
28
18
cup
39
39
19
dog
17
17
20
drumstick
62
77
21
elephant
224
224
22
fish
34
35
23
flag
41
41
24
giraffe
17
17
25
gorilla
19
19
26
grocery_bag
12
12
27
guitar
2,076
2,076
28
gun
55
76
29
hat
12
12
30
helmet
7
7
31
hockey_stick
92
115
32
laptop_computer
19
19
33
paddle
16
16
34
pen
11
11
35
pencil
43
43
36
person
42,397
157,982
37
potato
11
26
38
racket
211
223
39
remote_control
10
10
40
sandwich
7
7
41
scrubbing_brush
28
28
42
shoe
21
21
43
ski_pole
22
22
44
spatula
33
33
45
stool
25
25
46
army_tank
14
14
47
teakettle
5
5
48
tennis_racket
27
27
49
towel
79
79
50
toy
55
55
51
volleyball
3,610
3,631
52
zebra
641
953
53
rider
106
106
54
truck
1,314
1,454
55
bus
281
363
56
motorcycle
97
97
57
australian terrier
163
163
58
goral
118
118
59
football
106
106
60
swamprabbit
84
84
61
rock hyrax
96
96
62
otter shrew
81
81
63
racerunner
98
98
64
hudson bay collared lemming
88
88
65
fall cankerworm
79
79
66
lorry
469
469
67
bear cub
1,245
1,479
68
barge
296
296
69
angora goat
100
100
70
cruise missile
56
56
71
yellow-throated marten
87
87
72
brush-tailed porcupine
70
70
73
sea otter
93
93
74
ctenophore
89
89
75
pine marten
79
79
76
cheetah
71
71
77
hand truck
86
86
78
basketball
1,792
1,792
79
swing
1,908
1,908
80
yoyo
3,721
3,721
81
ant
194
1,003
82
antelope
172
172
83
apple
67
67
84
balloon
930
24,403
85
barcode
6
6
86
bee
186
978
87
bell
12
12
88
billboard
25
44
89
bird
2,342
3,295
90
bolt
29
29
91
bracelet
19
19
92
building_blocks
30
67
93
chicken
1,714
5,302
94
coin
27
27
95
computer_keyboard
18
18
96
correction_fluid
6
6
97
cotton_swab
8
8
98
crate
5
5
99
cushion
39
73
100
dolphin
1,232
1,710
End of preview.

HardTracksDataset: A Benchmark for Robust Object Tracking under Heavy Occlusion and Challenging Conditions

Computer Vision Lab, ETH Zurich

image/png

Introduction

We introduce the HardTracksDataset (HTD), a novel multi-object tracking (MOT) benchmark specifically designed to address two critical limitations prevalent in existing tracking datasets. First, most current MOT benchmarks narrowly focus on restricted scenarios, such as pedestrian movements, dance sequences, or autonomous driving environments, thus lacking the object diversity and scenario complexity representative of real-world conditions. Second, datasets featuring broader vocabularies, such as, OVT-B and TAO, typically do not sufficiently emphasize challenging scenarios involving long-term occlusions, abrupt appearance changes, and significant position variations. As a consequence, the majority of tracking instances evaluated are relatively easy, obscuring trackers’ limitations on truly challenging cases. HTD addresses these gaps by curating a challenging subset of scenarios from existing datasets, explicitly combining large vocabulary diversity with severe visual challenges. By emphasizing difficult tracking scenarios, particularly long-term occlusions and substantial appearance shifts, HTD provides a focused benchmark aimed at fostering the development of more robust and reliable tracking algorithms for complex real-world situations.

Results of state of the art trackers on HTD

Method Validation Test
TETA LocA AssocA ClsA TETA LocA AssocA ClsA
Motion-based
ByteTrack 34.877 54.624 19.085 30.922 37.875 56.135 19.464 38.025
DeepSORT 33.782 57.350 15.009 28.987 37.099 58.766 15.729 36.803
OCSORT 33.012 57.599 12.558 28.880 35.164 59.117 11.549 34.825
Appearance-based
MASA 42.246 60.260 34.241 32.237 43.656 60.125 31.454 39.390
OV-Track 29.179 47.393 25.758 14.385 33.586 51.310 26.507 22.941
Transformer-based
OVTR 26.585 44.031 23.724 14.138 29.771 46.338 24.974 21.643
MASA+ 42.716 60.364 35.252 32.532 44.063 60.319 32.735 39.135

