Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
test_query0
apositive_test_query0_00000
1
test_query0
apositive_test_query0_00001
1
test_query0
apositive_test_query0_00002
1
test_query0
apositive_test_query0_00003
1
test_query0
apositive_test_query0_00004
1
test_query0
apositive_test_query0_00005
1
test_query0
apositive_test_query0_00006
1
test_query0
apositive_test_query0_00007
1
test_query0
apositive_test_query0_00008
1
test_query0
apositive_test_query0_00009
1
test_query0
apositive_test_query0_00010
1
test_query0
apositive_test_query0_00011
1
test_query0
negative_test_query0_00000
0
test_query0
negative_test_query0_00001
0
test_query0
negative_test_query0_00002
0
test_query0
negative_test_query0_00003
0
test_query0
negative_test_query0_00004
0
test_query0
negative_test_query0_00005
0
test_query0
negative_test_query0_00006
0
test_query0
negative_test_query0_00007
0
test_query1
apositive_test_query1_00000
1
test_query1
apositive_test_query1_00001
1
test_query1
apositive_test_query1_00002
1
test_query1
apositive_test_query1_00003
1
test_query1
apositive_test_query1_00004
1
test_query1
negative_test_query1_00000
0
test_query1
negative_test_query1_00001
0
test_query1
negative_test_query1_00002
0
test_query1
negative_test_query1_00003
0
test_query1
negative_test_query1_00004
0
test_query1
negative_test_query1_00005
0
test_query1
negative_test_query1_00006
0
test_query1
negative_test_query1_00007
0
test_query1
negative_test_query1_00008
0
test_query1
negative_test_query1_00009
0
test_query1
negative_test_query1_00010
0
test_query1
negative_test_query1_00011
0
test_query1
negative_test_query1_00012
0
test_query1
negative_test_query1_00013
0
test_query1
negative_test_query1_00014
0
test_query2
apositive_test_query2_00000
1
test_query2
apositive_test_query2_00001
1
test_query2
negative_test_query2_00000
0
test_query2
negative_test_query2_00001
0
test_query2
negative_test_query2_00002
0
test_query2
negative_test_query2_00003
0
test_query2
negative_test_query2_00004
0
test_query2
negative_test_query2_00005
0
test_query2
negative_test_query2_00006
0
test_query2
negative_test_query2_00007
0
test_query2
negative_test_query2_00008
0
test_query2
negative_test_query2_00009
0
test_query2
negative_test_query2_00010
0
test_query2
negative_test_query2_00011
0
test_query2
negative_test_query2_00012
0
test_query2
negative_test_query2_00013
0
test_query2
negative_test_query2_00014
0
test_query2
negative_test_query2_00015
0
test_query2
negative_test_query2_00016
0
test_query2
negative_test_query2_00017
0
test_query3
apositive_test_query3_00000
1
test_query3
apositive_test_query3_00001
1
test_query3
apositive_test_query3_00002
1
test_query3
apositive_test_query3_00003
1
test_query3
apositive_test_query3_00004
1
test_query3
apositive_test_query3_00005
1
test_query3
apositive_test_query3_00006
1
test_query3
apositive_test_query3_00007
1
test_query3
apositive_test_query3_00008
1
test_query3
apositive_test_query3_00009
1
test_query3
apositive_test_query3_00010
1
test_query3
negative_test_query3_00000
0
test_query3
negative_test_query3_00001
0
test_query3
negative_test_query3_00002
0
test_query3
negative_test_query3_00003
0
test_query3
negative_test_query3_00004
0
test_query3
negative_test_query3_00005
0
test_query3
negative_test_query3_00006
0
test_query3
negative_test_query3_00007
0
test_query3
negative_test_query3_00008
0
test_query4
apositive_test_query4_00000
1
test_query4
apositive_test_query4_00001
1
test_query4
apositive_test_query4_00002
1
test_query4
apositive_test_query4_00003
1
test_query4
apositive_test_query4_00004
1
test_query4
apositive_test_query4_00005
1
test_query4
apositive_test_query4_00006
1
test_query4
apositive_test_query4_00007
1
test_query4
apositive_test_query4_00008
1
test_query4
apositive_test_query4_00009
1
test_query4
apositive_test_query4_00010
1
test_query4
apositive_test_query4_00011
1
test_query4
apositive_test_query4_00012
1
test_query4
apositive_test_query4_00013
1
test_query4
negative_test_query4_00000
0
test_query4
negative_test_query4_00001
0
test_query4
negative_test_query4_00002
0
test_query4
negative_test_query4_00003
0
test_query4
negative_test_query4_00004
0
test_query4
negative_test_query4_00005
0
End of preview. Expand in Data Studio

AskUbuntuDupQuestions

An MTEB dataset
Massive Text Embedding Benchmark

AskUbuntu Question Dataset - Questions from AskUbuntu with manual annotations marking pairs of questions as similar or non-similar

Task category t2t
Domains Programming, Web
Reference https://github.com/taolei87/askubuntu

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["AskUbuntuDupQuestions"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{wang-2021-TSDAE,
  author = {Wang, Kexin and Reimers, Nils and  Gurevych, Iryna},
  journal = {arXiv preprint arXiv:2104.06979},
  month = {4},
  title = {TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning},
  url = {https://arxiv.org/abs/2104.06979},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("AskUbuntuDupQuestions")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 7581,
        "number_of_characters": 397127,
        "num_documents": 7220,
        "min_document_length": 15,
        "average_document_length": 52.49722991689751,
        "max_document_length": 148,
        "unique_documents": 7220,
        "num_queries": 361,
        "min_query_length": 17,
        "average_query_length": 50.13019390581717,
        "max_query_length": 148,
        "unique_queries": 361,
        "none_queries": 0,
        "num_relevant_docs": 7220,
        "min_relevant_docs_per_query": 20,
        "average_relevant_docs_per_query": 5.470914127423823,
        "max_relevant_docs_per_query": 20,
        "unique_relevant_docs": 7220,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 361,
        "min_top_ranked_per_query": 20,
        "average_top_ranked_per_query": 20.0,
        "max_top_ranked_per_query": 20
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
31