Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
German
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
sentences
stringlengths
3
115
labels
int64
0
100
Ein Appartement in Paris
24
Star Trek: Die Tränen der Sänger
89
Das alte Rom. Von Göttern und Gladiatoren
67
Der Rätselmacher
47
Zum Teufelchen mit dir
24
Die fünf Menschen, die dir im Himmel begegnen
58
Mitsukos Restaurant
81
Papa To Go
14
Damals dieser Kuss
44
Die amerikanische Nacht
47
Verborgen
47
Star Trek - Classic: Die Ringe von Tautee
89
Liebe auf den ersten Kuss
24
Devil - Alex Cross 21
47
Mirage
81
Wenn’s weiter nichts ist
81
Rückkehr nach River's End
58
Alleine ist man weniger zusammen
81
Heimatländer der Phantasie
58
Frühgeborene - zu klein zum Leben?
73
Wie immer Chefsache
81
Die Puppenmacherin
47
Wurzeln, die uns Flügel schenken
32
Aufbruch
58
Mars
58
Blinder Stolz
58
Bitte melde dich!
28
Das NEON-Bilderrätsel
42
Mami, warum sind hier nur Männer?
58
Die Sphären
89
Brief an Sally
81
Sarantium - Die Verräter
20
Magic Academy - Der dunkle Prinz
21
NLP Praxis
55
Ostwind - Der große Orkan
44
Es werde Licht
100
Heinrich Heine
83
Ich glaub, ich lieb euch alle
56
Trainspotting
81
Erst die Ehe, dann das Vergnügen
24
Plötzlich Rabenmutter?
70
Zimtsommer
24
Kinderkacke
14
Der Marshmallow-Effekt
83
Linnéa im Garten des Malers
44
Sie kann's nicht lassen
58
Gottesgedanken
35
Nachtgeflüster 3. Die tödliche Bedrohung
24
Engelskalt
47
The Wild Ones
16
Die fabelhaften 12 - Die Berufung
44
Black Rain
47
7 Morde - 50 Jahre Haft - 1 Leben danach
85
Junktown
89
313
81
Ich weiß es doch auch nicht
83
SCAR
47
Iss dich gesund!
34
Inselkoller inklusive
81
Können diese Augen lügen?
58
Was wünschst du dir vom Leben?
27
Je süßer das Leben
24
Die letzte Farbe des Todes
58
Der große Witze-Knüller
83
Enkel sind ein Geschenk
73
Wenn Sie jetzt anrufen, bekommen Sie den Moderator gratis dazu!
57
Die unentdeckten Talente der Miss Merrywell
24
Die 13. Schuld
47
Jesus und die Sterne
83
Das Ohr in der Uhr
81
Der durchgeknallte Spielecontroller
44
Elfenjäger
58
Unheil
68
Eisenherz
47
Tagebücher. Jahre 1982-2001
8
Weihnachtsbäckerei
18
Herzenskarten
52
Der Amerikaner
47
Totenkalt
47
Meine zehn Frauen
81
Die Schönheitslinie
81
Finn's Hotel
58
Keraban der Starrkopf
81
Die Honigfrau
73
Novelle
81
Ein Hummer macht noch keinen Sommer
24
Stumme Angst
48
Der Bruder des Königs
58
Einmal Happy ohne End, bitte!
58
Munch and Expressionism
49
Der Wüstenplanet: Paul Atreides
58
Das Buch der vergessenen Artisten
39
Die ganze Wahrheit über Gluten
73
Nach dem Ende
89
Kopf hoch, Deutschland!
83
Das Walnusshaus
58
Ebbe und Blut
83
Faszination Allgäu
83
Das Schokoladenversprechen
58
Nachtschatten
81
End of preview. Expand in Data Studio

BlurbsClusteringS2S.v2

An MTEB dataset
Massive Text Embedding Benchmark

Clustering of book titles. Clustering of 28 sets, either on the main or secondary genre.