Download Instructions

To download the dataset you can use the HuggingFace CLI. First install the HuggingFace CLI according to the official HuggingFace documentation and login with your HuggingFace account. Then, you can download the dataset using the following command:

huggingface-cli download mscheidl/htd --repo-type dataset --local-dir htd

The video folders are provided as zip files. Before usage please unzip the files. You can use the following command to unzip all files in the data folder. Please note that the unzipping process can take a while (especially for TAO.zip)

cd htd
for z in data/*.zip; do (unzip -o -q "$z" -d data && echo "Unzipped: $z") & done; wait; echo "βœ… Done"
mkdir -p data/zips        # create a folder for the zip files
mv data/*.zip data/zips/  # move the zip files to the zips folder

The dataset is organized in the following structure:

β”œβ”€β”€ htd
    β”œβ”€β”€ data
        β”œβ”€β”€ AnimalTrack
        β”œβ”€β”€ BDD
        β”œβ”€β”€ ...
    β”œβ”€β”€ annotations
        β”œβ”€β”€ classes.txt
        β”œβ”€β”€ hard_tracks_dataset_coco_test.json
        β”œβ”€β”€ hard_tracks_dataset_coco_val.json
        β”œβ”€β”€ ...
    β”œβ”€β”€ metadata
        β”œβ”€β”€ lvis_v1_clip_a+cname.npy
        β”œβ”€β”€ lvis_v1_train_cat_info.json

The data folder contains the videos, the annotations folder contains the annotations in COCO (TAO) format, and the metadata folder contains the metadata files for running MASA+. If you use HTD independently, you can ignore the metadata folder.

Annotation format for HTD dataset

The annotations folder is structured as follows:

β”œβ”€β”€ annotations
    β”œβ”€β”€ classes.txt
    β”œβ”€β”€ hard_tracks_dataset_coco_test.json
    β”œβ”€β”€ hard_tracks_dataset_coco_val.json
    β”œβ”€β”€ hard_tracks_dataset_coco.json
    β”œβ”€β”€ hard_tracks_dataset_coco_class_agnostic.json

Details about the annotations:

  • classes.txt: Contains the list of classes in the dataset. Useful for Open-Vocabulary tracking.
  • hard_tracks_dataset_coco_test.json: Contains the annotations for the test set.
  • hard_tracks_dataset_coco_val.json: Contains the annotations for the validation set.
  • hard_tracks_dataset_coco.json: Contains the annotations for the entire dataset.
  • hard_tracks_dataset_coco_class_agnostic.json: Contains the annotations for the entire dataset in a class-agnostic format. This means that there is only one category namely "object" and all the objects in the dataset are assigned to this category.

The HTD dataset is annotated in COCO format. The annotations are stored in JSON files, which contain information about the images, annotations, categories, and other metadata. The format of the annotations is as follows:

{
    "images": [image],
    "videos": [video],
    "tracks": [track],
    "annotations": [annotation],
    "categories": [category]
}

image: {
    "id": int,                            # Unique ID of the image
    "video_id": int,                      # Reference to the parent video
    "file_name": str,                     # Path to the image file
    "width": int,                         # Image width in pixels
    "height": int,                        # Image height in pixels
    "frame_index": int,                   # Index of the frame within the video (starting from 0)
    "frame_id": int                       # Redundant or external frame ID (optional alignment)
    "video": str,                         # Name of the video 
    "neg_category_ids": [int],            # List of category IDs explicitly not present (optional)
    "not_exhaustive_category_ids": [int]  # Categories not exhaustively labeled in this image (optional)
        
video: {
    "id": int,                            # Unique video ID
    "name": str,                          # Human-readable or path-based name
    "width": int,                         # Frame width
    "height": int,                        # Frame height
    "neg_category_ids": [int],            # List of category IDs explicitly not present (optional)
    "not_exhaustive_category_ids": [int]  # Categories not exhaustively labeled in this video (optional)
    "frame_range": int,                   # Number of frames between annotated frames
    "metadata": dict,                     # Metadata for the video    
}
        
track: {
    "id": int,             # Unique track ID
    "category_id": int,    # Object category
    "video_id": int        # Associated video
}
        
category: {
    "id": int,            # Unique category ID
    "name": str,          # Human-readable name of the category
}
        
annotation: {
    "id": int,                    # Unique annotation ID
    "image_id": int,              # Image/frame ID
    "video_id": int,              # Video ID
    "track_id": int,              # Associated track ID
    "bbox": [x, y, w, h],         # Bounding box in absolute pixel coordinates
    "area": float,                # Area of the bounding box
    "category_id": int            # Category of the object
    "iscrowd": int,               # Crowd flag (from COCO)
    "segmentation": [],           # Polygon-based segmentation (if available)
    "instance_id": int,           # Instance index with a video
    "scale_category": str         # Scale type (e.g., 'moving-object')
}
Downloads last month
36