Dataset Viewer
sentences
stringlengths 3
115
| labels
int64 0
100
|
---|---|
Ein Appartement in Paris
| 24 |
Star Trek: Die Tränen der Sänger
| 89 |
Das alte Rom. Von Göttern und Gladiatoren
| 67 |
Der Rätselmacher
| 47 |
Zum Teufelchen mit dir
| 24 |
Die fünf Menschen, die dir im Himmel begegnen
| 58 |
Mitsukos Restaurant
| 81 |
Papa To Go
| 14 |
Damals dieser Kuss
| 44 |
Die amerikanische Nacht
| 47 |
Verborgen
| 47 |
Star Trek - Classic: Die Ringe von Tautee
| 89 |
Liebe auf den ersten Kuss
| 24 |
Devil - Alex Cross 21
| 47 |
Mirage
| 81 |
Wenn’s weiter nichts ist
| 81 |
Rückkehr nach River's End
| 58 |
Alleine ist man weniger zusammen
| 81 |
Heimatländer der Phantasie
| 58 |
Frühgeborene - zu klein zum Leben?
| 73 |
Wie immer Chefsache
| 81 |
Die Puppenmacherin
| 47 |
Wurzeln, die uns Flügel schenken
| 32 |
Aufbruch
| 58 |
Mars
| 58 |
Blinder Stolz
| 58 |
Bitte melde dich!
| 28 |
Das NEON-Bilderrätsel
| 42 |
Mami, warum sind hier nur Männer?
| 58 |
Die Sphären
| 89 |
Brief an Sally
| 81 |
Sarantium - Die Verräter
| 20 |
Magic Academy - Der dunkle Prinz
| 21 |
NLP Praxis
| 55 |
Ostwind - Der große Orkan
| 44 |
Es werde Licht
| 100 |
Heinrich Heine
| 83 |
Ich glaub, ich lieb euch alle
| 56 |
Trainspotting
| 81 |
Erst die Ehe, dann das Vergnügen
| 24 |
Plötzlich Rabenmutter?
| 70 |
Zimtsommer
| 24 |
Kinderkacke
| 14 |
Der Marshmallow-Effekt
| 83 |
Linnéa im Garten des Malers
| 44 |
Sie kann's nicht lassen
| 58 |
Gottesgedanken
| 35 |
Nachtgeflüster 3. Die tödliche Bedrohung
| 24 |
Engelskalt
| 47 |
The Wild Ones
| 16 |
Die fabelhaften 12 - Die Berufung
| 44 |
Black Rain
| 47 |
7 Morde - 50 Jahre Haft - 1 Leben danach
| 85 |
Junktown
| 89 |
313
| 81 |
Ich weiß es doch auch nicht
| 83 |
SCAR
| 47 |
Iss dich gesund!
| 34 |
Inselkoller inklusive
| 81 |
Können diese Augen lügen?
| 58 |
Was wünschst du dir vom Leben?
| 27 |
Je süßer das Leben
| 24 |
Die letzte Farbe des Todes
| 58 |
Der große Witze-Knüller
| 83 |
Enkel sind ein Geschenk
| 73 |
Wenn Sie jetzt anrufen, bekommen Sie den Moderator gratis dazu!
| 57 |
Die unentdeckten Talente der Miss Merrywell
| 24 |
Die 13. Schuld
| 47 |
Jesus und die Sterne
| 83 |
Das Ohr in der Uhr
| 81 |
Der durchgeknallte Spielecontroller
| 44 |
Elfenjäger
| 58 |
Unheil
| 68 |
Eisenherz
| 47 |
Tagebücher. Jahre 1982-2001
| 8 |
Weihnachtsbäckerei
| 18 |
Herzenskarten
| 52 |
Der Amerikaner
| 47 |
Totenkalt
| 47 |
Meine zehn Frauen
| 81 |
Die Schönheitslinie
| 81 |
Finn's Hotel
| 58 |
Keraban der Starrkopf
| 81 |
Die Honigfrau
| 73 |
Novelle
| 81 |
Ein Hummer macht noch keinen Sommer
| 24 |
Stumme Angst
| 48 |
Der Bruder des Königs
| 58 |
Einmal Happy ohne End, bitte!
| 58 |
Munch and Expressionism
| 49 |
Der Wüstenplanet: Paul Atreides
| 58 |
Das Buch der vergessenen Artisten
| 39 |
Die ganze Wahrheit über Gluten
| 73 |
Nach dem Ende
| 89 |
Kopf hoch, Deutschland!
| 83 |
Das Walnusshaus
| 58 |
Ebbe und Blut
| 83 |
Faszination Allgäu
| 83 |
Das Schokoladenversprechen
| 58 |
Nachtschatten
| 81 |
End of preview. Expand
in Data Studio
Clustering of book titles. Clustering of 28 sets, either on the main or secondary genre.