Task category t2c
Domains Fiction, Written
Reference https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["BlurbsClusteringS2S.v2"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{Remus2019GermEval2T,
  author = {Steffen Remus and Rami Aly and Chris Biemann},
  booktitle = {Conference on Natural Language Processing},
  title = {GermEval 2019 Task 1: Hierarchical Classification of Blurbs},
  url = {https://api.semanticscholar.org/CorpusID:208334484},
  year = {2019},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("BlurbsClusteringS2S.v2")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 2048,
        "number_of_characters": 47170,
        "min_text_length": 3,
        "average_text_length": 23.0322265625,
        "max_text_length": 115,
        "unique_texts": 80,
        "min_labels_per_text": 1,
        "average_labels_per_text": 1.0,
        "max_labels_per_text": 484,
        "unique_labels": 95,
        "labels": {
            "24": {
                "count": 102
            },
            "89": {
                "count": 95
            },
            "67": {
                "count": 5
            },
            "47": {
                "count": 185
            },
            "58": {
                "count": 484
            },
            "81": {
                "count": 155
            },
            "14": {
                "count": 18
            },
            "44": {
                "count": 68
            },
            "73": {
                "count": 92
            },
            "32": {
                "count": 11
            },
            "28": {
                "count": 38
            },
            "42": {
                "count": 7
            },
            "20": {
                "count": 57
            },
            "21": {
                "count": 18
            },
            "55": {
                "count": 21
            },
            "100": {
                "count": 8
            },
            "83": {
                "count": 109
            },
            "56": {
                "count": 18
            },
            "70": {
                "count": 27
            },
            "35": {
                "count": 28
            },
            "16": {
                "count": 16
            },
            "85": {
                "count": 11
            },
            "34": {
                "count": 21
            },
            "27": {
                "count": 14
            },
            "57": {
                "count": 5
            },
            "68": {
                "count": 14
            },
            "8": {
                "count": 22
            },
            "18": {
                "count": 25
            },
            "52": {
                "count": 7
            },
            "48": {
                "count": 9
            },
            "49": {
                "count": 6
            },
            "39": {
                "count": 33
            },
            "82": {
                "count": 12
            },
            "43": {
                "count": 10
            },
            "46": {
                "count": 6
            },
            "95": {
                "count": 4
            },
            "45": {
                "count": 11
            },
            "94": {
                "count": 18
            },
            "74": {
                "count": 10
            },
            "0": {
                "count": 21
            },
            "22": {
                "count": 9
            },
            "99": {
                "count": 3
            },
            "65": {
                "count": 12
            },
            "91": {
                "count": 3
            },
            "15": {
                "count": 5
            },
            "53": {
                "count": 8
            },
            "41": {
                "count": 11
            },
            "59": {
                "count": 4
            },
            "80": {
                "count": 11
            },
            "86": {
                "count": 3
            },
            "84": {
                "count": 3
            },
            "26": {
                "count": 3
            },
            "98": {
                "count": 3
            },
            "50": {
                "count": 6
            },
            "88": {
                "count": 2
            },
            "1": {
                "count": 14
            },
            "23": {
                "count": 3
            },
            "71": {
                "count": 10
            },
            "25": {
                "count": 18
            },
            "9": {
                "count": 2
            },
            "90": {
                "count": 8
            },
            "4": {
                "count": 8
            },
            "97": {
                "count": 6
            },
            "10": {
                "count": 2
            },
            "96": {
                "count": 9
            },
            "36": {
                "count": 2
            },
            "13": {
                "count": 7
            },
            "60": {
                "count": 1
            },
            "66": {
                "count": 2
            },
            "5": {
                "count": 2
            },
            "29": {
                "count": 4
            },
            "33": {
                "count": 1
            },
            "77": {
                "count": 1
            },
            "63": {
                "count": 1
            },
            "62": {
                "count": 2
            },
            "2": {
                "count": 7
            },
            "12": {
                "count": 1
            },
            "3": {
                "count": 4
            },
            "78": {
                "count": 1
            },
            "93": {
                "count": 2
            },
            "6": {
                "count": 3
            },
            "31": {
                "count": 1
            },
            "30": {
                "count": 1
            },
            "19": {
                "count": 2
            },
            "72": {
                "count": 1
            },
            "40": {
                "count": 1
            },
            "69": {
                "count": 3
            },
            "54": {
                "count": 1
            },
            "51": {
                "count": 3
            },
            "87": {
                "count": 1
            },
            "92": {
                "count": 2
            },
            "64": {
                "count": 1
            },
            "17": {
                "count": 1
            },
            "11": {
                "count": 1
            },
            "37": {
                "count": 1
            }
        }
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
1