Dataset Viewer
sentences
sequencelengths 175
16.4k
| labels
sequencelengths 175
16.4k
|
---|---|
["Cola im Klo macht Putzfrau froh","Das Taschenbuch der Ottifanten","Der Coach","Krieg der Klone","O(...TRUNCATED) | ["Sachbuch","Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unterhaltung","Ratgeb(...TRUNCATED) |
["Benedikt XVI.","Familie Keck - Das wäre ja gelacht!","Jugendliche nach der Konfirmation","Franken(...TRUNCATED) | ["Sachbuch","Kinderbuch & Jugendbuch","Glaube & Ethik","Literatur & Unterhaltung","Kinderbuch & Juge(...TRUNCATED) |
["Passion. Leidenschaftlich verliebt","Königsklingen","Shibumi","Ilias","Ferne Verwandte","Landgeri(...TRUNCATED) | ["Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unter(...TRUNCATED) |
["Boston","Teufelshatz","Die Papiermacherin","Die Liebe zur Freiheit hat uns hierher geführt","Drac(...TRUNCATED) | ["Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unter(...TRUNCATED) |
["Welttagsedition 2017 - Pferdegeschichten","Reise in die Nacht","Flavia de Luce 6 - Tote Vögel sin(...TRUNCATED) | ["Kinderbuch & Jugendbuch","Literatur & Unterhaltung","Literatur & Unterhaltung","Glaube & Ethik","G(...TRUNCATED) |
["Das Verbrechen","Sophiechen und der Riese","Die Welt bleibt klein, und unsere Bedürfnisse sind gr(...TRUNCATED) | ["Sachbuch","Kinderbuch & Jugendbuch","Sachbuch","Ratgeber","Kinderbuch & Jugendbuch","Kinderbuch & (...TRUNCATED) |
["Born to Cook","Über Amerikaner","Gottes bedürfen ist des Menschen Vollkommenheit","Chakra Praxis(...TRUNCATED) | ["Ratgeber","Sachbuch","Glaube & Ethik","Ganzheitliches Bewusstsein","Literatur & Unterhaltung","Lit(...TRUNCATED) |
["Hilft auch bei Liebeskummer","Drei Könige","Sie kamen nach Bagdad","Die Schwebebahn","Die O'Haras(...TRUNCATED) | ["Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unterhaltung","Literatur & Unter(...TRUNCATED) |
["MAK GUIDE WIEN 1900 - Design/Kunstgewerbe 1890–1938","Das Loch","Der zauberhafte Sauerteig der L(...TRUNCATED) | ["Künste","Literatur & Unterhaltung","Literatur & Unterhaltung","Kinderbuch & Jugendbuch","Glaube &(...TRUNCATED) |
["Höhenrausch","Themenrätsel Die 60er Jahre","Einschlafzauber","Heat - Alex Cross 15","Demenz","Re(...TRUNCATED) | ["Sachbuch","Ratgeber","Ratgeber","Literatur & Unterhaltung","Sachbuch","Sachbuch","Ratgeber","Ratge(...TRUNCATED) |
End of preview. Expand
in Data Studio
Clustering of book titles. Clustering of 28 sets, either on the main or secondary genre.
Task category | t2c |
Domains | Written |
Reference | https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["BlurbsClusteringS2S"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{Remus2019GermEval2T,
author = {Steffen Remus and Rami Aly and Chris Biemann},
booktitle = {Conference on Natural Language Processing},
title = {GermEval 2019 Task 1: Hierarchical Classification of Blurbs},
url = {https://api.semanticscholar.org/CorpusID:208334484},
year = {2019},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("BlurbsClusteringS2S")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 28,
"number_of_characters": 174637,
"min_text_length": 175,
"average_text_length": 6237.035714285715,
"max_text_length": 16425,
"unique_texts": 17726,
"min_labels_per_text": 6,
"average_labels_per_text": 6237.035714285715,
"max_labels_per_text": 41240,
"unique_labels": 101,
"labels": {
"Sachbuch": {
"count": 9327
},
"Literatur & Unterhaltung": {
"count": 41240
},
"Ratgeber": {
"count": 7810
},
"Ganzheitliches Bewusstsein": {
"count": 3215
},
"Glaube & Ethik": {
"count": 2421
},
"K\u00fcnste": {
"count": 682
},
"Kinderbuch & Jugendbuch": {
"count": 5777
},
"Architektur & Garten": {
"count": 672
},
"Romane & Erz\u00e4hlungen": {
"count": 13210
},
"Fantasy": {
"count": 4867
},
"Erotik": {
"count": 1403
},
"Frauenunterhaltung": {