Task category | t2c |
Domains | Fiction, Written |
Reference | https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["BlurbsClusteringS2S.v2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{Remus2019GermEval2T,
author = {Steffen Remus and Rami Aly and Chris Biemann},
booktitle = {Conference on Natural Language Processing},
title = {GermEval 2019 Task 1: Hierarchical Classification of Blurbs},
url = {https://api.semanticscholar.org/CorpusID:208334484},
year = {2019},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("BlurbsClusteringS2S.v2")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 2048,
"number_of_characters": 47170,
"min_text_length": 3,
"average_text_length": 23.0322265625,
"max_text_length": 115,
"unique_texts": 80,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 484,
"unique_labels": 95,
"labels": {
"24": {
"count": 102
},
"89": {
"count": 95
},
"67": {
"count": 5
},
"47": {
"count": 185
},
"58": {
"count": 484
},
"81": {
"count": 155
},
"14": {
"count": 18
},
"44": {
"count": 68
},
"73": {
"count": 92
},
"32": {
"count": 11
},
"28": {
"count": 38
},
"42": {
"count": 7
},
"20": {
"count": 57
},
"21": {
"count": 18
},
"55": {
"count": 21
},
"100": {
"count": 8
},
"83": {
"count": 109
},
"56": {
"count": 18
},
"70": {
"count": 27
},
"35": {
"count": 28
},
"16": {
"count": 16
},
"85": {
"count": 11
},
"34": {
"count": 21
},
"27": {
"count": 14
},
"57": {
"count": 5
},
"68": {
"count": 14
},
"8": {
"count": 22
},
"18": {
"count": 25
},
"52": {
"count": 7
},
"48": {
"count": 9
},
"49": {
"count": 6
},
"39": {
"count": 33
},
"82": {
"count": 12
},
"43": {
"count": 10
},
"46": {
"count": 6
},
"95": {
"count": 4
},
"45": {
"count": 11
},
"94": {
"count": 18
},
"74": {
"count": 10
},
"0": {
"count": 21
},
"22": {
"count": 9
},
"99": {
"count": 3
},
"65": {
"count": 12
},
"91": {
"count": 3
},
"15": {
"count": 5
},
"53": {
"count": 8
},
"41": {
"count": 11
},
"59": {
"count": 4
},
"80": {
"count": 11
},
"86": {
"count": 3
},
"84": {
"count": 3
},
"26": {
"count": 3
},
"98": {
"count": 3
},
"50": {
"count": 6
},
"88": {
"count": 2
},
"1": {
"count": 14
},
"23": {
"count": 3
},
"71": {
"count": 10
},
"25": {
"count": 18
},
"9": {
"count": 2
},
"90": {
"count": 8
},
"4": {
"count": 8
},
"97": {
"count": 6
},
"10": {
"count": 2
},
"96": {
"count": 9
},
"36": {
"count": 2
},
"13": {
"count": 7
},
"60": {
"count": 1
},
"66": {
"count": 2
},
"5": {
"count": 2
},
"29": {
"count": 4
},
"33": {
"count": 1
},
"77": {
"count": 1
},
"63": {
"count": 1
},
"62": {
"count": 2
},
"2": {
"count": 7
},
"12": {
"count": 1
},
"3": {
"count": 4
},
"78": {
"count": 1
},
"93": {
"count": 2
},
"6": {
"count": 3
},
"31": {
"count": 1
},
"30": {
"count": 1
},
"19": {
"count": 2
},
"72": {
"count": 1
},
"40": {
"count": 1
},
"69": {
"count": 3
},
"54": {
"count": 1
},
"51": {
"count": 3
},
"87": {
"count": 1
},
"92": {
"count": 2
},
"64": {
"count": 1
},
"17": {
"count": 1
},
"11": {
"count": 1
},
"37": {
"count": 1
}
}
}
}
This dataset card was automatically generated using MTEB
- Downloads last month
- 1