"count": 8654
},
"Science Fiction": {
"count": 8104
},
"Comic & Cartoon": {
"count": 188
},
"Krimi & Thriller": {
"count": 15764
},
"Mystery": {
"count": 1006
},
"Historische Romane": {
"count": 2782
},
"Romantasy": {
"count": 1008
},
"Romance": {
"count": 972
},
"Literatur & Unterhaltung Satire": {
"count": 309
},
"Musik": {
"count": 58
},
"Horror": {
"count": 899
},
"Klassiker & Lyrik": {
"count": 978
},
"Lebenshilfe & Psychologie": {
"count": 1806
},
"Essen & Trinken": {
"count": 2108
},
"Eltern & Familie": {
"count": 1500
},
"Fitness & Sport": {
"count": 807
},
"Gesundheit & Ern\u00e4hrung": {
"count": 1762
},
"Freizeit & Hobby": {
"count": 1495
},
"Wissen & Nachschlagewerke": {
"count": 287
},
"Kommunikation & Beruf": {
"count": 472
},
"Ratgeber Partnerschaft & Sexualit\u00e4t": {
"count": 830
},
"Beauty & Wellness": {
"count": 192
},
"Geld & Investment": {
"count": 77
},
"Recht & Steuern": {
"count": 40
},
"Fotografie": {
"count": 285
},
"Mode & Lifestyle": {
"count": 137
},
"Kunst": {
"count": 523
},
"Design": {
"count": 45
},
"Glaube und Grenzerfahrungen": {
"count": 182
},
"Politik & Gesellschaft": {
"count": 2306
},
"Kabarett & Satire": {
"count": 871
},
"Infotainment & erz\u00e4hlendes Sachbuch": {
"count": 626
},
"Psychologie": {
"count": 886
},
"Natur, Wissenschaft, Technik": {
"count": 1230
},
"Biographien & Autobiographien": {
"count": 1906
},
"Lifestyle": {
"count": 444
},
"Kunst & Kultur": {
"count": 551
},
"(Zeit-) Geschichte": {
"count": 1761
},
"Schicksalsberichte": {
"count": 917
},
"Wirtschaft & Recht": {
"count": 497
},
"Sport": {
"count": 223
},
"Sachbuch Philosophie": {
"count": 279
},
"Abenteuer, Reisen, fremde Kulturen": {
"count": 579
},
"Briefe, Essays, Gespr\u00e4che": {
"count": 149
},
"Regionalia": {
"count": 24
},
"Lebensgestaltung": {
"count": 83
},
"Theologie": {
"count": 1501
},
"Gemeindearbeit": {
"count": 897
},
"Spiritualit\u00e4t & Religion": {
"count": 663
},
"Sterben, Tod und Trauer": {
"count": 211
},
"Religi\u00f6se Literatur": {
"count": 17
},
"Religionsunterricht": {
"count": 97
},
"Psychologie & Spiritualit\u00e4t": {
"count": 64
},
"Krimis und Thriller": {
"count": 745
},
"Abenteuer": {
"count": 1216
},
"Tiergeschichten": {
"count": 375
},
"Religion, Glaube, Ethik, Philosophie": {
"count": 69
},
"Fantasy und Science Fiction": {
"count": 1576
},
"Liebe, Beziehung und Freundschaft": {
"count": 1544
},
"Echtes Leben, Realistischer Roman": {
"count": 562
},
"Detektivgeschichten": {
"count": 117
},
"Natur, Tiere, Umwelt, Mensch": {
"count": 411
},
"Besch\u00e4ftigung, Malen, R\u00e4tseln": {
"count": 265
},
"Historische Romane, Zeitgeschichte": {
"count": 125
},
"Schulgeschichten": {
"count": 113
},
"Geschichte, Politik": {
"count": 109
},
"Sportgeschichten": {
"count": 202
},
"M\u00e4rchen, Sagen": {
"count": 172
},
"Kunst, Musik": {
"count": 243
},
"Familie": {
"count": 206
},
"Schullekt\u00fcre": {
"count": 134
},
"Lustige Geschichten, Witze": {
"count": 83
},
"Geister- und Gruselgeschichten": {
"count": 92
},
"Lyrik, Anthologien, Jahrb\u00fccher": {
"count": 24
},
"Biographien": {
"count": 6
},
"Energieheilung": {
"count": 439
},
"Ganzheitliche Psychologie": {
"count": 1218
},
"Weisheiten der Welt": {
"count": 731
},
"K\u00f6rper & Seele": {
"count": 618
},
"\u00dcbernat\u00fcrliches": {
"count": 653
},
"Ganzheitlich Leben": {
"count": 278
},
"Naturheilweisen": {
"count": 263
},
"Mondkr\u00e4fte": {
"count": 89
},
"Schicksalsdeutung": {
"count": 214
},
"Esoterische Romane": {
"count": 56
},
"Handwerk Holz": {
"count": 25
},
"Architektur": {
"count": 321
},
"Wohnen & Innenarchitektur": {
"count": 229
},
"Handwerk Farbe": {
"count": 85
},
"Garten & Landschaftsarchitektur": {
"count": 353
}
}
}
}
This dataset card was automatically generated using MTEB
- Downloads last month
- 7